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Machine learning potentials for metal-organic frameworks
using an incremental learning approach
Sander Vandenhaute1, Maarten Cools-Ceuppens 1, Simon DeKeyser 1, Toon Verstraelen 1 and Veronique Van Speybroeck 1✉

Computational modeling of physical processes in metal-organic frameworks (MOFs) is highly challenging due to the presence of
spatial heterogeneities and complex operating conditions which affect their behavior. Density functional theory (DFT) may describe
interatomic interactions at the quantum mechanical level, but is computationally too expensive for systems beyond the nanometer
and picosecond range. Herein, we propose an incremental learning scheme to construct accurate and data-efficient machine
learning potentials for MOFs. The scheme builds on the power of equivariant neural network potentials in combination with
parallelized enhanced sampling and on-the-fly training to simultaneously explore and learn the phase space in an iterative manner.
With only a few hundred single-point DFT evaluations per material, accurate and transferable potentials are obtained, even for
flexible frameworks with multiple structurally different phases. The incremental learning scheme is universally applicable and may
pave the way to model framework materials in larger spatiotemporal windows with higher accuracy.
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INTRODUCTION
Metal-organic frameworks (MOFs) have become one of the most
intriguing classes of materials in the last decades as they may
exhibit anomalous responses upon exposure to external stimuli
such as temperature, pressure, or guest sorption; notable
examples are negative thermal expansion, negative gas adsorp-
tion, and large-amplitude structural transitions. Apart from being
academic peculiarities, MOFs have now also found their way into
technologically important applications such as gas storage,
sensing, separation, or catalysis.1–9. Recently, it became clear that
the dynamic response of MOFs is largely affected by spatial
heterogeneities at various length scales, varying from the
subnanometer scale for isolated defects to the mesoscale when
correlated nanoregions are present and to the microscale when
accounting for the finite crystal size.10–14 It led to the terminology
of spatiotemporal processes within MOFs, referring to the
entanglement between the dynamic response of the material
and the existing spatial disorder.15,16 Modeling spatiotemporal
processes in realistic MOFs at length and time scales comparable
to experimental conditions is a very ambitious goal, and requires a
range of innovative methods to translate atomic-scale information
into macroscopic insight. One key ingredient is the method used
to describe the interatomic forces. Current modeling efforts on
MOFs either rely on density functional theory (DFT), which may
obtain an accurate description of framework-guest interactions
when complemented with proper dispersion models to describe
longer-ranged interactions, or on classical force fields, which are
simple analytical functions that ignore the quantum mechanical
description of the electrons. Classical force fields have become
tractable within the MOF field as they are now starting to bridge
the length scale gap towards experimentally observed MOF
crystallites17,18. However, they are less accurate than DFT-based
methods and exhibit only limited transferability; force fields
derived under certain thermodynamic conditions are not neces-
sarily applicable to other operating conditions. In addition, they
are generally unable to describe bond formation or breakage. For
these reasons, DFT-based methods are in principle preferred but

their applicability is limited to nanometer-sized structural models
and time scales up to about 100 ps, even on state-of-the-art
computing infrastructure. Ideally, it would be possible to combine
the best of both worlds, whereby interatomic forces are evaluated
at an accuracy comparable to DFT but with a computational
efficiency similar to classical force fields. Machine learning
potentials (MLPs) may offer such a hybrid alternative; they may
learn the potential energy surface (PES) at a given level of
quantum chemical accuracy, and can then be used to accelerate
subsequent energy evaluations by multiple orders of magni-
tude19,20. MLPs have been successfully developed for a variety of
different materials and molecules. Broadly speaking, these models
may be categorized into either kernel regression methods, which
determine the interaction energy by comparing a given config-
uration to a set of reference configurations21,22, or neural network
potentials, which directly determine a high-dimensional repre-
sentation of the PES based on thousands or even millions of
parameters23.
Since 2019, a number of studies have emerged in which neural

