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ABSTRACT

Among the dairy sector’s current concerns, the as-
sessment of global animal health status is a complex 
challenge. Its multidimensionality means that global 
monitoring tools are rarely considered. Instead, specific 
disease detection is often studied separately and, due 
to financial and ethical issues, uses small-scale data 
sets focusing on few biomarkers. Several studies have 
already been conducted using milk Fourier transform 
mid-infrared (FT-MIR) spectroscopy to detect mastitis 
and lameness or to quantify health-related biomarkers 
in milk or blood. Those studies are relevant but they 
focus mainly on one biomarker or disease. To solve this 
issue and the small-scale data set, in this study, we 
proposed a holistic approach using big data obtained 
from milk recording, including milk yield, somatic cell 
count, and 27 FT-MIR–based predictors related to milk 
composition and animal health status. Using 740,454 
records collected from 114,536 first-parity Holstein 
cows in southern Belgium, we performed repeated 
unsupervised learning algorithms based on Ward’s 
agglomerative hierarchical clustering method to find 
potential interesting patterns. A divide-and-conquer 
approach was used to overcome the limitation of com-

putational resources in clustering a relatively large data 
set. Five groups of records were identified. Differences 
observed in the fourth group suggested a relationship 
to metabolic disorders. The fifth group seemed to be 
related to mastitis. In a second step, we performed a 
partial least squares discriminant analysis (PLS-DA) 
to predict the probability of belonging to those specific 
groups for the entire data set. The obtained global ac-
curacy was 0.77 and the balanced accuracy (i.e., the 
mean between sensitivity and specificity) of discrimi-
nating the fourth and fifth groups was 0.88 and 0.96, 
respectively. Then, a validation of the interpretation of 
those groups was performed using 204 milk and blood 
reference records. The predicted probability associated 
with the metabolic disorders issue had significant cor-
relations of 0.54 with blood β-hydroxybutyrate, 0.44 
with blood nonesterified fatty acids, −0.32 with blood 
glucose, −0.23 with milk glucose-6-phosphate, and 0.38 
with milk isocitrate. In contrast, the predicted prob-
ability of belonging to the mastitis group had correla-
tions of 0.69 with milk lactate dehydrogenase, 0.46 with 
milk N-acetyl-β-d-glucosaminidase, −0.18 with milk 
free glucose, and 0.16 with milk glucose-6-phosphate. 
Consequently, these results suggest that the obtained 
quantitative traits indirectly reflect some of the main 
health disorders in dairy farming and could be used to 
monitor dairy cows on a large scale. By using unsuper-
vised learning on large-scale milk recording data and 
then validating the pattern using reference laboratory 
measures, we propose a new approach to quickly assess 
dairy cow health status.
Key words: big data, animal health, unsupervised 
learning, milk, mid-infrared

INTRODUCTION

Monitoring dairy cow health is complex because it 
involves many aspects such as disease, energy balance, 
and heat stress. However, dairy cow health, being a 
part of animal welfare, is important for dairy farming 
sustainability. Stakeholders (producers, policymakers, 
and consumers) need warranties about the ethics of the 
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product. In particular, the welfare status of cows is of 
increasing concern (Fraser, 1995; Blokhuis et al., 2003).

Currently, cow health monitoring tools mostly rely 
on milk and blood analyses, which provide health-
related biomarkers. However, defining health indicators 
is a lengthy and costly process because it requires many 
potential biomarkers to be scanned among an animal 
population that has health issues (Foldager et al., 2020; 
Krogh et al., 2020). Depending on the issue, the process 
can raise ethical questions when the disorder is induced 
in animals or the measurement is invasive. In other 
cases, detecting animals with health issues is compli-
cated because the farms participating in the studies 
are already aware of the problem, making the sample 
unrepresentative and biased toward healthy animals.

Animal scientists have developed strategies to predict 
health indicators using milk Fourier transform mid-in-
frared (FT-MIR) spectrometry to avoid ethical issues 
and the cost of routine measurements of biomarkers. 
This spectroscopic technology has many advantages 
as it is noninvasive and reflects part of the animal’s 
metabolism by assessing the global milk composition. 
Moreover, milk FT-MIR spectra, along with other 
dairy production phenotypes, are collected by DHI 
organizations on average once a month in participating 
herds. From the FT-MIR spectra, statistical models can 
predict biomarkers of interest such as acetone, BHB, 
citrate, lactoferrin, and SCC to assess and, therefore, 
monitor dairy cow health (Soyeurt et al., 2012; Luke 
et al., 2019). This technique enables routine individual 
assessment of cow health status on farms after apply-
ing appropriate prediction equations related to the 
biomarkers to the recorded spectral data.

