
Research Article Journal of Optical Communications and Networking 1

On the network design and control of optical network –
interconnecting multiple chips on wafer
ZIYUE ZHANG1,*, DIDIER COLLE2, WOUTER TAVERNIER2, AND MARIO PICKAVET1

1Department of Information Technology, Gent University - IMEC, Belgium
1 IMEC - Department of Information Technology, Gent University, Belgium
*Ziyue.Zhang@UGent.be

Compiled January 3, 2023

In this paper we propose a new network architecture for multi-chip optical Network-on-Wafer(NoW), we
concentrate on the research of its control mechanisms and control algorithms. Our proposed optical NoW
aims at providing dynamically controlled Tera-Bytes-per-second unidirectional bandwidth for every chip
module in a multi-chip processor. This architecture is promising in achieving low energy consumption
and high aggregated bandwidth, providing a competitive idea for the next generation of optical-connected
multi-chip computing systems. A synchronous network control scheme with a network control algorithm
is proposed for slow-varying traffic patterns. Moreover, edge coloring algorithm is an important part of our
network control algorithm, we propose improved edge coloring algorithms which are modified from the
existing edge coloring algorithms. We show that our improved edge coloring algorithm has lower time
complexity, and it also achieves faster execution in our experiments than the existing methods.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Modern processors tend to have multiple computing cores, in
order to continue the growth of computational power on a single
chip [1][2]. The size of a single chip continues to grow [3], how-
ever, the increasing number of cores and memory components
on the chip brings dramatic increase in data communication
traffic. Network-on-chip (NoC) technology has been established
since the 2000s [4, 5] to overcome bottlenecks in chip-level com-
munication. However, as the multi-core single chip scales in
size, it is more prone to fabrication defects and thus has lower
yield in fabrication.

A multi-chip processor interconnects multiple already tested
chips to form a bigger processor on a wafer. It is a promising
solution to build larger and faster processors with high yield.
With the help of the novel 2.5-D integration technology [6][7],
chips can be interposed on a wafer while an inter-chip network
is fabricated on the wafer in order to accommodate the communi-
cation flows among chips. The inter-chip network is thus called
Network-on-wafer(NoW) in this paper, while in some literature
they are referred to as inter-chip NoC. Chips on the wafer can
access shared memory and execute instructions in parallel. This
method is expected to continue the growth of computational
power in one computing system despite the end of Moore’s Law,
and also greatly accelerate highly parallel computation tasks
such as machine learning and climate simulations, etc. [8][9]

Modern multi-chip computing systems have employed elec-
trical wires as interconnects[10–13]. The inter-chip electrical

wires bring mainly two problems. One is the high signal delay,
the telegrapher’s equation describes the signal propagation ve-
locity v depending on resistance R, capacity C, and induction L
in an electronic circuit:

∂2v
∂x2 = RC

∂v
∂t

+ LC
∂2v
∂t2 (1)

For instance, the delay of a 10mm long on-chip electrical wire
can already be a few hundreds of pico-seconds[5], which is
close to one clock cycle in a processor. Another problem is that
wafer-scale electronic interconnects consume very high energy.
For example, power consumption of an intra-chip electronic
connection (≈ 1mm) is about 0.1 to 0.2pJ/bit, while inter-chip
electrical wires (a few hundreds of millimeters) can take up to
30pJ/bit [14]. The energy consumption of inter-chip electrical
wires is a huge overhead compared with that of the floating-
point operations in a modern processor (≈ 1.7pJ/bit) [15].

As a promising solution for implementing the next generation
inter-chip network, silicon photonics technology can improve
both on signal delay and power consumption. Light signals
traverse waveguides with the speed of light v = c

ne f f
, where

c ≈ 3 ∗ 108m/s is the speed of light in vacuum and ne f f is the
effective refractive index of waveguides. An integrated optical
waveguide typically has ne f f = 2 ∼ 3. For instance, the delay
of a 10mm waveguide would be tens of pico-seconds. Moreover,
energy consumption for sending optical signals can achieve
0.3pJ/bit [16] for both millimeter-level or sub-meter-level optical

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of Optical Communications and Networking 2

Fig. 1. Interposer composition

links thanks to modern optical transmitters and amplifiers based
on III-V semiconductors working with high efficiency and low
energy consumption [17–19]. Moreover, novel Silicon Nitride
waveguides can achieve 3 to 10dB/m propagation loss [20];
ultra-low-loss waveguide crossings enable waveguides to be
crossed within a low cost of attenuation and crosstalk [21]. They
give flexibility to the design of photonic circuits which was
impossible for the electronic ones. Silicon photonics waveguides
also have the advantage that they guide simultaneously multiple
optical signals due to Wavelength Division Multiplexing (WDM)
technology.

It is evident that photonics technology is beneficial to be in-
corporated in the design of the next generation multi-chip NoW.
An illustration of the concept of our proposed optical NoW ar-
chitecture is shown in figure 1 and 2. Figure 1 depicts a vertical
illustration of a 2.5-D interposer, the electronic wires and pho-
tonic waveguides are integrated in two layers. Figure 2 shows
the idea of multi-chip processor composed of chip modules, i/o
ports, electrical wires and optical NoW, etc.

i/o ports: 
- electronic drivers 

- optical transceivers 

Wafer(interposer) 
embedded with: 

- optical network  
- electronic wires 

computing or
memory tiles

wafer diameter:
100~300 mm

Fig. 2. Multi-chip processor on wafer

However, the control mechanisms used in traditional elec-
trical NoC are not suitable for optical networks [22] due to the
different working mechanisms of electrical routers and opti-
cal switches. Section 2 briefly reviews optical network control
strategies in data center and photonic NoC networks, the unique
challenges of photonic NoW will also be discussed. In section 3
we propose a new photonic NoW topology and a control scheme
that is suitable for multi-chip computing systems. The network
control algorithm designed for our NoW architecture will be
shown in section 4. Section 5 will give details about our pro-
posed edge coloring algorithms that were used in the network
control algorithm in section 4. Section 6 concludes this paper

and discusses the direction of future works.

2. RELATED WORKS AND THE NEW HORIZON OF NOW

Optical networks have already been widely deployed in data
center and HPC (high-performance computing) networks due to
the low power consumption and low packet latency offered by
free-space optical devices, compared to the use of long electrical
cables.

In data center and HPC networks, it is necessary to provide
connectivity among a large number of network nodes with high
bandwidth and low latency. However, the sheer number of
nodes makes it infeasible to achieve all-to-all single-hop packet
transportation. Researchers have therefore sought to minimize
the number of hops traversed by packets through a combination
of network topology design and control algorithms [23, 24].

Pre-designed cyclic switching methods have been used to con-
trol optical networks in data centers based on the assumption
that uniform traffic patterns are common. These methods con-
figure the optical switches in a cyclic fashion to ensure fairness
among network nodes [25–27]. Another approach is to calculate
and reconfigure the optical switches based on measured traf-
fic demand, such as in the c-Throughput [28] and Helios [29]
architectures.

In recent decades, the advancement of integrated photonics
technology has also led to the consideration of deploying optical
networks in NoC in academic research.

Guo et.al. [30] reported an integrated optical network archi-
tecture where optical waveguides replace electrical wires. The
power consumption overhead of Electrical-Optical-Electrical
(E-O-E) conversions were detrimental, leading to hundreds of
pico-Joule-per-bit energy consumption for the network [30]. Sev-
eral new paradigms of optical NoC or NoW architectures have
been proposed in the literature, thorough discussions can be
found in book[22].

Network designs like [31, 32] employ a circuit-switching op-
tical network and a packet-switching electrical network. The
electrical network works as a traditional electrical NoC, it ac-
commodates control messages in order to set up circuits in the
optical network for transmitting payloads [31]. However, the
latency and energy consumption of these electrical path-setup
messages can contribute over 90% to the overall delay and power
consumption when the payload packet sizes are as small as 256
Bytes [32]. The low efficiency makes this network design espe-
cially not suitable for multi-chip processors that tend to have
very short packets (8 Byte and 136 Bytes) in steady states [33][34].