network potentials have been employed to study e.g., mechanical
or diffusion properties for framework materials24–26. Although
they demonstrate the potential of MLPs in the field of modeling
MOFs, they required a large set of expensive DFT molecular
dynamics (MD) trajectories in order to generate the necessary
amount of training data (over 10,000 snapshots in all three cases).
Such approaches become computationally intractable for systems
where large portions of phase space need to be sampled. This is
the case for more complex frameworks with large unit cells such
as HKUST-1(Cu) or MOF-808(Zr), but also flexible frameworks with
multiple stable phases pose a real challenge in terms of
generating training data in a computationally efficient manner
(e.g., MIL-53(Al) in Fig. 1). For these frameworks, all relevant
regions in phase space need to be properly sampled, including
not only the stable phases of the material within the thermo-
dynamic conditions of interest but also activated regions and all
points along important transition paths. This is very difficult to
achieve using equilibrium first principles MD because simulation
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times are limited when using DFT to evaluate the interatomic
forces at each timestep. In addition, configurations obtained from
equilibrium MD typically sample regions close to free energy
minima and fail to capture important transition states in between
phases, even though these are essential to include in the training
data.
In this work, we present an incremental learning scheme for the

construction of accurate MLPs with thermodynamic transferability
without requiring large amounts of DFT input data. We employ
NequIP27, a newly proposed message passing neural network
(MPNN) that exhibits extraordinary data efficiency due to its use of
equivariant feature representations for the atomic environments
(see below)28. The key observation in our learning scheme is that a
proper sampling of the phase space can be achieved without
performing extensive quantum mechanical-based molecular
dynamics simulations. Instead, inspired by other active learning
approaches29–31, we propose to sample the phase space using the
MLP itself, in combination with on-the-fly training whenever it
encounters unknown regions. In this sense, systematically
improved MLPs are generated. Key to our approach is the use
of metadynamics (MTD) in order to enforce the sampling towards
unexplored regions. This allows us to ensure that both in- and out-
of-equilibrium configurations are automatically included during
training, even when large free energy barriers are present.
Importantly, we show that our incremental learning algorithm is
highly efficient and does not require a kind of uncertainty metric
that determines which samples to include in the training data, as
is often the case for other active learning approaches proposed
elsewhere30,32. We demonstrate the accuracy and transferability of
models constructed with the incremental learning scheme based
on two representative frameworks (Fig. 1): the mechanically rigid
UiO-66(Zr) framework, which consists of twelve-fold coordinated
inorganic bricks and organic benzene-1,4-dicarboxylate (BDC)
ligands33, and the flexible MIL-53(Al) framework, which consists of
one-dimensional (periodic) aluminum hydroxide chains connected
with the same organic ligands34. Incremental learning addresses
the main disadvantages of traditional data generation with an
iterative learning approach, in which efficient and parallel
enhanced sampling molecular dynamics simulations are com-
bined with on-the-fly learning. Based on a single atomic structure
and a definition of one or more collective variables, the algorithm
proceeds with simultaneously exploring and learning the phase
space of the material; the approach is schematically shown in
Fig. 2. The algorithm starts by constructing a first generation MLP,
which is trained based on a small set of initial configurations that
are obtained by applying random perturbations to the particle
positions and strain components of the initial configuration. This
first generation MLP is then used in a short (~1 ps) multiple walker
metadynamics (MTD) simulation in order to explore the phase

space around the initial configuration. The final configuration of
each of the walkers is extracted and subjected to a new DFT
calculation to obtain the energy and forces. The latter are added
to the training and validation sets after which a next generation
MLP is obtained by training the model for a short amount of time.
Even though the sampling was performed with an initially
inaccurate MLP, it still suffices to explore a meaningful region of
phase space and generate almost decorrelated samples. The
sampling time per iteration may be kept relatively short as it
serves the purpose to gradually explore larger portions of phase
space. After training, the model is considered to have learned an
incremental region in phase space, and may then be passed on to
the next iteration in which it continues the MTD sampling. The
state of the bias potential is retained from the previous iteration as
to ensure that the walkers explore a slightly different region of
phase space in each iteration. By continuously alternating the
enhanced sampling and training steps, the entire phase space of
the collective variable is explored and learned on-the-fly without
the need to perform expensive DFT-based molecular dynamics
simulations. Importantly, our approach ensures that atomic
configurations for which a QM evaluation is performed are always
separated by a ~1 ps MTD trajectory, which implies that they are
at most only weakly correlated. As such, we are guaranteed that
there is little redundancy between the QM-evaluated configura-
tions in the training data even though we did not rely on any
specialized uncertainty measures as found in other active learning
schemes30,32.
The incremental learning approach as proposed here is most