A standard procedure to obtain prediction models 
consists of collecting blood and milk samples from as 
many healthy and sick animals as possible, analyzing 
those milk samples using FT-MIR spectrometry to 
record the spectral data, and measuring the contents 
of the studied biomarkers in milk and blood using cer-
tified chemical methodologies. Afterward, supervised 
machine learning methods such as partial least squares 
(PLS) regression can be used to build the model, pre-
dicting the desired biomarker (Soyeurt et al., 2020). 
This process has been largely used in the last decades 
to increase the number of phenotypes predicted by FT-
MIR and not only to predict health issues (De Marchi 
et al., 2014; Bastin et al., 2016; Gengler et al., 2016). 
Table 1 presents the characteristics of some models 
published in the literature predicting different health 
biomarkers naturally present in milk and blood. A large 
range of cross-validation accuracy can be observed: R2 
varied between 0.21 and 0.88 (Table 1). More informa-
tion on key factors affecting the quality of predictions 
is available in Grelet et al. (2021). Model performance 

and validation accuracy can sometimes be poorer for 
several reasons. First, for practical, ethical, or financial 
issues, the calibration data set may not be represen-
tative enough, with too few animals or herds. How-
ever, to maximize the prediction quality, the modeling 
procedure requires sampling among the whole animal 
population to maximize the variability of the calibra-
tion data used to develop the equation (Grelet et al., 
2021). Thus, making a prediction outside of the calibra-
tion variability is detrimental to the prediction quality 
due to inner extrapolation. In addition, maximizing 
the calibration set for health indicators requires both 
healthy and sick animals to be included. Sick animals 
are relatively scarce, which explains why obtaining high 
BHB levels is more difficult, as mentioned by Grelet 
et al. (2016), Fleming et al. (2017), and Bonfatti et 
al. (2019). This unbalanced situation between sick 
and healthy animals can affect the final prediction ac-
curacy of the developed models. Finally, most of the 
metabolites of interest have a very low concentration 
in milk or are even predicted in another matrix (e.g., 
blood). These indirect predictions rely more on global 
milk changes than on measuring a specific molecule. 
Consequently, the disorder cannot be simulated artifi-
cially, such as spiking milk with molecules of interest, 
because it would interfere with the natural relation-
ships existing between the milk components. All these 
aspects explain the difficulty in developing prediction 
models related to health indicators. To solve these is-
sues, it would be interesting to combine different health 
biomarker predictions, different models derived from 
different populations, and usual production traits and 
indicators to provide insights into cow health status 
(e.g., milk production or BW).

In their review of infrared spectrometry as a high-
throughput phenotyping technology, Bresolin and 
Dórea (2020) suggest using larger data sets and modern 
data-mining approaches to improve the models. In the 
current study, the innovative aspect consists of real-
izing an unsupervised learning approach that profits 
from the large-scale data set collected from DHI and 
combining several FT-MIR–based predictions and usual 
dairy traits to discriminate groups of cows that have a 
different data pattern. This approach allows the combi-
nation of several indicators of health issues (i.e., multi-
dimensional aspect). Furthermore, the exploration of a 
large DHI database ensures the consideration of high 
variability and warrants the representativeness of the 
sample set. Therefore, the context of this study can be 
considered as a “big data” case; the 5 Vs representing 
aspects of big data are found: volume, variety, veracity, 
velocity, and value (Gandomi and Haider, 2020).

Moreover, unsupervised methods have the advantage 
of not introducing any bias about the definition of 
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health. Among those methods, clustering, and particu-
larly hierarchical clustering, is used as it allows pat-
terns to be observed at any scale of the database and 
also cuts the data into groups. Previous studies have 
considered multiple reference health measures together 
and even clustering, but they were conducted using 
small-scale reference data sets (LeBlanc, 2010; Grelet 
et al., 2019; Atashi et al., 2020) and not from a routine 
DHI database. Therefore, the current approach presents 
the distinction of having no reference analysis of health 
biomarkers to construct the discrimination between 
healthy and sick animals. However, this discrimination 
will be validated using real reference measurements to 
attest to the relevancy of the discovered groups.

MATERIALS AND METHODS

All data treatments and analyses were performed 
using R software (version 4.0.2; https:​/​/​www​.r​-project​
.org/​). All data were collected as per standard routine 
by the Walloon Breeders Association, which is accred-
ited to perform such collection.