Some networks [35, 36] make use of optical buses (e.g.,
Multiple-Write-Multiple-Read (MWMR) optical bus) for data
communication. These optical networks can implement network
arbitration and allocation only using optical waveguides. How-



Research Article Journal of Optical Communications and Networking 3

ever, the optical buses use only half of its time slots for payload
and another half slots for arbitration [36], which leads to a 50%
degradation of effective bandwidth.

A few networks like [15, 37] configure small-dimension opti-
cal switches according to a pre-designed cycled switching plan
similar to the data center networks like [25–27]. They are good
compromises if we do not have large-dimension switches for
connecting all nodes in the network.

The integrated photonic network architectures mentioned
above were mostly designed for NoCs, however, applying these
network architectures directly in the design space of photonic
NoW is not the best solution mainly for two reasons:

(1) Footprint restriction and radix of optical switches
The most apparent distinction between NoC and NoW is

their different scales of footprints. NoC architectures need to
suit in a chip (102mm2 to 103mm2), in most cases small-radix
(typically 4-by-4) optical switches are used. In contrast, NoW
can be implemented on a wafer (104mm2 to 105mm2). This allows
large-radix optical switches and much larger photonic circuits to
be incorporated in the network design of NoW, which were not
possible in the photonic NoCs. For example, [38] has reported
a 64-by-64 optical switch with 208mm2 footprint, and a 128-by-
128 optical switch with 272mm2 footprint was reported in [39].
Large-radix optical switch is a key component of our proposed
photonic NoW architecture, they are discuss further in section 3
A.

(2) Bandwidth demand
Another important trait of NoW is the high bandwidth de-

mand among network nodes. ‘Node’ is defined in a network
referring to sources or sinks of payload data. Therefore, one
node in an NoC is defined by one processing core or one mem-
ory channel. Per-node bandwidth provided by an NoC should
support inter-core and core-memory traffics. On the contrary, a
node in an NoW represents a processing chip or a memory tile
which may include hundreds of clusters of processing cores and
memory channels. As a consequence, per-node bandwidth de-
mand in an NoW is much higher than that of NoC. Leveraging
multiple parallel high-radix switches in the NoW architecture
can provide high per-node bandwidth, achieving low network
diameter and simpler network topologies.

Electronic NoW with multiple parallel high radix routers
has already been explored in the design of DGX-multiGPU[40]
from NVIDIA. In our knowledge, we are the first to propose
a photonic NoW architecture specifically designed for connect-
ing multiple chips with multiple parallel large radix optical
switches. However, the key difference between NVIDIA’s elec-
tronic NoW and the photonic NoW is that the former relies on
packet-switching routers, while our proposed photonic NoW
is buffer-less and it adopts circuit switching. Our proposed
photonic NoW will be introduced in section 3.

Pioneering research has shown that multi-chip computing
systems can benefit from ultra-high inter-chip bandwidth. For
instance, in [33] it has been shown that their simulated Multi-
chip-module GPU system continues to have linear or even
super-linear performance improvements for memory-intensive
workloads when the inter-chip link bandwidth increases from
384 GBps to 1.5 TBps. Most existing optical network architec-
tures are not able to provide Tera-Bytes level point-to-point
unidirectional bandwidths for multi-chip systems. The newest
commercial electrical NoW fabric NVswitch provides 450 GBps
point-to-point unidirectional bandwidth [40], which is also far
below our target.

Our proposal of photonic NoW aims at providing TBps-scale

unidirectional bandwidth-per-chip in the multi-chip system. Al-
though this high bandwidth is not yet feasible for the current
chips in the market as far as the time that this paper is written,
we believe this will be supported by the future chip designs as
the off-chip bandwidth is a well acknowledged bottleneck for
many benchmarks [33, 40, 41].

3. NETWORK DESIGN

Our proposed optical NoW architecture aims at providing
Terabyte-per-second bandwidth for each network node, high
bandwidth utilization and low control overhead. This work
focuses on the topology and network control methods for the
proposed architecture.

The network topology we propose is shown in figure 3. Our
proposed architecture contains two networks, namely an optical
payload network and a control network. The optical payload
network contains computing or memory chips, optical switches
and optical waveguides. The control network is used for control-
ling the bandwidth allocation in the optical payload network, it
includes a network controller, chip-controller links and optical
switch control wires. They will be explained in more details in
the following subsections.

A. Optical payload network
T denotes the number of chips in the network, and S the number
of optical switches. Each optical switch has T input ports and
T output ports and connects to all the chips via optical waveg-
uides. An optical switch establishes point-to-point connections
from its input ports to output ports. Differences of our network
design from the hybrid circuit-switching networks in [31, 32]
are: (1) our control network has simpler topology. (2) our control
network is only used for sampling traffic demands and updat-
ing routing tables periodically instead of reacting to payload
packets frequently. (3) the packet always traverse single hop in
our proposed network thanks to the large radix optical switches.

There are several options for physically implementing the
optical switches, for examples:

(1) Micro-Electro-Mechanical-system(MEMs) optical switches
normally have large port counts and are energy-saving. How-
ever, MEMs switches suffer from low switching speed. [39]
has demonstrated a 128× 128 MEMs switches with about 1 µs
switching time.

(2) Mach-Zehnder-Interferometer(MZI)-based optical
switches are fast in switching, but the port counts will be lower
due to attenuation and crosstalk limitations. A 64 × 64 inte-
grated MZI optical switch has been demonstrated in [38] with
about 10 ns switching time. It has also been shown in [42] that
by using push-pull over-coupling Micro-Rings, MZI switches
are capable of wavelength-routing, i.e., every wavelength is
routed independently. The possibility of wavelength-routing
greatly improves the granularity of bandwidth allocation in the
network.

(3) Optical MWMR buses can serve as crossbars in the fre-
quency domain with high port count. However, implementing
optical MWMR buses need a huge amount of micro ring res-
onators which are temperature-sensitive in tuning. MWMR
buses also require stable high power optical signal which may
lead to high power consumption and wasted energy. MWMR
buses can suit in our proposed network architecture but may
lead to high implementation cost and implementation difficulty.

The photonic NoW architecture that we are proposing is
theoretically compatible with any large radix optical switch.



Research Article Journal of Optical Communications and Networking 4

There can be various trade-offs when choosing the technology
of optical switches, due to their different switching times, imple-
mentation costs, abilities of wavelength routing, etc. However,
analyzing the trade-offs of physical layer implementation falls
out of the scope of this paper.

To be concrete we assume T = 16, i.e., the same number of
GPU tiles in the Gen-3 NVSwitch multi-chip GPU system [40].
We will also assume that the switches are 16× 16 wavelength-
routing integrated MZI switches. Assume the number of wave-
lengths in the WDM system is 16, and each WDM wavelength
channel operates at 25 Gbps default bit rate, each MZI switch
can provide 16× 25 Gbps = 50 GBps bandwidth from any input
port to any output port. If we take for instance S = 32, the
unidirectional aggregated bandwidth owned by each chip is
S ∗ 50 GBps = 1.6 TBps, which is a feasible solution in our target
zone.

There are four types of optical payload packets being sent
in the payload network: read request (8 Bytes), read reply
(136 Bytes), write request (136 Bytes) and write reply (8 Bytes).
These packets will be sent via source chips’ output port and
then traverse optical waveguides and optical switches, finally
arriving at the destination chips’ input port. An input port of a
chip consists of a WDM de-multiplexer and a group of receivers
working at each wavelength, and each output port of a chip
consists of a WDM multiplexer and a group of transmitters at
each wavelength.

The packets will only traverse single hop in the network. In
order to send the packets to the correct destination chip, every
source chip needs to know which receiver is being connected to
its transmitters. This information should be stored in routing
tables inside every chip, and the routing tables will be updated
according to the decision of the network controller.

B. Control network

The network controller takes the responsibility of allocating
optical channels to source-destination (s-d) pairs. The network
controller can be implemented as Field Programmable Gate
Arrays (FPGAs) or a CPU. The role of the network controller
can also be taken by the server1 of the multi-chip computing
system. The network controller needs to execute network control
algorithms in order to decide how to allocate available optical
channels, it also needs to obtain inputs for this control algorithm
from the chips and then send the output of this control algorithm
to the optical switches and the chips. We propose such a control
algorithm in section 4. The network controller and the optical
switches have a master-slave relationship, the instructions of
switch reconfiguration are sent via electrical wires. The chip-
controller links can be implemented with optical waveguides or
commercial high-speed electrical links like PCI-e buses[12].