efficient when combined with MLP models which are easy to train
and which are able to learn a large number of atomic
environments and chemical species. While existing MLPs for
MOFs used strictly invariant architectures24–26, we employ the
neural equivariant interatomic potential (NequIP)27 because it
achieves a data efficiency similar to kernel regression methods
while maintaining a cost of evaluation that is independent of the
size of the training set. Like many other message passing neural
networks (MPNNs)35,36, NequIP computes the total potential
energy of a given configuration as a sum of individual atomic
contributions, whereby each contribution is the result of a series
of convolutions taken over neighboring atomic environments as
to represent the physical interactions between nearby atoms.
Equivariant MPNNs differ from more established MPNNs such as
SchNet37 or DeePMD38 because they complement rotationally
invariant, scalar-like features with equivariant features in the
representation of atomic environments39 (Fig. 3a). Inspired by
tensor field networks28, NequIP assigns each of the features to a
specific irreducible representation of the rotational group SO(3).
Each irreducible representation is characterized by a rotation
order ℓ 2 N, which defines how features transform when the

Fig. 1 Overview of the atomic structures of the frameworks. UiO-66(Zr) is a mechanically rigid framework with a single stable phase; MIL-
53(Al) is a flexible material.
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cartesian coordinates at the input are rotated. The first two
rotation orders (ℓ= 0 and ℓ= 1) correspond to scalar and vector
features respectively, and are illustrated in Fig. 3a. Effectively,
features for which ℓ > 0 are better suited to represent directional
information of the atomic environment throughout the layers of
the network, and are the primary reason for the exceptional data

efficiency of equivariant MPNNs as compared to invariant MPNNs
and even kernel regression methods27. To demonstrate the
importance of equivariant features, we performed separate
incremental learning runs for the invariant (ℓmax ¼ 0) and
equivariant (ℓmax ¼ 1) networks, and monitored the mean
absolute error (MAE) on the force predictions for an independent

Fig. 3 Comparison between invariant and equivariant feature representations. a Features in equivariant neural networks are associated
with a specific irreducible representation of SO(3), as characterized by the rotation order ℓ. For ℓ= 0, features do not transform upon rotation
of the system, and may be considered as scalars. For ℓ= 1, features transform according to vectors in R3. b Evolution of the test error as a
function of the number of iterations in the incremental learning algorithm as well as the total number of QM evaluations that were performed
for both the invariant ℓmax ¼ 0 model (blue) and equivariant ℓmax ¼ 1 model (red). The test system was UiO-66(Zr). Computational details
regarding network hyperparameters, MTD parameters, and test set generation can be found in the Methods section as well as the
Supplementary Information.

Fig. 2 Overview of the incremental learning approach as a combination of enhanced sampling and on-the-fly training. a Each iteration
employs the current MLP in multiple walker metadynamics to explore increasingly larger regions in phase space, after which the obtained
samples are evaluated at the QM level and the MLP is retrained. b Metastable regions and transition paths are automatically explored and
included in the training data.
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test set as a function of the number of iterations (Fig. 3). In
addition, we explicitly show the efficiency of our learning
approach by indicating the corresponding total number of QM
evaluations required to achieve a given error. As expected, the test
error decreases monotonically as a function of the number of
iterations as training and validation sets contain an increasingly
larger number of atomic environments which the models may
learn from. While the number of weights in both networks was
roughly equal to about 200,000, the equivariant model clearly
required far less QM evaluations to achieve a given test error as
compared to the invariant model.