Calibration Data

The data set to be used with unsupervised learn-
ing methods, hereafter called the calibration data set, 
contained 740,454 DHI records collected by Elevéo 
(Awé groupe, Ciney, Belgium) in 1,077 herds located 
in southern Belgium between January 2012 and March 
2020 from 114,536 primiparous Holstein cows with 
DIM ranging between 5 and 365 d. Milk analysis was 
performed by the milk laboratory Comité du Lait 
(Battice, Belgium) on Foss Milkoscan FT6000, FT+, 
and FT7 standardized spectrometers. Among the large 
collection of possible phenotypes for this study, we 
kept only milk yield, milk FT-MIR spectra, SCC, and 

contents of fat, protein, urea, and lactose predicted by 
the spectrometer. Furthermore, predictive equations 
developed from previous studies (Table 2) were applied 
to the recorded spectral data to predict 20 additional 
biomarkers related to health issues. Although initially 
predicted in grams per deciliter (g/dL) of milk, the 
contents of SFA, C18:1 cis-9, MUFA, and PUFA were 
expressed in grams per 100 grams of fat using the fat 
content predicted by the spectrometer, as this unit is 
more relevant for assessing the biological pathways 
behind fatty acid production. Then, DMI and fat- and 
protein-corrected milk (FPCM) were computed using 
the following equations (NRC, 2001; Yan et al., 2011):
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


 +0 337 0 116 0 06. . . ,	

where BW is the predicted BW using the equation of 
Tedde et al. (2021), WOL is the week of lactation, MY is 
milk yield, and FAT and PROT are fat and protein con-
tents expressed as percentages. The consumption index 
was defined as the ratio of DMI to FPCM. Finally, the 
calibration data set used for the clustering contained 29 
traits that were directly or indirectly related to health 
issues (Table 3).

Clustering Method

Patterns were found in the calibration data set using 
hierarchical clustering. This agglomerative algorithm 
works step by step to combine the closest records or 
groups of records until the whole data set is considered. 
Ward’s agglomerative hierarchical clustering method 
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Table 1. Published prediction models for health biomarkers

Trait   Unit No. of records No. of cows   No. of herds R2cv1 Reference

Energy balance   MJ 1,535 378 1 0.67–0.78 McParland and Berry, 2016
    MJ/d 11,525–30,429 1,101 1 0.42–0.77 Smith et al., 2019
Energy intake   MJ/d 11,940–30,565 1,101 1 0.39–0.75 Smith et al., 2019
    MJ 1,535 378 1 0.64–0.88 McParland and Berry, 2016
Blood BHB   mmol/L 1,914 826 55 0.21–0.43 Belay et al., 2017

  mmol/L 3,629 1,013 3 0.27–0.46 Pralle et al., 2018
  mmol/L 380 241 — 0.70 Grelet et al., 2019
  mmol/L 1,910 542 2 0.50–0.58 Bonfatti et al., 2019

Blood glucose   mmol/L 380 241 — 0.44 Grelet et al., 2019
Blood IGF-1   mg/L 387 241 — 0.61 Grelet et al., 2019
Blood NEFA2   uEq/L 380 241 — 0.39 Grelet et al., 2019
Milk lactoferrin   mg/L 2,499 — >9 0.71 Soyeurt et al., 2012
    mg/L 5,541 — >9 0.60 Soyeurt et al., 2020
1R2cv = accuracy of cross-validation.
2Nonesterified fatty acids.

https://www.r-project.org/
https://www.r-project.org/
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with Euclidean distance was chosen because this is 
widely used to distinguish groups in a multivariate Eu-
clidean space (Ward, 1963). However, this type of clus-
tering has the constraint of requiring the computing of 
a distance matrix between every observation or cluster 
at each step. So, for n records, the algorithm computes 
n n −( )1 2 distances. For 740,454 records, this repre-
sents 274 × 109 distances, which would make the com-
putation too slow, and storing the distance matrix in 
memory would be impossible with standard computa-
tional infrastructure. The volume of data is a common 
hindrance in big data methodologies, and many ap-
proaches exist to solve this issue (Wang et al., 2016). In 
this study, we decided to apply a divide-and-conquer 
approach, which consisted of dividing the data into 
more manageable subsets, analyzing them separately, 
and recombining them afterward. The calibration data 
were first split randomly into 100 subsets of ~7,500 
records. For each subset, the records were clustered, 
and the obtained dendrogram was cut to divide the 
subset into 500 groups. A mean sample (i.e., a centroid) 
was created for each group by averaging all features. 
Therefore, 50,000 centroids (i.e., 500 centroids from 100 
subsets) were computed to summarize the information 
contained in the initial data set. Those centroids were 
then clustered using the same hierarchical clustering 
method. As the approach depends on the splitting of 
the data set, the procedure was replicated 10 times to 
estimate the robustness of the final clustering obtained. 
From this final clustering, the inertia (i.e., the ratio 

between the between-class and within-class variance) of 
the dendrogram was estimated to define the best num-
ber of groups (i.e., selection of several groups before a 
large drop of inertia gain). This can be done by looking 
at the graph of the inertia according to the number of 
groups.