There will be three types of packets sent in the control net-
work:

(1) from chips to network controller: bandwidth demands.
The methodology is trying to predict bandwidth demands in

the next period of time based on the traffic statistics measured in
the last sampling period. Every chip generates traffic statistics
by keeping track of the number of packets that has been gener-
ated during the last sampling period. These historical packets
are categorized according to their destination chip id and con-
tribute to the traffic statistics stored in the source chip. The traffic
statistics will be translated into bandwidth demands and sent to

1e.g., a cpu is called the server of a GPU system if this cpu assigns workloads to
the GPU system

the network controller. The bandwidth demand can simply be
calculated as the amount of data divided by the sampling time
and divided by the bandwidth of one channel. Denote di,j as the
bandwidth demand from chip i to j. Denote the amount of data
generated during a sampling period that is from chip i to j as
ϵi,j [Bytes], sampling period is Tsample [s].

di,j = ⌈
ϵi,j

Tsample ∗ Bchannel
⌉ (2)

Define one channel as the granularity of bandwidth allocation,
thus one channel corresponds to a Bchannel = 25Gbps point-to-
point connection in a wavelength-routing switch. The unit of di,j
is [number of channels]. With T = 16 and S = 32, the size of this
traffic demand message is 15 + 2 = 17 Bytes , taking 1 Byte for
each integer demand value (T − 1 integer demand values, one
per destination chip id) and 2 Bytes for header and tail.

(2) from network controller to chips: routing table updates.
After receiving the estimated bandwidth demand messages

from the chips, the network controller calculates how to allocate
bandwidth resources to match with the demands all over the
network. The result will be sent to the chips for updating their
routing tables. With T = 16 and S ∗W = 32 ∗ 16 = 512, the
size of each routing table update message should be 256 + 2 =
258 Bytes , taking 4 bits for indicating the destination chip id for
each transmitter in the source chip, and 2 Bytes for header and
tail.

(3) from network controller to optical switches: reconfigura-
tion.

The results of the network control algorithm will also be
sent to the optical switches to give instructions of switch
reconfiguration.

There can be different strategies for allocating the bandwidth
resources in the network, we propose a synchronous network
control scheme. This working scheme will need the network
controller to execute the control algorithm periodically in time
and concurrently inform the chips and optical switches about
the algorithm results. The routing tables in the chips and the
configuration in the optical switches should update according to
this algorithm’s result synchronously. The synchronous network
control algorithm shall be executed depending on the signifi-
cance of demand variation (see line 4-6 in procedure SNC(d)
of Algorithm 1, and discussions in section 4 B). Our network
control strategy is similar to those used in the c-Throughput
and Helios [28, 29] architectures, in that the optical switches
are reconfigured in response to measured traffic demand while
the network is running. The dynamic bandwidth allocation
method has been shown to significantly reduce the completion
time of the applications and offers significantly reduced latency
in which the traffic demands between some hosts change slowly
in the c-Throughput network.

In contrast to c-Throughput and Helios, our network control
algorithm is more flexible and has lower time complexity, as we
will demonstrate in Section 4. Moreover, our proposed photonic
NoW network always provides single-hop packet transportation
and our network control strategy aims to fully match bandwidth
demand with allocation.

Study shows that in many scientific computing applications
the bulk of inter-processor communication changes slowly (in
order of seconds) [43]. Assume our proposed photonic NoW
multi-chip system can be involved in a high performance com-
puting machine. Depending on the problem sizes of the submit-
ted jobs, new jobs are likely to be submitted on the time scale



Research Article Journal of Optical Communications and Networking 5

Fig. 3. Our proposed network Topology

of hours or minutes to the multi-chip system. Every job may
launch tens to thousands or even more kernels concurrently or
consequently, each kernel may last for seconds or minutes, or
even hours. One kernel may have several steady states depend-
ing on its implementation, inter-chip traffic is assumed to be
steady in these steady states in the kernels.

The execution time of the synchronous network control al-
gorithm is critical for determining which scale of traffic pattern
variations that this algorithm is capable of dealing with. The
execution time of the network control algorithm should be at
least one hundred times faster than the target scale of traffic
pattern variation in order to react on time and avoid control
overhead. In section 4 we propose such an algorithm. Further
analysis of our proposed network control algorithm’s execution
time can be found in section 4 C.

C. Preventing buffer overflow

Buffer overflow can happen when a chip is receiving a payload
packet and this chip cannot process this packet immediately
nor has enough memory to store this packet, which will result
into packet loss and may severely slow down the computation
process. Credit-based flow control[44] has been widely used in
traditional electrical NoCs to control traffic flows and prevent
buffer overflow in electronic routers. Although electrical routers
are no longer used in our optical payload network, similar credit-
based flow control methods can be adopted in the network level.

At the start-up phase of the multi-chip system, each chip
locally keeps an amount of credits for every other chip. A source
chip sends payload packets to a destination chip, consuming a
certain amount of credits. The source chip can no longer send
payload to a destination chip when the credit is not enough but
have to wait for the credit to increment.

Whenever a certain amount of received payload data has
been processed (thus not occupying any buffer space) by a desti-
nation chip, it can rightfully increment the credit for the source
chip. To update the credit in the source chip, we piggyback a 1
Byte integer data field for the accumulated credits in the next

payload packet that will be sent from the destination chip to the
source chip. In order to update credit information on-time, a
threshold value of credit is set. If the number of credits need
to be updated for another chip exceeds the threshold value, the
chip generates a special optical packet in the payload network
containing no payload data but only the credits to be updated.

4. SYNCHRONOUS NETWORK CONTROL ALGORITHM

The network controller executes the network control algorithm
in order to allocate bandwidth resources to s-d pairs. We de-
scribe this network control algorithm in this section.

A. Problem description

The traffic demand message sent from a chip to the network
controller contains T− 1 integer values. The network controller
receives T such messages, and thus they can be formulated into
a T× T matrix with diagonal values all being zero. We denote
this matrix as the "demand matrix" d. Matrix d is the input of
our network control algorithm.

The output of this algorithm contains the information of how
to configure all the optical switches in the payload network. Ev-
ery optical switch provides point-to-point connection and routes
W number of wavelengths independently. Therefore, for every
wavelength in an optical switch, the output of the algorithm
can be seen as a T × T binary matrix with the summation of
every row and column being at most 1, the rows in the matrix
correspond to the ids of source chips and the columns desti-
nation chips. The diagonal elements are always 0 because a
chip never sends packets to itself in this network. In total we
have S ∗W such binary matrices and they can be formulated
into a 3-D binary allocation tensor a. The three dimensions in
tensor a correspond to the "wavelength id", "source chip id", and
"destination chip id", respectively.

There are S ∗W independent wavelengths in the network,
they are assigned with unique wavelength ids. We give ’wave-
length id no.1 to no.W’ to the wavelengths in optical switch no.1,



Research Article Journal of Optical Communications and Networking 6

and we give ’wavelength id no.(W+1) to no.(2*W)’ to the wave-
lengths in optical switch no.2, etc. Note that here we give dif-
ferent wavelength ids to the same physical optical wavelengths
in different optical switches because they are independent. An
illustration of a is shown in figure 4 with T = 3. ak,i,j = 1
means that wavelength k will be allocated to source chip i and
destination chip j, otherwise not. The constraints on a are:

T

∑
j=1

ak,i,j ≤ 1, ∀k, i , and

T

∑
i=1

ak,i,j ≤ 1, ∀k, j , and

ak,i,j = 0 or 1, ∀i, j, k , and

ak,i,i = 0, ∀k, i.
with k ∈ {1, 2, ..., S ∗W}; i, j ∈ {1, 2, ..., T}

(3)

To calculate the allocation tensor a, a few simple algorithms
have been proposed for similar network topology in the data
center networks for the similar problems. The Hungarian algo-
rithm [45] was employed to find maximum-weight matching
repeatedly for each independent wavelength in [28] and [29].
This method has O(SWT3) time complexity in our application.
This algorithm is greedy and not exact if we aim at fully match-
ing demand and allocation, and it also has low potential to be
parallelized because each execution of Hungarian algorithm
needs the output of the result of the last execution of Hungarian
algorithm.