RESULTS
Incremental learning scheme for UiO-66(Zr) and MIL-53(Al)
We demonstrate the efficiency of incremental learning based on
case studies for both UiO-66(Zr) as well as MIL-53(Al) (Fig. 1). Final
models are validated in terms of their test error accuracy,
transferability towards out-of-equilibrium configurations, and their
ability to predict structural and mechanical properties in agree-
ment with the DFT reference. Since the learning algorithm takes
care of both data generation and training, the only required user
input is an initial atomic structure of the system as well as a
collective variable along which the bias should be applied. For
both frameworks, we chose the unit cell volume as collective
variable and employ NequIP models with ℓmax ¼ 1 as MLP. The
QM calculations are performed using DFT at the PBE-D3(BJ) level
of theory. In each iteration, 50 MTD walkers are used to explore
the phase space and generate 50 configurations that are added to
training and validation sets. The learning algorithm started from
the DFT optimized geometry. Chemical bond integrity was
preserved throughout all iterations and the constructed MLPs
are therefore only intended to be employed in nonreactive
dynamics. Although outside the scope of this work, the same

approach may be used to construct reactive MLPs; the MTD bias
will continue to increase in each iteration until it exceeds the
barrier needed to break the coordination bonds between the
metal and the ligand, at which point the enhanced sampling will
start generating defective framework configurations. A full over-
view of all computational details may be found in the “Methods”
section and in the Supplementary Information.
For both systems, we constructed a test set of reference data

that is obtained based on a large number of first principles MD
trajectories at 600 K (see Supplementary Note 1). The test set was
specifically generated as to include strongly out-of-equilibrium
unit cell volumes, as these become relevant for the behavior of the
framework at high temperatures and/or pressures. The energy and
force MAEs are shown in the top half of Fig. 4 as a function of the
MTD collective variable (the unit cell volume), and remain below 1
meV per atom and 30 meV Å−1 across the entire volume range.
Such values are in fact lower than the intrinsic uncertainty on
these quantities due to e.g., the choice of functional or even the
basis set dependence40, and further training with more data
would at that point no longer yield significant improvements in
predictive power. Note that even the volume region between the
two stable phases for MIL-53(Al) is well predicted, indicating that
the model has successfully discovered and learned the phase
transition by itself even though it only initially received the closed
pore (cp) configuration as input. This is the case because the MTD
bias ensures that the sampling in each iteration is gradually
expanded towards unit cell volumes that are not yet explored.
Once the training data covers all unit cell volumes of interest,

no additional sampling is necessary and the algorithm may be
terminated. For UiO-66(Zr), this was the case after only 11
iterations or 600 QM evaluations, whereas MIL-53(Al) required 19
iterations or 1000 QM evaluations because the MTD simulations
take some time to overcome the free energy barrier with Gaussian
hills. Nevertheless, it is clear that incremental learning generates

Fig. 4 Validation of the obtained potentials for UiO-66(Zr) and MIL-53(Al). a, b Energy and force MAEs on independent test sets and a
smoothed histogram of the training data sampled using incremental learning; the unit cell volume of the initial configuration is indicated with
a black dot. Additional computational details are provided in the Methods section. c Stiffness matrix for UiO-66(Zr) and both phases of MIL-
53(Al) as calculated with the MLPs. Each square is color-coded based on the difference between the MLP prediction and the DFT reference
values; the latter are explicitly shown inside each square. Black dots indicate stiffness constants which are zero due to symmetry
considerations; see Supplementary Note 3 for more details.
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trained MLPs at only a fraction of the computational cost when
compared to passive learning approaches even though the
accuracy is maintained across thermodynamic conditions (see
Supplementary Note 4). In fact, the total computational cost of
training data generation is now equivalent to or even less than a
routine geometry optimization or a very short first principles MD
trajectory (excluding the GPU resources required during training).