Cluster Interpretation

Standard statistical methods to test the significance 
of the effects, such as ANOVA, are useless here because 
of the number of records. There are too many observa-
tions, so the tests are too powerful, making every effect 
significant. Moreover, the main objective was to inter-
pret the clusters to understand what they represent. 
Thus, the differences between clusters were represented 
by calculating their least squares means (LSM) per 
group, which were visualized using bar plots on a stan-
dardized scale.

Expanding the Result to the Original Data Set

For the previous step, the large data set was simplified 
into 50,000 centroids clustered into several groups. To 
expand this result to the whole data set, a cluster pre-
diction model was needed. A PLS discriminant analysis 
(PLS-DA) model was built from the centroids using 
the 29 biomarkers. It is a predicting discriminant model 
using linear combinations of the original variables called 
latent variables, which are optimized to best represent 
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Table 2. Performance of the equations used1

Equation2   Unit N R2c R2cv SEc SEcv RPDcv Reference

BW   kg 721 0.51 0.47 51 53 1.37 Tedde et al., 2021
CH4   g/d 1,089 0.73 0.68 53 57 1.78 Vanlierde et al., 2021
Sodium   mg/kg of milk 1,019 0.48 0.44 49.25 50.98 1.34 Christophe et al., 2021
Calcium   mg/kg of milk 1,094 0.83 0.82 51.79 53.38 2.34 Christophe et al., 2021
Phosphorus   mg/kg of milk 1,083 0.76 0.75 57.36 58.71 1.99 Christophe et al., 2021
Magnesium   mg/kg of milk 1,124 0.73 0.72 6.35 6.53 1.88 Christophe et al., 2021
Potassium   mg/kg of milk 1,090 0.57 0.55 85.79 88.14 1.48 Christophe et al., 2021
Lactoferrin   mg/L 924 0.74 0.71 125 131 1.86 Soyeurt et al., 2012
EB   % 1,010 0.48 0.43 4.84 5.04 1.33 Grelet et al., 2017
DMI2   kg/d 0.71 5.70 1.83 Grelet et al., 2021
NUE   % 1,093 0.55 0.52 3.05 3.17 1.44 Grelet et al., 2020
Citrate   mmol/L 498 0.90 0.89 0.68 0.72 3.04 Grelet et al., 2016
Acetone   mmol/L 201 0.69 0.62 0.19 0.21 1.63 Grelet et al., 2016
BHB   µmol/L 419 0.75 0.71 0.13 0.14 1.85 Grelet et al., 2016
RFI   kg/d 1,008 0.52 0.48 2.73 2.87 1.39 Grelet et al., 2017
RFI2   kg/d 1,013 0.46 0.43 2.77 2.89 1.31 Grelet et al., 2017
SFA   g/dL of milk 1,790 0.99 0.99 0.07 0.07 10.22 Grelet et al., 2014
C18:1 cis-9   g/dL of milk 1,781 0.95 0.95 0.06 0.06 4.35 Grelet et al., 2014
MUFA   g/dL of milk 1,793 0.97 0.97 0.06 0.06 5.83 Grelet et al., 2014
PUFA   g/dL of milk 1,799 0.78 0.77 0.02 0.02 2.10 Grelet et al., 2014
1R2c = coefficient of determination of calibration; R2cv = coefficient of determination of cross validation; SEc = standard error in calibration; 
SEcv = standard error in cross validation; RPDcv = ratio of performance to deviation in cross validation.
2EB = energy balance; DMI2 = predicted DMI; NUE = nitrogen use efficiency; RFI = residual feed intake (alternate calculation via RFI2); 
C18:1 cis-9 = oleic acid.
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the variability of the response and the original variables. 
The output of the model is the probability of belonging 
to a specific cluster. The hyperparameter of the model 
is the number of latent variables, which was fixed based 
on the performances obtained from a 10-fold cross-
validation. As our aim was to develop a model able to 
predict every cluster, but more specifically the clusters 
associated with sick animals, we compared the global 
accuracy and the balanced accuracy for each cluster, 
which is the mean between sensitivity and specificity. 
The PLS-DA model is sensitive to unbalanced data as 
it will most likely predict the most observed cluster. In 
a case where the proportions of observations in each 
cluster vary widely, it is recommended to generate a 
balanced training data set. The considered up-sampling 
approach consists of sampling with replacement of the 
original data set but with the constraint to reach 10,000 
records for each cluster. Moreover, we expected that a 
quantitative trait would better represent the continuum 
of the animal health status instead of a binary divi-
sion (healthy vs. sick). Compared with the k-nearest 
neighbors algorithm, PLS-DA gives more quantitative 
information: the scores on specific latent variables and 
the probability of being in a cluster.