We propose a new method aiming at fully matching de-
manded bandwidth and allocated bandwidth. This method first
calculates matrix a′ as an intermediate result, then we calculate
tensor a from a′ so that equation 4 is fulfilled.

a′i,j =
S∗W
∑
k=1

ak,i,j, ∀i, j ∈ {1, 2, ..., T} (4)

Matrix elements a′i,j are integers and have the same unit as di,j:
[number of channels]. The value of a′i,j means how many channels
we would like to allocate from chip i to chip j. The objective is
to match a′ with d so that the channels are most utilized. We
also would like a′i,j always being positive to avoid having high
latency. In other words, a′i,j ≥ 1, we always keep at least one
channel between any s-d pair despite the demand di,j may be
zero. a′ thus has constraints in formula 5, the first two lines can
be interpreted as each chip can only speak or listen maximally
through S ∗W number of channels.

T

∑
i=1

a′i,j ≤ S ∗W, ∀j , and

T

∑
j=1

a′i,j ≤ S ∗W, ∀i , and

a′i,j ≥ 1, ∀i, j, i ̸= j; a′i,i = 0, ∀i.

with i, j ∈ {1, 2, ..., T}

(5)

Tensor a can be calculated from matrix a′ by using an edge
coloring algorithm (see Theorem 1). The edge coloring algo-
rithm sees every chip as a vertex in a bipartite multigraph and
every channel as an edge. Different colors of the edges corre-
spond to independent wavelength ids in tensor a. The edge

coloring algorithm can achieve O(T2 lg(SW)) time complexity2

as will be shown in section 5. Every level of the recursion tree in
the edge coloring algorithm is highly parallel, this means that
our proposed algorithm has the potential to considerably speed
up with multi-thread executions.

B. Algorithm
The pseudo-code of the proposed synchronous network control
algorithm is shown in Algorithm 1. Procedure 1 ’SNC’ in Al-
gorithm 1 is the main body of the network contorl algorithm,
while the following three procedures (phase 1,2, and 3) are called
inside procedure SNC. This control algorithm will be executed
repeatedly while the network is running. The time interval be-
tween two executions is at least Tcontrol . Every Tcontrol period
of time, the network controller will receive a new demand ma-
trix and compare it with the previous one. Lines 2-6 determine
whether or not executing the rest of the algorithm by iterating
over the demand matrix. The algorithm will continue by calling
phase 1, phase 2, and phase 3 as long as one demand value has
increased significantly (di,j − (dprev)i,j ≥ dthre). Threshold dthre
works as a macro parameter in the algorithm for gauging the
’significance’ of the demand increment. The value of dthre should
be set according to the bandwidth granularity of the network,
for example it can be set as a few times of the lowest control-
lable bandwidth which is 25Gbps in our wavelength-routing
assumption. Lines 2-6 have time complexity O(T2).

Lines 8-10 contain three phases of calculating the allocation
tensor a, they will be explained below.
• Phase 1: proportional scaling
First of all, in procedure phase 1 of Algorithm 1 we calculate

the sum of every row and column of the demand matrix, and
keep the maximum summation value as MAX. Then we calculate
the allocation matrix as a proportionally scaled demand matrix:

a′i,j = 1 + di,j∗(S ∗W − (T − 1))/MAX

∀i, j; i ̸= j
(6)

The first constant term in equation 6 is for allocating a full-
mesh connection among chips, so that eventually a′i,j > 0 for all
i and j. This full-mesh connection consumes (T-1) independent
wavelength ids, thus in the second term we subtract them from
S ∗W wavelength ids. The purpose of this step is to make
sure every s-d pair always has at least one channel available
in order to avoid high latency. Up to this point, at least one
chip uses all its transmitters or receivers, i.e., ∃j, ∑T

i=1 ai,j =

S ∗W, or, ∃i, ∑T
j=1 ai,j = S ∗W. We finally round the matrix

elements with a floor function so that they are integers and
constraints in formula 5 are all fulfilled.

phase 1 has time complexity Θ(T2) by iterating over each
matrix element three times.
• Phase 2: allocating excess channels
After phase 1 it is very likely that the constraints in formula 5

are not tight for all i and j, which means there will still be room
for allocating the excess available channels. We assign excess
channels in phase 2 of Algorithm 1 according to a sorted queue of
margins:

Define margin as equation 7.

mi,j =
a′i,j − di,j

dα
i,j

(7)

2lg stands for logarithm with base 2 throughout this paper



Research Article Journal of Optical Communications and Networking 7

Fig. 4. An illustration of a 3-D allocation tensor a

Algorithm 1. Synchronous network control algorithm

1: procedure SNC(d)
2: flag← false
3: for di,j in d do
4: if di,j − (dprev)i,j ≥ dthre then
5: flag← true
6: break
7: if flag is true then
8: a′ = phase 1(d)
9: a′ = phase 2(a′, d)

10: a = phase 3(a′)
11: return a
1: procedure phase 1(d)
2: MAX← 0
3: for all rows and columns in d do
4: sum = SUM(row or column)
5: MAX← sum if MAX< sum
6: for all (i, j) , i ̸=j do
7: a′i,j = 1 + ⌊di,j ∗ (SW − (T − 1))/MAX ⌋

8: return a′

1: procedure phase 2(a’, d)
2: create empty sorted queue Qm
3: Calculate summations of rows and column in matrix a′

and store them in vectors sum_row and sum_col
4: for all (i,j) do
5: if (sum_row)i < SW)&((sum_col)j < SW)&(di,j >

0) then

6: insert mi,j =
a′i,j−di,j

dα
i,j

in Qm

7: while Qm not empty do
8: mi,j ← lowest margin in Qm
9: if ((sum_row)i = SW)∥((sum_col)j = SW) then

10: delete mi,j from Qm
11: else
12: a′i,j ← a′i,j + 1
13: (sum_row)i = (sum_row)i + 1
14: (sum_col)j = (sum_col)j + 1

15: update mi,j =
a′i,j−di,j

dα
i,j

in Qm

16: return a′

1: procedure phase 3(a’)
2: return Exact-edge-coloring(a′)

We calculate margin values and put them in a priority queue
sorted in ascending order. Margin is defined in order to decide
where to allocate excess bandwidth. When allocating a chan-
nel the algorithm starts with checking the lowest margin in the
sorted queue Qm, s-d pairs with lower margin values always
have higher priorities in obtaining channel allocations. As a
result, the difference between allocated bandwidths and band-
width demands of all s-d pairs will be brought to a close number
or numbers proportional to the bandwidth demands, depending
on the value of parameter α:

When α = 0, phase 2 aims at achieving a constant difference
between the allocated bandwidth and the demanded bandwidth
among all s-d pairs. When α = 1, phase 2 aims at bringing differ-
ences between allocated bandwidth and demanded bandwidth
proportional to the demanded bandwidth. Typically, the best
scenario will be a mix of these two extreme cases, which means
that the ideal value of α will be between 0 and 1, and can be
tuned to adapt for different workloads of network.

It worth noting that the definition in equation 7 is not valid
when di,j = 0 because the denominator would be zero. In this
case, s-d pair (i, j) will not be inserted into the priority queue.
However, this s-d pair will still be allocated with 1 channel be-
cause of equation 6.

In lines 4-6 in procedure phase 2, we only insert margin values
in Qm if incrementing ai,j by one does not violate constraints in
formula 5. phase 1 terminates when Qm is empty, in other words,
it terminates when no more channels can be allocated without
violating the constraints.

Throughout the algorithm we keep track of the summation
values for the rows and columns in matrix a′ of vectors sum_row
and sum_col. Assume the data structure of Qm is a red-black
tree, deleting or inserting a margin value in the tree has Θ(lg T)
time complexity, thus lines 3-6 have time complexity O(T2 lg T).
Line 10,12-15 each has time complexity O(lg T). Therefore, the
while loop in lines 7-15 will eventually execute maximally SWT
times for assigning every possible channel with O(SWT lg T)
time complexity. In total the time complexity of phase 2 is
O(T2 lg T + SWT lg T) = O(SWT lg T), considering SW >> T.
• Phase 3: edge coloring
After phase 1 and 2, the allocation matrix a′ is ready to be

converted into the allocation tensor a. We show that this problem
can be solved by exact edge coloring algorithms.