Mechanical stability and phase transitions
Interestingly, while the network parameters were optimized using
a weighted loss function that takes both energies and forces into
account, the NequIP models are also capable of providing
accurate predictions for the virial stress in the system (see
Supplementary Note 4). This is a necessary requirement in order to
generate representative (N, P, T) dynamics, and it already suggests
that the overall mechanical behavior of the frameworks will be
well reproduced by the MLPs. To further investigate this, we
compared the final models with the DFT reference in terms of
structural and mechanical properties at 0 K. Optimized geometries
for UiO-66(Zr) and both phases of MIL-53(Al) are in good
agreement with the DFT reference, with RMSD values below
0.05 Å on both atomic positions and box vector components. For
each of the optimized geometries, we evaluate the mechanical
behavior in terms of the stiffness tensor C 2 R6 ´ 6 (in Voigt
notation), which determines how the stress σ 2 R6 within the
material changes due to an applied strain ϵ 2 R6:

σ ¼ Cϵ (1)

The components of C are computed using either a finite-
difference approach (used for the DFT reference), or with an
exact second-order hessian matrix (used for the MLPs); both
methods are outlined in Supplementary Note 3.
The bottom part of Fig. 4 shows the stiffness tensors for all

three optimized structures; each of the squares is color-coded
based on the relative deviation between the MLP prediction
and the DFT reference, whereas the value of the latter is
indicated in black text inside each square. None of the
predicted stiffness constants differed by more than 7 GPa from
the DFT reference values, demonstrating that our models are
capable of reproducing the mechanical properties of the
frameworks, as is to be expected based on the force and stress

error assessments. To further demonstrate their thermodynamic
transferability, we explicitly performed (N, P, T) MD simulations
at a large range of pressures and validated the obtained
trajectories with the underlying DFT reference; the results are
presented in Supplementary Note 4. The constructed MLPs
exhibit essentially the same accuracy as the underlying level of
theory while being at least three orders of magnitude faster to
evaluate. To further demonstrate this enormous gain in
computational efficiency, we will investigate the threshold
pressure for the large pore (lp) to closed pore (cp) transition in
MIL-53(Al) at 300 K, which was previously estimated at 13–18
MPa based on mercury porosimetry experiments41. Computa-
tional prediction of the transition pressure is difficult because
ab initio (N, P, T) MD simulations of MIL-53(Al) typically exhibit
large volume fluctuations due to the small unit cell size (with
ΔV/V on the order of 10%), and these may act as premature
triggers for the phase transition42. Fig. 5 visualizes the transition
dynamics for a typical 1 × 2 × 1 cell used in ab initio simulations.
The framework exhibits lp-to-cp transitions for any nonnegative
pressure, suggesting that the lp phase is unstable at 300 K in
spite of a clear lp minimum on the Helmholtz free energy
surface of the material. In addition, the absence of any
correlation between the timing of the transitions and the
magnitude of the applied pressure further suggests that
transitions at this scale are driven entirely by unit cell volume
fluctuations42. Fortunately, the extraordinary computational
efficiency of MLPs allows us to consider much larger supercells
of the same framework, such as the 9 × 2 × 9 cell shown in
Fig. 5. Because the ensemble standard deviation of physical
observables decreases according to the square root of the
number of particles, the fluctuations in unit cell volume at this
scale are an order of magnitude smaller and therefore no longer
able to trigger premature transitions of the framework. The
obtained transition pressure of 18–20 MPa as shown in Fig. 5 is
further confirmed by a full evaluation of the pressure-versus-
volume equation of state at 300 K as presented in Supplemen-
tary Note 5, and is in good agreement with the experimental
result. Previous computational estimates existed but were
obtained using a classical force field that was parameterized
based on DFT input data from the optimized lp geometry only
—i.e., without taking into account either the cp phase or the

Fig. 5 Estimating the transition pressure via large-scale dynamics. We compare estimates using a regular 1 × 2 × 1 unit cell versus a large-
scale 9 × 2 × 9 unit cell, as obtained based on (N, P, T) dynamics. All unit cell volumes were normalized with respect to the lp minimum of the
Helmholtz free energy surface at 300 K, which occurs at 2882 Å. Nevertheless, the lp phase is not stable for the 1 × 2 × 1 cell due to the larger
volume fluctuations. In contrast, the 9 × 2 × 9 cell allows to determine a transition pressure in the range of 18--20 MPa, which is in good
agreement with experiment41.
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transition region—which resulted in a large disagreement with
experiment43.