Validation

The innovative aspect of our approach was to use 
a large-scale database to find patterns potentially re-
lated to animal health to keep the maximum variabil-
ity existing in the population. Therefore, no reference 
measurements for health status were used. This is why 
validation was performed using reference biomarkers 
measured in milk and blood samples. This approach 
aimed to validate the interest of obtained clusters and 
the potential of an associated quantitative trait such as 
a PLS-DA probability of belonging to a cluster.

The validation health data set was created from 
the European Union FP7 Genotype plus Environ-
ment project (http:​/​/​www​.gpluse​.eu). The data set 
contained 380 records collected between 2013 and 2018 
for primiparous and multiparous Holsteins with DIM 
between 10 and 50. As the clusters are defined from 
primiparous Holsteins, a first data set containing only 
primiparous cows was created but only 50 records were 
usable as SCC measures were missing. Therefore, a sec-
ond data set containing 204 records from primiparous 
and multiparous cows was developed to increase the 
number of observations available. Several biomarkers 
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Table 3. Descriptive statistics of the mid-infrared–based predictors, milk yield, and SCC from the calibration 
data set (n = 740,454 records)

Abbreviation1   Unit Minimum Maximum Mean SD CV

Milk   kg/d 8.10 78.00 23.72 5.91 0.25
pFAT   g/dL of milk 21.10 69.90 39.66 5.99 0.15
pPROT   g/dL of milk 20.30 51.50 33.59 3.27 0.10
Lactose   g/dL of milk 3.53 5.68 4.84 0.17 0.03
Urea   mmol/L 10.00 1,260.00 249.32 79.66 0.32
SCC   cells × 1,000/mL 10.00 3,490.00 139.60 297.49 2.13
Weight   kg 401.49 934.12 620.16 65.20 0.11
CH4   g/d 100.00 699.99 306.31 58.38 0.19
Na   mg/kg of milk 200.02 499.98 321.90 34.52 0.11
Ca   mg/kg of milk 900.00 1,500.00 1,154.47 97.32 0.08
P   mg/kg of milk 700.62 1,299.95 997.53 83.77 0.08
Mg   mg/kg of milk 80.00 130.00 100.68 7.73 0.08
K   mg/kg of milk 1,100.03 1,700.00 1,494.43 90.87 0.06
Lactoferrin   mg/L 35.11 800.34 162.11 88.15 0.54
DMI2   kg/d 14.00 33.00 24.50 3.20 0.13
DMI   kg/d 7.65 38.51 19.85 2.67 0.13
EB   % −19.38 10.00 0.33 3.54 10.89
NUE   % −2.37 27.10 11.34 2.14 0.19
Citrate   mmol/L 2.84 17.00 8.64 1.36 0.16
Acetone   mmol/L 0.01 0.30 0.06 0.03 0.46
BHB   µmol/L 38.20 399.82 158.07 42.24 0.27
RFI   kg/d −16.09 1.50 −3.46 2.18 −0.63
RFI2   kg/d −13.44 5.68 −2.10 2.02 −0.96
FPCM   kg/d 6.50 74.25 23.52 5.53 0.23
CI   kg of DMI/kg of milk 0.36 2.24 0.88 0.18 0.21
SFA   g/100 g of fat 30.50 178.75 70.39 4.66 0.07
C18:1 cis-9   g/100 g of fat 7.67 47.63 20.47 3.68 0.18
MUFA   g/100 g of fat 10.39 66.65 28.17 4.21 0.15
PUFA   g/100 g of fat 1.26 8.81 3.70 0.57 0.15
1pFAT = fat content; pPROT = protein content; DMI2 = predicted DMI; EB = energy balance; NUE = 
nitrogen use efficiency; RFI = residual feed intake (alternate calculation via RFI2); FPCM = fat- and protein-
corrected milk; CI = consumption index; C18:1 cis-9 = oleic acid.

http://www.gpluse.eu
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were measured in individual milk and blood samples: 
cholesterol, fructosamine, BHB, nonesterified fatty acid 
(NEFA), progesterone (P4), and glucose in blood 
and glucose-6-phosphate, free glucose, isocitrate, urea, 
N-acetyl-β-d-glucosaminidase (NAGase), and lactate 
dehydrogenase (LDH) in milk (Table 4). De Koster et 
al. (2019) describe the data collection and the applied 
protocol in more detail. All phenotypes included in the 
calibration data set were also collected to allow predic-
tion of the clusters, PLS-DA probabilities, and scores 
on latent variables for those observations.