Theorem 1. If phase 3 adopts an exact edge coloring algorithm
and matrix a′ fulfills constraints in formula 5, tensor a can always
be calculated from matrix a′ while respecting the relationship in
equation 4. The resulting tensor a fulfills constraints in formula
3.



Research Article Journal of Optical Communications and Networking 8

Proof. Let G be a bipartite multigraph with 2 ∗ T vertices. ∆
denotes the maximum degree of vertices in G. There is no self-
loop but there can be parallel edges in G. The bipartition of
vertices is denoted as (A, B), where A and B are two vertex sets
each having T vertices. Vertex set A and B represent all chips
as sources and destinations of data in the payload network,
respectively. Every edge in G connects one vertex in A and one
in B, representing a channel allocated in the network. Constraints
in formula 5 will be equivalent to constraint 8 on the maximum-
degree in this multigraph if we take matrix a′ as the adjacency
matrix of multigraph G.

∆ ≤ S ∗W (8)

In graph theory, an edge coloring of a graph is an assignment
of "colors" to the edges of the graph so that no two edges inci-
dent on the same vertex have the same color. The edge coloring
algorithm is equivalent in assigning independent wavelengths
according to the allocation matrix in our problem. The equiva-
lence comes from the fact that every independent wavelength in
the switches provides point-to-point connections from transmit-
ters to receivers.

It can be proved by induction [46] that the minimum required
number of colors for coloring edges of a bipartite multigraph is
exactly the maximum degree of this multigraph. Therefore, edge-
coloring multigraph G with an exact algorithm yields a coloring
with exactly ∆ colors. This means that phase 3 will convert
matrix a′ to the configurations of ∆ independent wavelength ids
in a, if phase 3 adopts an exact edge coloring algorithm. Note
that every color in the result of the edge coloring algorithm
represents an unique wavelength id , i.e., the first dimension in
tensor a. Because of inequality 8, theorem 1 is proved.

Denote V and E as the number of vertices and edges in multi-
graph G, respectively. Denote ∆ as the maximum degree of
vertices in G. In our application V = 2 ∗ T, E ≤ S ∗W ∗ T, and
∆ = S ∗W. Already known exact bipartite multigraph edge
coloring algorithms have time complexity O((E + V2) lg ∆)[47]
and O(E lg ∆)[48, 49]. It will be shown in section 5 that we pro-
pose improved edge coloring algorithms with O(V2 lg ∆ + E)
time complexity, using our improved Euler-division-improved pro-
cedure in Algorithm 2 as subroutines.
• Total time complexity
In summary, time complexity of Algorithm 1 is O(SWT lg T +

T2 lg(SW)) = O(SWT lg T), dominated by phase 2. However,
the time complexity expressions only show the worst cases,
while the experiment results in section C will show that phase 3
actually dominates the execution time.

C. Algorithm execution time experiments
As discussed in section 3 B, the execution time of the network
control algorithm is critical in response to the traffic pattern
variation. In this section we roughly estimate the execution
time of our proposed algorithm by showing our experiment
results. We also analyze the execution time of each phase in our
proposed algorithm with T = 16 and different values of S ∗W so
that we can expose the dominant phase for further optimization.

The edge coloring algorithms in phase 3 are implemented as
the Euler-color-improved (algorithm 3) and Gabow-color-improved
(algorithm 4) in figure 5 and figure 6, respectively.3 As will
be discussed in section 5, algorithm Euler-color-improved only

3These two algorithms are proposed later in section 5, proofs and time complex-
ity will be shown.

Fig. 5. Execution time composition of the network control
algorithm, phase 3 is implemented as Euler-color-improved in
algorithm 3

Fig. 6. Execution time composition of the network control
algorithm, phase 3 is implemented as Gabow-color-improved in
algorithm 4

guarantees to provide exact solutions when S ∗W is a power of
2, therefore, we choose S ∗W = 256 and 512 in figure 5.

The input demand matrices are randomly generated follow-
ing independent uniform distributions in range [0, 32] for every
matrix entry. Every data point in figure 5 and figure 6 is aver-
aged among 200 executions.

The experiments were run on a laptop Intel-i7 CPU with
single-thread execution written in C++ language. In both cases
phase 3 is the bottleneck that contributes about 90% to the to-
tal execution time even with our improved edge coloring al-
gorithms. Although this leads to a different conclusion from
the time complexity analysis in the previous subsection B, it is
understandable because the time complexity analysis has only
considered the worst cases and infinitely large input size for the
algorithm.

In real life the execution of the network control algorithm can
be affected greatly by many factors, such as:
• The capability (such as the number of cores and the core

frequency) of the machine that runs the algorithm, the machine
can be CPUs or FPGAs.
• The chosen programming language and the code optimiza-

tion.



Research Article Journal of Optical Communications and Networking 9

• The parallelism optimization of the algorithm. As will be
shown in 5, the recursive edge coloring algorithm (i.e., phase 3
in algorithm 1) has potential to be implemented in multi-threads
since all branches in the same level of the recursion tree are
independent.

Other than the above factors, the algorithm itself can also be
adjusted in order to fit in a shorter execution time. For example,
enlarging the bandwidth allocation granularity from one wave-
length channel (25GBps) to two wavelength channels (50GBps)
can decrease the input size (the value of S ∗W) of the algorithm
and thus approximately improve the algorithm execution time
in half. This can be simply achieved by virtually bundling every
two wavelength channels together in the logic of the algorithm,
however, this will decrease the bandwidth control granularity
and thus is possible to degrade the network performance.

In figure 5 and figure 6, millisecond scale execution time of
our proposed algorithm has been reported, which is promising
to respond to second scale traffic pattern variations. Although in
reality ten or hundred times speed-up is possible to be achieved,
it will then be possible to respond to sub-second scale traffic
pattern variations.

In the next section 5, we discuss phase 3 of algorithm 1 in full
details. And we will further explain how the execution time of
phase 3 was improved compared with the existing methods.

5. IMPROVEMENTS ON PHASE 3

A. Preliminaries
Use the same notations for bipartite multigraphs in Theorem 1,
denote the maximum degree of vertices in G as ∆, denote ei,j as
an edge in G that incidents on vertex i and vertex j. An exact
edge coloring algorithm should color the edges in G with exactly
∆ colors. We virtually put two partitions of vertices in G on the
left and right, namely the left vertex partition A and the right
vertex partition B.

An Euler partition is a partition of the edges of a multigraph
into open and closed paths, so that each vertex of odd degree
is the end of exactly one open path, and each vertex of even
degree is the end of no open paths. Euler-division procedure4

was proposed in [50] to solve the bipartite edge coloring problem
as a subroutine, the output of this procedure are two subgraphs
of the input graph. At the beginning the two subgraphs have
empty edge sets, Euler-division procedure then iterates over all
the edges following the paths in the Euler partition of the input
graph and puts them alternately into two sub-graphs G1 and
G2. At the end of the procedure two sub-graphs G1 and G2
should each contain half of the edges from the input graph. The
maximum degrees of two subgraphs are either ⌊∆

2 ⌋ or ⌈∆
2 ⌉, and

they can have same or different values. Euler-division procedure
has time complexity O(E + V) = O(E) for E > V according to
[50].

Pseudo-code and correctness of Euler-division procedure can
be found in [50]. Representation of graphs in this procedure was
assumed to be adjacency lists implemented with linked list data
structure. Every edge ei,j needs to be present in both adjacency
lists of vertex i and j. Time complexity O(E+V) of Euler-division
procedure can be achieved by keeping cross-references between
ei,j in vertex i’s adjacency list and that in vertex j’s adjacency list.
In this way, accessing the first element in vertex i’s adjacency
list, deleting it from two adjacency lists by cross-reference, and
inserting the edge into one of the two subgraphs take O(1) time.