Towards universal interaction potentials
Overall, our results demonstrate that the physical interactions in a
given framework may be learned by equivariant MPNNs based on
only a minimal amount of QM evaluations. Naturally, we can
exploit this efficiency even further and examine whether we can
construct a single model for the prediction of physical interactions
in several different frameworks. This kind of transferability has
already been shown for other systems such as small organic
molecules, and can also be anticipated for MOFs because of their
modular building block structure. As a proof of principle, we
considered a set of 10 well-known aluminum- and zirconium-
based frameworks that are similar to but different from MIL-53(Al)
and UiO-66(Zr) in either the topology of the framework or the
organic ligand. A more detailed description of the frameworks
under consideration in terms of their building blocks is given in
Supplementary Note 5. We used incremental learning to explore
and learn the phase space of this set of 10 materials, which
resulted in a training set of about 3100 configurations. We
evaluated the test error performance for the frameworks included
during training as well as the UiO-66(Zr) and MIL-53(Al) frame-
works that were left out; the results are shown in Table 1. Even
though it was trained on a dataset with a significantly larger
variety in atomic environments, the model still achieves relatively
low force and stress MAEs, even for the frameworks not included
during training. In Supplementary Note 6, the performance of the
model is further investigated and compared with UFF4MOF44; an
established universal interaction potential for MOFs. While the
model is slightly less accurate when compared to the results in
Fig. 4, it still outperforms UFF4MOF by a large margin. In addition,
it should be emphasized that the entire training procedure only
required about 3100 QM evaluations in total or about 310 QM
evaluations per material, which further demonstrates the efficacy
of incremental learning in combination with equivariant MPNNs.

DISCUSSION
In this work, we propose an efficient approach for the construction
of accurate and transferable MLPs for framework materials. Even

for systems with multiple phases, we show that about 1000 QM
evaluations are sufficient to construct accurate equivariant
MPNNs. This increased computational efficiency is important for
future research, as it is now possible to employ more advanced
QM methods (e.g., hybrid functionals or beyond) during MLP
training and in this way allow for a more accurate description of
dynamic phenomena in these materials. In addition, the ability to
construct a single potential for the description of multiple
frameworks is highly promising, especially because we observed
that the number of QM evaluations per material actually decreases
with increasing variety in the training set (from about 1000 to only
about 300). Nevertheless, further research in this area is still
necessary. For example, it is still unclear how a maximally diverse
training set of different frameworks should be assembled, i.e.,
which distribution of building blocks, topology, and/or pore sizes
are necessary to guarantee transferability towards as many
materials as possible. In addition, it remains to be seen whether
equivariant MPNNs like NequIP will maintain their accuracy across
the MOF design space, including e.g., large mesoporous systems.
In those cases, message passing architectures may have to be
complemented with more recent models that are targeted
towards a more accurate description of long-range interac-
tions45–47. Finally, future work should extend the applicability of
MLPs towards guest-loaded and even disordered frameworks in
order to fully unleash their potential in the design of next-
generation MOF technologies.

METHODS
Density functional theory calculations
QM energy evaluations were performed using the CP2K simulation
package48, version 8.2. We employ the PBE49 functional with
Grimme D3 dispersion corrections50 and a hybrid basis set
including both TZVP Gaussian basis functions and plane waves51;
GTH pseudopotentials were used to smoothen the electron
density near the nuclei. The plane wave cutoff energy was set
to 1000 Ry for all materials as to guarantee that force and stress
calculations were fully converged. Additional computational
details regarding DFT calculations are available in Supplementary
Note 1.

Molecular dynamics
MLP sampling was performed using YAFF52 at conditions of
constant temperature and constant pressure, with a timestep of
0.5 fs. The temperature was controlled using a Langevin
thermostat53 with a time constant of 100 fs, and the pressure
was controlled using a Langevin barostat with a time constant of 1
ps54. PLUMED version 2.7.2 was used as a plugin to add the
metadynamics bias in the simulation55.