To validate the relationships between the probabili-
ties or the scores on latent variables and the reference 
values measured in the laboratory, Pearson correla-
tions were calculated between those quantitative and 
reference traits. Then, statistical t-tests for association 
between paired samples were performed to assess the 
significance of the estimated correlation values.

RESULTS AND DISCUSSION

Developing the Clusters

As mentioned previously, standard hierarchical clus-
tering methodologies could not be used and a specific 
approach was developed. As this approach involved 
randomness, the process was repeated 10 times to 
assess its robustness. To determine the similarity, we 
looked at whether the groups obtained and the division 
order between them were equivalent. Nine dendrograms 
out of 10 repetitions were similar. Thus, only one rep-
resentative dendrogram is shown in Figure 1. Based 
on inertia, the dendrogram was cut into 5 groups. The 

graph is structured into 2 large groups divided into 
one sub-group containing cluster 1 and cluster 4 and 
another sub-group divided into 3 sub-groups (clusters 
2, 3, and 5; Figure 1). Among these 3 sub-groups, 
cluster 5 was very small and well separated from the 
others. The distribution of the centroids among the 
clusters was uneven, with 15,271 centroids in cluster 1 
(30.54%), 19,573 in cluster 2 (39.15%), 5,452 in cluster 
3 (10.90%), 6,856 in cluster 4 (13.71%), and 2,848 in 
cluster 5 (5.70%). Clusters 1 and 2 covered most of the 
records, with 69.69% of observations.

As mentioned earlier, testing for the significance of 
the effect is irrelevant here. Instead, the LSM of the 29 
studied traits were computed and are illustrated in Fig-
ure 2 on a standardized scale. From the visual analysis, 2 
clusters differed from the others: cluster 4 and cluster 5. 
Clusters 1 and 4 had similar behavior, with both means 
of each prediction being positive or negative. However, 
the means of cluster 4 were larger than those of cluster 
1, suggesting that clusters 1 and 4 represented the same 
biological phenomena but with severe cases being in 
cluster 4. Those groups were characterized by nega-
tive values for the predictions of protein content, BW, 
CH4, P, DMI, energy balance (EB), residual feed in-
take, consumption index, and SFA. There were positive 
means for the predictions of Na, nitrogen use efficiency, 
citrate, acetone, BHB, and the predicted percentages of 
C18:1 cis-9, MUFA, and PUFA in milk fat. Based on 
those results, we hypothesized that cluster 4 referred 
to cows with metabolic disorders induced by negative 
EB, up to ketosis. Although we mainly used predictions 
in this study, the results are similar to those of Gross 
et al. (2011), who observed reduced milk production 
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Table 4. Descriptive statistics for the reference measurements of health-related traits from the validation sets

Measure1   Unit

Lactation 1 (n = 50)

 

All lactations (n = 204)

Minimum Maximum Mean SD Minimum Maximum Mean SD

Blood
  Cholesterol   g/L 1.64 5.57 3.22 0.89 1.64 7.33 3.70 1.12
  Fructosamine   µmol/L 192.83 296.07 263.71 19.81 192.83 298.77 259.62 18.35
  BHB   mmol/L 0.24 2.14 0.57 0.40 0.21 4.29 0.63 0.48
  LogBHB   log(mmol/L) −0.62 0.33 −0.31 0.22 −0.68 0.63 −0.27 0.22
  NEFA   µEq/L 95.77 1,884.36 518.48 422.37 26.07 2,757.01 606.17 424.85
  P4   ng/mL 0.12 11.07 1.89 2.23 0.02 12.92 2.48 2.80
  Glucose   mmol/L 2.79 4.70 3.89 0.39 2.02 4.7 3.61 0.41
Milk
  Glu6P   mmol/L 0.05 0.44 0.20 0.09 0.05 0.44 0.17 0.08
  GluFree   mmol/L 0.08 0.41 0.23 0.09 0.03 0.58 0.23 0.10
  BHB   µmol/L 20.00 241.00 61.00 44.81 20 735 65.33 60.97
  Isocitrate   mmol/L 0.09 0.32 0.19 0.05 0.07 0.32 0.17 0.05
  Urea   mmol/L 0.95 6.80 3.37 1.46 0.47 7.17 3.11 1.38
  NAGase   units/L 0.56 6.67 2.18 1.18 0.56 10.78 1.92 1.08
  LDH   units/L 0.78 8.02 3.27 1.68 0.64 39.88 3.10 3.23
1NEFA = nonesterified fatty acid; P4 = progesterone; Glu6P = glucose-6-phosphate; GluFree = free glucose; NAGase = N-acetyl-β-d-
glucosaminidase; LDH = lactate dehydrogenase.
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with a lower percentage of protein, combined with a 
lower BW and DMI for Holstein cows in negative EB. 
Moreover, cluster 4 was related to lower content of SFA 
and higher contents of MUFA and PUFA. Vranković et 
al. (2017) and Fiore et al. (2020) showed that similar 
changes in milk fatty acid composition, with decrease 
of de novo fatty acids, are associated with negative EB 
and body fat mobilization.