4it was called ’euler partition’ in the original paper, here we changed the name
to avoid confusion of terms

Euler-color algorithm is obtained by executing Euler-division
procedures on the resulting subgraphs of the last executed Euler-
division procedures [47, 50]. The edges in two resulting sub-
graphs of an Euler-division procedure are guaranteed not to be
colored with the same color. In the end there are at most 2⌈lg ∆⌉

subgraphs of the original input graph, every subgraph has a
maximum degree equals to 1, then we can color each subgraph
with a unique color. Euler-color algorithm has O(E lg ∆) time
complexity. This algorithm is guaranteed to be exact only when
∆ is a power of 2. One extra color (compared to the exact solution
∆) is induced if and only if the result of a call of Euler-division
procedure satisfies equation 9. ∆1 and ∆2 denote the maximum
degree of the resulting subgraphs of Euler-division procedure.

∆1 = ∆2 = ⌈∆
2
⌉ = ∆ + 1

2
, ∆ is odd (9)

Several exact algorithms have been proposed to avoid entering
this case and thus always guarantee to provide exact solutions.

Cole’s algorithm [48, 49] adds an additional step of finding
a matching including all vertices with maximum degree if ∆ is
odd, which makes sure that the input graphs of Euler-division
procedure always have even ∆. These algorithms have time
complexity O(E lg ∆) and O(E(lg ∆ + lg V)), respectively.

Gabow’s algorithm [47] uses another approach for providing
exact solutions: when case in equation 9 is entered, the algorithm
uncolors edges in an arbitrary color and puts them back with all
the uncolored edges and proceeds the recursion. Gabow’s algo-
rithm has time complexity O((E + V2) lg ∆ + E) which equals
to O(E lg ∆) when E > V2 and otherwise O(V2 lg ∆ + E).

We now define another data structure weighted-linked-list
for representing the adjacency lists of multigraphs. This data
structure will be used in our algorithms later in this chapter.
A Weighted-linked-list represents an adjacency list of a vertex
in a graph. Weighted-linked-list is a doubly linked list, every
entry contains three data fields: destination vertex’s id of an
edge, a cross-reference and the multiplicity of the corresponding
degenerate edges (defined as the weight of this entry). Therefore
in a weighted-linked-list, edges incident to the same destina-
tion vertex are kept by only one entry. V instances of such data
structure are needed for representing a graph G with V vertices.
Any edge in G must appear in two weighted-linked-lists con-
currently, we keep their cross-references (i.e., the data address
to its counterpart in another weighted-linked-list) in order to
access each other in O(1) time. All weighted-linked-lists of a
graph G contain O(min[E, V2]) entries in total.

B. Improving Euler-division procedure
We propose a variant of Euler-division procedure called Euler-
division-improved procedure by incorporating weighted-linked-
list for representing graphs. The key observation is that in
Euler-division procedure if edge ev,u has multiplicity gv,u, we
eventually will add ⌊ gv,u

2 ⌋ or ⌈ gv,u
2 ⌉ degenerate edges ev,u into

two subgraphs. Therefore, when the graph has edges with high
multiplicity, it will save time to jump to the end of the above
observation instead of iterating over all degenerate edges. When
the multiplicity gv,u = 1, Euler-division-improved procedure boils
down to Euler-division procedure. As a result, Euler-division-
improved procedure is as least as good as the original algorithm
and will speed up when the multiplicity of any edge is bigger
than 1.

Pseudo-code of Euler-division-improved procedure is shown in
Algorithm 2.



Research Article Journal of Optical Communications and Networking 10

Algorithm 2. Euler-division-improved

1: procedure EULER-DIVISION-IMPROVED(G)
2: Create subgraphs G1 and G2 with the same vertex sets

but empty edge sets
3: Create an empty queue S
4: Put (at the front of the queue) all vertices with odd degree

into S
5: Put (at the end of the queue) all vertices with none-zero

even degree into S
6: while S is not empty do
7: vertex s← the first (at the front of the queue) vertex

in S
8: delete s from S
9: vertex v← s

10: while degree(v) ̸= 0 do
11: if v is in vertex set A then
12: ev,u ← an edge incident on vertices v and u
13: if wv,u is odd then
14: Add edge ev,u with weight wv,u+1

2 into G1

15: Add edge ev,u with weight wv,u−1
2 into G2

16: v← u
17: else
18: Add edge ev,u with weight wv,u

2 into G1
19: Add edge ev,u with weight wv,u

2 into G2

20: Remove ev,u from G
21: else v is in vertex set B
22: (same as above, except when wu,v is odd we

add edge eu,v with weight wu,v−1
2 into G1 and eu,v with

weight wu,v+1
2 into G2

23: put (at the end of the queue) s to S if degree(s) ̸= 0
24: return G1 and G2

Theorem 2. Euler-division-improved procedure provides equiva-
lent results as Euler-division procedure.

Proof. Consider when the original procedure finds an edge ev,u
in G with multiplicity gv,u, it can iterate over all gv,u degenerate
edges and alternately put them into two subgraphs. If gv,u is
even, then exactly half of gv,u edges will be in both subgraphs. If
gv,u is odd, there will be gv,u+1

2 and gv,u−1
2 edges in two subgraphs

respectively.
Euler-division-improved procedure implements the conse-

quence of the above observation instead of the process. When
wv,u = gv,u is even (lines 18-19 or in line 22), we directly add
edge ev,u to both G1 and G2 with half of its weight and the algo-
rithm continues without any risk of breaking the correctness.

When wv,u is odd (lines 14-16 or in line 22), if vertex v is
in the left partition of graph G, we always give G1 the extra
edge. For the mirror case in line 22, if vertex v is in the right
partition of graph G, we always give G2 the extra edge. As
a consequence, when the end vertex of the current Euler path
shifts from the left(right) to right(left) partition, the next extra
edge when an edge’s weight is odd will be added to G2(G1). This
makes sure that the result is equivalent to that of Euler-division
procedure.

Theorem 3. Euler-division-improved procedure has time complex-
ity O(min[V2, E + V]).

Proof. Line 2-9 and line 23 are the same as that in the original
Euler-division procedure but the time complexities are different
due to different data structures. In the original procedure, this
part of the code needs O(E + V) time for calculating degrees of
every vertex by iterating over all edges and putting the vertices
into the queue S. However, in Euler-division-improved procedure
we have O(min[V2, E]) entries stored in the weighted-linked-
lists. We then only need to calculate vertices’ degrees by calculat-
ing the summation of weights of entries in weighted-linked-lists
and thus it takes O(min[V2, E] + V) = O(min[V2, E + V]) time.

Line 10 takes O(1) time by checking the weighted-linked-list
of vertex v is empty or not. Line 12 accesses the first entry of
vertex v’s weighted-linked-list using O(1) time. Line 13-19 add
entries to the weighted-linked-lists of two subgraphs with O(1)
time. Line 20 deletes the entries in two weighted-linked-lists
containing edge ev,u in graph G: it first takes O(1) time to access
and delete the first entry in vertex v’s weighted-linked-list, and
then we use the cross-reference to delete ev,u from vertex u’s
weighted-linked-list in O(1) time. Therefore, lines 12, 13-20
each has time complexity O(1). Eventually the while loop in line
10-22 will do the above operations to every entry of weighted-
linked-lists in G exactly once and thus cost O(min[V2, E]) time.

To summarize, Euler-division-improved procedure has time
complexity O(min[V2, E + V]).

Our Euler-division-improved procedure has time complexity
at least as good as the original procedure. When E > V2 Euler-
division-improved procedure has O(V2) time complexity. The
more multiplicity edges have in G, the more speed-up our pro-
posed procedure has over the original procedure.

C. Edge coloring algorithms
In this subsection we show that our improved procedure can
be incorporated into edge coloring algorithms. The modified
Euler-division-improved procedure only speeds up each level of
recursion and has no influence on the recursion structure.

We improve Euler-color algorithm by incorporating Euler-
division-improved procedure and using weighted-linked-lists
for representing graphs. Pseudo-code of algorithm Euler-color-
improved is shown in Algorithm 3.