Machine learning potentials
All the MLP models in this work were constructed using NequIP
version 0.5.4. All models employed a cutoff radius of 5 Å for the
atomic environments and used four interaction layers, as this was
found to strike the optimal balance between accuracy and
computational efficiency. Because neighboring atoms exchange
information about their atomic environments in each layer, the
effective interaction radius of a single atom is at most
4 × 5 Å= 20 Å because that is the largest distance over which
information on a given atomic environment can travel. While this
was found sufficient for all frameworks considered in this work, an
accurate description of frameworks having larger pores may
require dedicated long-range interactions. Feature representations
were restricted to rotation orders of either l= 1 or l= 0, and the
sizes of the network layers were chosen such that the total
number of network parameters was around 200,000. The loss

Table 1. Test error performance of an MLP trained on a set of 10
aluminum- or zirconium frameworks (not including UiO-66(Zr) and
MIL-53(Al)) at 600 K.

Test errors for Zr- and Al-based MOFs

Metal Framework Forces MAE [meV Å−1] Stress MAE [MPa]

Al CAU-13 25.7 66.2

Al A-520 40.3 100.3

Al DUT-4 20.4 36.7

Al MIL-68 55.0 67.7

Al NOTT-300 22.8 22.9

Zr UiO-66[CDC] 24.8 74.7

Zr UiO-67 17.2 3.7

Zr MIL-140 22.6 58.5

Zr MOF-808 40.0 18.0

Zr BD899C1 25.9 65.2

Al MIL-53 24.7 107.2

Zr UiO-66[BDC] 21.3 31.7

Computational details such as NequIP hyperparameters, sampling para-
meters, and test set generation are given in Supplementary Note 6.
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function consists of a weighted average of potential energy and
force errors, and was optimized using Adam56 with a learning rate
of 0.005. Additional parameters are presented in Supplementary
Note 2.

Workflow management and sampling parameters
All of the computational steps in the learning algorithm are
managed using the Snakemake workflow management system,
version 7.857. QM evaluations and metadynamics simulations are
performed in a massively parallel manner on CPU nodes, whereas
MLP training is performed on a single GPU (Nvidia A100 40GB). In
this way, each iteration in the algorithm takes about one to two
hours in real time. For models that were trained on a single
material, we used 50 parallel MTD walkers to explore the phase
space, 45 of which were used to construct the training set and the
remaining 5 for the validation set. In contrast to traditional
multiple walker MTD, each walker maintains its own bias potential
as to encourage them to sample different regions in phase space.
Hills were added at a pace of 50 fs, with a width σ= 100 Å3 and a
height of 5 kJ/mol. Models were initialized by training on a small
set of 50 structures obtained by applying uniform perturbations in
the atomic coordinates and strain components (with respective
amplitudes of 0.08 Å and 0.01) starting from the initial structure.

Additional validation
To verify the validity of the transition dynamics as generated by the
MLP, we validated the 0 MPa phase transition simulation on the
1 × 2 × 1 unit cell of MIL-53(Al) from Fig. 5 by post hoc calculation of
the DFT energy and forces at regular intervals over the entire
transition. In this way, we obtained an average force MAE of only 6.7
meV Å−1 and an average energy MAE of 0.1 meV per atom, which is
exceptionally low. In addition to the 9 × 2 × 9 configuration
presented in Fig. 4, transition pressures were also determined based
on alternative supercell configurations (3 × 2 × 3 and 6 × 2 × 6), all of
which yielded the same 18–20 MPa estimate.

DATA AVAILABILITY
All datasets that were used and/or generated in this work are publicly available via
Zenodo58,59.

CODE AVAILABILITY
An automated implementation of the entire algorithm using Snakemake is available
online59, together with the necessary input files for CP2K and NequIP as well as a
variety of scripts to perform molecular dynamics simulations, geometry optimiza-
tions, and extended Hessian calculations. In addition, we provide a highly modular
and scalable implementation of the incremental learning approach in psiflow, a
Python library available at github.com/svandenhaute/psiflow.
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