Cluster 5 was characterized mostly by a large posi-
tive value for SCC. Moreover, Na and lactoferrin means 
were high, and that of lactose was low, suggesting that 
cluster 5 was related to mastitis issues (Figure 2). Al-
though we used predictions for Na and lactose, these 
findings can be corroborated by previous works. Bansal 
et al. (2005) made the same observation for cows with 
subclinical mastitis using reference measurements. Fer-
nando et al. (1985) also mentioned the use of Na as an 
indicator of subclinical mastitis. Lactose as an indica-
tor of subclinical mastitis was identified by Ebrahimie 
et al. (2018). Cluster 3 was defined by low production 

of milk associated with high estimated means for fat, 
protein, and minerals.

Predicting the Cluster for the Calibration Data Set

At this stage, we discovered 2 potentially interesting 
groups for disease detection (i.e., cluster 4 and cluster 
5). However, those clusters were only defined using the 
centroids. Therefore, we needed to expand the results 
of the clustering to the whole data set. As each of the 
centroids was defined from 500 groups for each of the 
100 subsets, this could be performed by recovering the 
records for each centroid. However, this method pre-
vents the extrapolation of the results to future records. 
Instead, a PLS-DA model was built to allow discrimi-
nation of the found clusters from the 50,000 centroids. 
As the number of centroids by cluster was greatly 
unbalanced, which risks impairing the predictions, we 
used an up-sampling approach based on bootstrapping, 
wherein we sampled with higher probabilities for the 
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Figure 1. Dendrograms for the 50,000 centroids. Height indicates the value of the Ward’s criterion for each agglomeration of centroids or 
groups of centroids. Agglomerations with low heights represent centroids, or groups of centroids, that are close. Clusters are identified by color.
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smaller cluster. As a result, the training data set was 
balanced with around the same number of observations 
for each cluster, creating a model that was not biased 
toward the prediction of the most represented clusters. 
The number of latent variables was fixed at 6, as the 
highest overall cross-validation accuracy was found for 
this model (0.77). The accuracy decreased to 0.70 when 
the model was applied to the original centroid data. 
The balanced accuracy of discriminating cluster 4 and 
cluster 5 was 0.88 and 0.96, respectively. With use of 
the PLS-DA model, we were able to extend the predic-
tion of clusters to the entire data set. We observed that 
cluster 1 was assigned to 21.39% of the records, cluster 
2 to 40.89%, cluster 3 to 18.01%, cluster 4 to 16.62%, 
and cluster 5 to 3.1%. This repartition is more or less 
the same as the repartition observed using the 50,000 

centroids, confirming the model, with a lower percent-
age of records belonging to cluster 4 and cluster 5. This 
is expected as those groups should be related to cows 
with metabolic disorders or mastitis.

Although we had clusters for all records, these cat-
egorical variables do not fully represent the reality of a 
sick animal. Animal health status is a continuous vari-
able from healthy to sick. By observing the PLS-DA 
latent variables, we can observe this continuum and 
the overlap between clusters (Figure 3). Therefore, the 
probabilities of being in cluster 4 or cluster 5 seemed 
to be more relevant compared with the previous hard 
clustering, where each observation belongs to only one 
cluster. However, it is important to verify whether the 
found clusters were still pertinent using reference bio-
marker measurements.

Franceschini et al.: UNSUPERVISED METHODS ON MILK RECORDING BIG DATA

Figure 2. Bar plots of the least squares means of the 29 biomarkers for the 50,000 centroids. C18:1 cis-9 = oleic acid; CI = consumption 
index; EB = energy balance; FPCM = fat- and protein-corrected milk; Lactof = lactoferrin; NUE = nitrogen use efficiency; pPROT = protein 
content; pFAT = fat content; RFI = residual feed intake (alternate calculation via RFI2); DMI2 = predicted DMI.
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Validating Against Reference Values

Based on the GplusE project, it was possible to cre-
ate a data set containing reference measurements of 
biomarkers related to animal health. As all predictors 
needed to predict the clusters were available for these 
records, we were able to estimate for each record the 
probability of being in a cluster from the PLS-DA 
(Table 5). As the variabilities from the data set com-
posed of primiparous Holsteins were low, especially for 
the probability related to cluster 5, we assume that this 
small data set contained very few cases of mastitis. If 
we consider a proportion of 6% for cluster 5, we would 
expect 3 observations for this cluster. To solve this is-
sue, we extended the result to subsequent lactations. 
The extension allowed the consideration of a larger 
number of observations, where more cows with health 

issues could be expected. This example shows the dif-
ficulty in finding representative reference data when 
working with health data.