Algorithm 3. Euler-color-improved

1: procedure EULER-COLOR-IMPROVED(G)
2: if ∆ = 1 then
3: color the edges in G with a new color
4: else
5: (G1, G2)=Euler-division-improved procedure(G)
6: Euler-color-improved(G1)
7: Euler-color-improved(G2)

The correctness of Euler-color-improved inherits from the origi-
nal algorithm. Now we prove its new time complexity.

Theorem 4. Euler-color-improved algorithm has time complexity
O(E + min[V2, E] lg ∆).

Proof. Line 3 will in the end color every edge ei,j in G ex-
actly once, thus has time complexity O(E). Define an entry
of weighted-linked-list is traversed by Euler-division-improved
procedure once if this entry appears in the input graph of a call
of Euler-division-improved procedure. Line 5 will eventually tra-
verse every entry multiple times in the weighted-linked-lists of
G and create copies of every entry stored in the subgraphs. The



Research Article Journal of Optical Communications and Networking 11

number of copies of an entry equals to its weight. Denote the
number of times an entry in weighted-linked-list need to be
traversed by line 5 summing over the recursion tree as P(w), w
is the weight of this entry. Then we have P(w) = 2P(w/2) + 1,
thus P(w) = 1

2 lg w. Euler-division-improved procedure spends
O(1) time on each entry it traverse each time. Because w = O(∆)
and there are O(min[V2, E]) entries in all weighted-linked-lists
of G, line 5 totally takes O(min[V2, E] lg ∆) time.

Time complexity of Euler-color-improved algorithm equals to
the total time complexity of line 3 plus that of line 5, thus equals
to O(E + min[V2, E] lg ∆).

When E > V2, time complexity of Euler-color-improved is
O(E + V2 lg ∆), otherwise O(V2 lg ∆).

Pseudo-code of Gabow-color-improved is shown in Algorithm
4, we incorporate data structure weighted-linked-list and Euler-
division-improved procedure based on the original algorithm
Gabow-color[47].

Algorithm 4. Gabow-color-improved

1: procedure GABOW-COLOR-IMPROVED(G)
2: if ∆ = 1 then
3: color the edges in G with a new color
4: else
5: (G1, G2)=Euler-division-improved procedure(G)
6: Gabow-color-improved(G1)
7: r = 2⌈lg ∆/2⌉ − ∆2, where ∆2 is the maximum degree

in G2
8: remove edges of r colors from G1 and add them to

G2
9: Euler-color-improved(G2)

10: if G is not ∆-colored then
11: choose an arbitrary color α in G
12: for all edges e in color α do
13: uncolor e
14: augment(e)

The correctness of Gabow-color-improved inherits from the orig-
inal algorithm. Now we prove its new time complexity.

Theorem 5. Gabow-color-improved algorithm has O(E +
min[V2, E] lg ∆) time complexity.

Proof. If the algorithm enters line 5, the input graph will be split
into two subgraphs by Euler-division-improved procedure. Each
subgraph will either enter Gabow-color-improved in line 6 or Euler-
color-improved in line 9. Denote each recursive call as a ’node’
in the recursion tree. We first estimate time spent in Gabow-
color-improved nodes and then the time in Euler-color-improved
nodes.

Line 8 transfers O(V ∗ r) edges from G1 to G2. Summing
over the recursion tree, the total number of edges being trans-
ferred is O(E/2) + O(E/4) + O(E/8) + ... = O(E), these edges
can be transferred with time complexity O(V2 lg ∆ + E) by first
iterating all entries of weighted-linked-lists in G2 every time
line 8 is entered and keeping their addresses in a hash-table.

Moreover, for all Gabow-color nodes, line 5 has time complex-
ity O(min[V2, E] lg ∆) in total. Lines 10-14 do O(V) augments
(see [47] for the augment), each augment takes O(V) time. thus
in total O(V2) time. Therefore, all Gabow-color nodes totally has
O(V2 lg ∆ + E + min[V2, E] lg ∆) = O(V2 lg ∆ + E) time com-
plexity.

Euler-coloring nodes have time complexity O(min[V2, E] lg ∆)
in total. Therefore, all recursion nodes in Gabow-color together
have O(V2 lg ∆ + E) time complexity in total.

Line 3 will in the end color O(E) edges, thus has time
complexity O(E). Therefore, time complexity of Gabow-color-
improved is O(E + V2 lg ∆).

Execution time experiments of the above edge coloring al-
gorithms are shown in figure 7. Four algorithms are tested
with V = 2 ∗ T = 2 ∗ 16 : approximation algorithms Euler-color
and Euler-color-improved , the exact algorithms Gabow-color and
Gabow-color-improved. The maximum degree of the input graph
varies from 250 to 600, corresponding to the number of indepen-
dent wavelength ids in the allocation tensor. These algorithms
are written in C++ language and run with single thread execu-
tions on a laptop CPU. Each data point is averaged among 200
executions with randomly generated input graphs. The execu-
tion time ranges between AVE±MSE for each algorithm are
shown in the colored zones in figure 7. We see significant execu-
tion time improvements achieved by our improved algorithms
compared to the original algorithms. Algorithm Gabow-color
and Gabow-color-improved approximately double in execution
time whenever ∆ exceeds a power-of-two value. When the
maximum degree of input graph equals to 512, our algorithm
Euler-color-improved has about 40% speed-up compared to Euler-
color, algorithm Gabow-color-improved has about 20% speed-up
compared to Gabow-color. Corresponding number of colors used
by two approximation algorithms are shown in figure 8, which
align well between the theoretical lower and upper bounds.

Fig. 7. Execution times of edge coloring algorithms

6. CONCLUSION

In this paper we have proposed a new optical NoW architecture
aiming at Tera-Byte bandwidth for every chip in a multi-chip
processor. This work has focused on the network control scheme
and network control algorithms. Our synchronous network
control scheme is flexible in bandwidth allocation, which dy-
namically allocates bandwidth resources for s-d pairs according
to the measured bandwidth demands. A network control al-
gorithm has been proposed for synchronous network control
scheme. Our proposed architecture is promising in achieving
low energy consumption and ultra-high bandwidth, which is
suitable for the next generation of multi-chip processors.

We have also proposed an improved version of the Euler-
division procedure with time complexity O(min[V2, E]). As a



Research Article Journal of Optical Communications and Networking 12

Fig. 8. Colors used by the approximation algorithms

result, the time complexity of bipartite edge coloring algorithm
can achieve O(E + V2 lg ∆).

In future works faster heuristic or multi-thread algorithms for
the edge coloring algorithm can be investigated for further im-
proving the overall execution time of our synchronous network
control algorithm.

Benchmark simulations with details of computing cores and
memory blocks will be done in future works for further explo-
ration of performance our proposed network architecture under
real-workload traffics. We have planned to use a modified ver-
sion of booksim2[51] as a standalone network simulator with
synthetic traffic, we also plan to work with a modified version
of accel-sim[52] as a full-system simulator for our proposed pho-
tonic NoW.

7. FUNDING AND ACKNOWLEDGMENTS

FUNDING

Part of this research is funded by Ghent University through the
GOA-project ’Photonic Network-on-Wafer for Multi-Tile GPUs:
From Architecture to Hardware Implementation’ (01G01421).

The first author is supported by a PhD grant for strategic
basic research of the Research Foundation – Flanders (FWO-V,
1S11323N)

ACKNOWLEDGMENTS

We want to thank our partner research groups in the GOA project
for providing technological and industrial insights. We also want
to thank FWO for funding this research.

The authors would like to thank OpenAI for the editing and
proofreading support provided on January 3, 2023.

8. REFERENCES

REFERENCES

1. P. G. Howard, “Next generation intel microarchitecture nehalem,” Tech.
rep., Technical report, Microway Inc (2009).

2. S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain et al., “An 80-tile sub-100-w
teraflops processor in 65-nm cmos,” IEEE J. solid-state circuits 43,
29–41 (2008).

3. C. H. Stapper, “On murphy’s yield integral (ic manufacture),” IEEE
transactions on semiconductor manufacturing 4, 294–297 (1991).

4. A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg,
and D. Lindqvist, “Network on chip: An architecture for billion transistor
era,” in Proceeding of the IEEE NorChip Conference, (2000), 20, p. 0.

5. T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Comput. Surv. (CSUR) 38, 1–es (2006).

6. K. Bernstein, P. Andry, J. Cann, P. Emma, D. Greenberg, W. Haensch,
M. Ignatowski, S. Koester, J. Magerlein, R. Puri et al., “Interconnects
in the third dimension: Design challenges for 3d ics,” in 2007 44th
ACM/IEEE Design Automation Conference, (IEEE, 2007), pp. 562–
567.

7. A. Ivankovic, T. Buisson, S. Kumar, A. Pizzagalli, J. Azemar, and R. Be-
ica, “2.5 d interposers and advanced organic substrates landscape:
technology and market trends,” in International symposium on micro-
electronics, (International Microelectronics Assembly and Packaging
Society, 2015), 1, pp. 000041–000045.

8. K. Kurowski, M. Kulczewski, and M. Dobski, “Parallel and gpu based
strategies for selected cfd and climate modeling models,” in Information
Technologies in Environmental Engineering, (Springer, 2011), pp. 735–
747.

9. A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, (2016), pp. 4013–4021.

10. D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro 37, 7–17 (2017).

11. J. Nvidia, “Tesla k80 gpu accelerator,” Board Specif. https://images.
nvidia. com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.
pdf (2015).

12. D. D. Sharma, “Pci express® 6.0 specification at 64.0 gt/s with pam-4
signaling: a low latency, high bandwidth, high reliability and cost-
effective interconnect,” in 2020 IEEE Symposium on High-Performance
Interconnects (HOTI), (2020), pp. 1–8.

13. J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro 41, 29–35 (2021).

14. S. Pasricha and M. Nikdast, “A survey of silicon photonics for energy-
efficient manycore computing,” IEEE Des. & Test 37, 60–81 (2020).

15. C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” in 2008 14th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications,
(IEEE, 2008), pp. 120–129.

16. H. M. Wassel, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne,
F. T. Chong, and T. Sherwood, “Towards chip-scale plasmonic intercon-
nects,” in Workshop on the Interaction between Nanophotonic Devices
and Systems (WINDS), (2010), pp. 1–2.

17. J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson,
J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes et al.,
“Vcsel-based interconnects for current and future data centers,” J. Light.
Technol. 33, 727–732 (2015).

18. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bow-
ers, “Iii-v/silicon photonics for on-chip and intra-chip optical intercon-
nects,” Laser & Photonics Rev. 4, 751–779 (2010).

19. B. Haq, S. Kumari, K. Van Gasse, J. Zhang, A. Gocalinska, E. Pelucchi,
B. Corbett, and G. Roelkens, “Micro-transfer-printed iii-v-on-silicon c-
band semiconductor optical amplifiers,” Laser & Photonics Rev. 14,
1900364 (2020).

20. M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bow-
ers, “Ultra-low-loss silicon waveguides for heterogeneously integrated
silicon/iii-v photonics,” Appl. Sci. 8, 1139 (2018).

21. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo,
T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron
silicon waveguide crossing for soi optical interconnect,” Opt. express
21, 29374–29382 (2013).

22. K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic network-on-chip design (Springer, 2014).

23. M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter network
topology,” in SC’14: proceedings of the international conference for



Research Article Journal of Optical Communications and Networking 13

high performance computing, networking, storage and analysis, (IEEE,
2014), pp. 348–359.

24. W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), (2020), pp. 1–18.

25. M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “Pro-
jector: Agile reconfigurable data center interconnect,” in Proceedings
of the 2016 ACM SIGCOMM Conference, (2016), pp. 216–229.

26. W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, (2017), pp. 267–280.

27. H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen et al., “Sirius: A flat data-
center network with nanosecond optical switching,” in Proceedings of
the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, (2020), pp. 782–797.

28. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in Proceedings of the ACM SIGCOMM 2010 Conference, (2010), pp.
327–338.

29. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electri-
cal/optical switch architecture for modular data centers,” in Proceedings
of the ACM SIGCOMM 2010 Conference, (2010), pp. 339–350.

30. P. Guo, W. Hou, L. Guo, W. Sun, C. Liu, H. Bao, L. H. Duong, and
W. Liu, “Fault-tolerant routing mechanism in 3d optical network-on-chip
based on node reuse,” IEEE Transactions on Parallel Distributed Syst.
31, 547–564 (2019).

31. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-
chip for future generations of chip multiprocessors,” IEEE Transactions
on Comput. 57, 1246–1260 (2008).

32. E. Fusella and A. Cilardo, “H 2 onoc: A hybrid optical–electronic noc
based on hybrid topology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Syst. 25, 330–343 (2016).

33. A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module
gpus for continued performance scalability,” ACM SIGARCH Comput.
Archit. News 45, 320–332 (2017).

34. A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding
the future of energy efficiency in multi-module gpus,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), (IEEE, 2019), pp. 519–532.

35. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
“Corona: System implications of emerging nanophotonic technology,”
ACM SIGARCH Comput. Archit. News 36, 153–164 (2008).

36. S. V. R. Chittamuru, S. Desai, and S. Pasricha, “Swiftnoc: a reconfig-
urable silicon-photonic network with multicast-enabled channel sharing
for multicore architectures,” ACM J. on Emerg. Technol. Comput. Syst.
(JETC) 13, 1–27 (2017).

37. B. Zhang, H. Gu, K. Wang, Y. Yang, and W. Tan, “Low polling time tdm
onoc with direction-based wavelength assignment,” J. Opt. Commun.
Netw. 9, 479–488 (2017).

38. L. Qiao, W. Tang, and T. Chu, “Ultra-large-scale silicon optical switches,”
in 2016 IEEE 13th International Conference on Group IV Photonics
(GFP), (IEEE, 2016), pp. 1–2.

39. K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S.
Muller, and M. C. Wu, “128× 128 silicon photonic mems switch with
scalable row/column addressing,” in CLEO: Science and Innovations,
(Optical Society of America, 2018), pp. SF1A–4.

40. NVIDIA, “Nvidia http://https://www.nvidia.com/en-us/data-
center/nvlink/,” (2022).

41. A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko,
O. Mutlu, and T. C. Mowry, “Mitigating the memory bottleneck with

approximate load value prediction,” IEEE Des. & Test 33, 32–42 (2016).
42. Y. Huang, Q. Cheng, A. Rizzo, and K. Bergman, “Push—pull microring-

assisted space-and-wavelength selective switch,” Opt. Lett. 45, 2696–
2699 (2020).

43. K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K. Ker-
byson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld et al., “On the
feasibility of optical circuit switching for high performance computing
systems,” in SC’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, (IEEE, 2005), pp. 16–16.

44. W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks (Elsevier, 2004).

45. H. W. Kuhn, “The hungarian method for the assignment problem,” Nav.
research logistics quarterly 2, 83–97 (1955).

46. C. Berge, Graphs and hypergraphs (North-Holland Pub. Co., 1973).
47. H. N. Gabow and O. Kariv, “Algorithms for edge coloring bipartite

graphs and multigraphs,” SIAM journal on Comput. 11, 117–129 (1982).
48. R. Cole, K. Ost, and S. Schirra, “Edge-coloring bipartite multigraphs in

o (e logd) time,” Combinatorica. 21, 5–12 (2001).
49. R. Cole and J. Hopcroft, “On edge coloring bipartite graphs,” SIAM J.

on Comput. 11, 540–546 (1982).
50. H. N. Gabow, “Using euler partitions to edge color bipartite multigraphs,”

Int. J. Comput. & Inf. Sci. 5, 345–355 (1976).
51. N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.

Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE international symposium on
performance analysis of systems and software (ISPASS), (IEEE, 2013),
pp. 86–96.

52. M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), (IEEE, 2020), pp. 473–486.


	Introduction
	Related works and the new horizon of NoW
	Network design
	Optical payload network
	Control network
	Preventing buffer overflow

	Synchronous network control algorithm
	Problem description
	Algorithm
	Algorithm execution time experiments

	Improvements on phase 3
	Preliminaries
	Improving Euler-division procedure
	Edge coloring algorithms

	Conclusion
	Funding and Acknowledgments
	References