As all of the PLS-DA probabilities were quantitative, 
Pearson correlations could be computed between these 
outputs and the reference contents of biomarkers mea-
sured in blood and milk. Table 6 shows these correla-
tions and their significance. The correlations confirmed 
the previous interpretation of the clusters. Among 
the significant correlations, the probability associated 
with cluster 4 was positively correlated with blood 
and milk BHB, isocitrate, and NEFA and negatively 
correlated with blood fructosamine, blood glucose, 
milk free glucose, and milk glucose-6-phosphate. As 
reported in many studies, these biomarkers reflect EB 
issues up to ketosis through a lower level of circulating 
glucose in blood, reflected in the long term through a 
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Figure 3. Scatterplot representing the distribution of the 740,454 records on the first and second latent variables from the partial least 
squares discriminant analysis.
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lower content of fructosamine, and leading to release of 
NEFA because of body fat mobilization and ultimately 
production of ketone bodies in the liver (Ingvartsen, 
2006; Suthar et al., 2013; Esposito et al., 2014). Larsen 
(2014) and Larsen and Moyes (2015) also proved that 
free glucose, glucose-6-phosphate, and isocitrate are 
related to EB issues or risk of diseases.

For the correlation between the probability of be-
longing to cluster 5 and the biomarkers, we observed 
that they differed between the first and the subsequent 
lactations. We assumed that this was related to the 
low variability in the first-lactation data set, suggest-
ing that there were no severe mastitis issues in the 50 
observations. However, we do not have the on-farm 
information about mastitis so we cannot validate this 
assumption. Thus, we also considered the correlations 
from the other data set. The probability of belonging 
to cluster 5 was negatively correlated with free glucose 
in milk but not in blood, and positively correlated with 
NAGase and LDH. Similarly, Larsen et al. (2010) and 
Kitchen et al. (1980) showed that LDH and NAGase 
were relevant indicators of mastitis.

As shown by the validation step based on reference 
laboratory data, the probabilities were strongly corre-
lated with relevant biomarkers of health issues. Thus, 
our results highlighted that even using predictions from 
models with low or fair quality (9 models had an R2cv 
< 0.7), trends and patterns can be found in a large 
data set and validated through external data. As men-
tioned by McParland and Berry (2016) or Bonfatti et al. 
(2017), the current results validate the idea that models 
with low or fair accuracy can be valuable for breeding 
and monitoring if they can highlight trends or genetic 
correlation through large-scale data sets. Moreover, the 
measures could be exploited in a longitudinal approach 
by computing the variance, the mean value for lacta-
tion, or the expected curves. The measures, frequen-
cies, and means of measures could be indicators of the 
resilience of the animals. However, the method requires 
more frequently collected spectral data, not a monthly 
test, to be used as a continuous monitoring tool.

The current approach has the limitation of requiring 
previous biomarker models to constitute the clusters. 

However, the cluster prediction method, being based 
only on DHI records, opens up many avenues to use 
already available data. The method offers a way to 
summarize information from multiple models, to find 
consistency between all the predictions, and ultimately 
to detect health patterns in large databases.

CONCLUSIONS

This research aimed to consider the multidimen-
sionality of animal health and its associated traits to 
detect potential health issues in a routine environment. 
Instead of using reference laboratory data, the innova-
tive aspect of this study was to make use of a DHI data 
set containing records related to usual dairy traits and 
FT-MIR–based predictions that have direct or indirect 
links with health issues, to discover groups of cows with 
different data patterns. Even though the method had 
some computational and validation limitations, this 
novel approach allowed detection of global patterns 
from a large data set that is more representative of the 
population. The results are promising, showing that the 
approach is worth developing. Two clusters were shown 
to represent cows with metabolic disorders or that have 
mastitis issues. From the probability of belonging to 1 
of those 2 clusters estimated through a PLS-DA model, 
we propose a quantitative gradient of sickness related 
to metabolic disorders or mastitis. These traits are 
directly usable in many applications; for example, as 
a tool to monitor the animal health status of every pro-
ductive cow during routine milk recording or to develop 
new estimated breeding values due to the large amount 
of directly available data.
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