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Abstract

Computational homogenization is commonly used to predict the responses of composite materials.
However, it poses practical issues due to large computational cost especially in the material-by-design
setting when various design parameters are to be examined. This paper presents the development of a
parametric model order reduction strategy for the micromechanical analysis of composites when fibre
distribution is the parameter of interest. The reduced order model is obtained by applying Galerkin
projection in combination with proper orthogonal decomposition. The presented framework enables
a significantly reduced computational load during parametric studies as the model dimension of the
microscale analyses is significantly smaller. The results show that the proposed approach can reproduce
the homogenized properties of material and local stress distributions in the microstructures very well.

Keywords: Fibre reinforced polymer (FRP), Micromechanics, Parametric model order reduction, Proper
Orthogonal Decomposition, Finite element method

1 Introduction

Fibre reinforced polymer composites (FRP) have
gained popularity in many engineering sectors
because of their ability to be tailored to desir-
able mechanical properties suitable in a wide
variety of applications like in aerospace, auto-
mobile, medicine, energy, etc. However, designing
such composite materials is a repetitive process.

Designers need to investigate numerous combina-
tions of various design parameters until the desir-
able mechanical properties at the structural level
are obtained. For heterogeneous materials such as
FRP, predicting these properties is accomplished
through multiscale analysis. In multiscale analysis,
material behaviour of each constituent is modelled
at the microscale, after which the homogenized
macromechanical behaviour is obtained through
volume averaging.

1
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FRP exhibits a heterogeneous composition at
micro- and mesoscale but can be regarded as
homogeneous at the macroscale as shown in Figure
1. At the microscale, for example, unidirectional
(UD) FRP is modelled as an isotropic matrix
reinforced with cylindrical fibres aligned in their
longitudinal direction with the diameter of each
fibre in the range of micrometers. The mesoscale
with the dimension in the range of millimeters
is an intermediate scale for modelling more com-
plicated architectures like woven [1] or braided
[2] composites, where the yarns are modelled as
homogenized fibre bundles similar to UD plies.
Finally, at the macroscale or the structural level,
FRP consists in a laminated structure with the
dimension in the range of centimeters and above.

When there is a clear separation of length
scales, the composite behaviour is studied through
the simulation at each scale that can be car-
ried out separately starting from the microscale.
To represent the composite microstructure at
the microscale, a representative volume element
(RVE) is generated. The fibres and matrix are
distinguished and modelled in detail in the RVE.
The result from the RVE simulation is homoge-
nized and passed to the simulation of the next
length scale. Consequently, the overall response at
the macroscale is driven by what happens at the
microscale.

Analyzing the microscopic problem associated
to the RVE can be done by computational tools
such as the finite element method (FEM). Gen-
erally, a fine mesh leading to large number of
degrees of freedom and large system of equations
is required to get accurate solutions. As a result,
the simulation of a microstructure is computation-
ally demanding. When numerous simulations with
fine discretization are to be performed over dif-
ferent design parameter values, the task becomes
computationally infeasible.

Model order reduction (MOR) is an efficient
numerical approach that can be used to reduce
the dimension of the problem. As a result, the
computational cost is reduced significantly with-
out compromising the solution accuracy. MOR
has been applied successfully in many engineering
applications such as fluid dynamics [3], structural
dynamics [4], optimization [5], uncertainty quan-
tification [6], among others. Depending on the

problem nature, many approaches and method-
ologies are proposed. Soldner et al. [7] compared
multiple MOR techniques applied to the micro-
scopic boundary value problem of a RVE with a
single inclusion. The general idea of MOR con-
cerns the construction of a reduced order model
(ROM) using information obtained from one or
more simulations of a full order model (FOM) at
one or more design parameter values. The result-
ing ROM can then replace the FOM to assess
other design parameters. The FOM may refer to
a finite element model as is the case in this paper.

For composites, design parameters can be
generally categorized into three groups: material
parameters, loading parameters and microstruc-
tural geometrical parameters. Goury et al.[8]
developed a sampling strategy for the parameter
space represented by any load path applied onto
the RVE. A reliable ROM was built and illustrated
in the context of elastic-damageable particular
composites. Tuijl et al. [9] also focused on the load-
ing parameters while keeping the material param-
eter and microstructural geometrical parameter
unchanged. They compared two MOR techniques
on approximating the micro- and macroscopic
quantities of interest when the RVE was subjected
to the load case that includes unsampled states of
the history parameters. Raschi et al.[10] applied
reduced order modelling with optimal cubature to
finite element square (FE2) technique. They com-
pared the homogenized stresses obtained from the
FOM and the ROM for a particular loading trajec-
tory that was not considered during the sampling
stage. They also showed the capability of the ROM
to accommodate changes in the material param-
eters characterizing the composite phases. The
ROM was developed using a given composite mor-
phology and a given set of material parameters. It
was then used to predict the responses of the com-
posites having the same morphology and governed
by the same material constitutive model but with
remarkably different values of material properties
with respect to those adopted during the sampling
stage. However, to the authors’ knowledge, appli-
cation of MOR with microstructural morphology
as design parameter is still missing in the field of
composite analysis.

Varying morphology of fibre reinforced com-
posites at microscale such as fibre clustering or
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Fig. 1: Length scales involved in multiscale modelling of the FRPs

matrix-rich regions may occur during the man-
ufacturing process [11]. Studies show that the
heterogeneity of the reinforcement at microscale
affects stress distributions at the microstruc-
tural level [12], interface stress distribution [13],
transverse crack formation [14], transverse creep
behaviour [15] and effective elastic properties [16].
It is therefore essential to have a thorough under-
standing of the effect of the spatial distribution
of fibres on the response of composite material
in both linear and nonlinear regime. In the lin-
ear regime, the analytical methods such as the
Halpin-Tsai model [17] or Chamis’ formulae [18],
among others, are efficient to predict the effec-
tive elastic properties of the material. However,
these methods do not provide local responses
in the microstructure. As a result, the effect of
the spatial distributions of fibres on the local
responses such as stress distributions cannot be
captured by these methods. The direct numerical
simulation via finite element analysis is needed.
Generally, one would perform numerical simula-
tion on one large RVE [19, 20] that demonstrates
the convergence in the macroscopic response. It
is considered to sufficiently represent randomness
in the microstructure. This practice is reasonable
when the aim is to study the global behavior of
the composites.

However, the study from Jiménez [21] shows
that there are significant variations in microscopic
fields among 200 different random realizations
of the RVE with the same macroscopic prop-
erties, particularly in the regions of high strain

and stress concentrations. These variations can
lead to different damage and failure behavior
of the composites. Including processes such as
plasticity and fracture in the analysis increases sig-
nificantly the computational cost which prevents
the comprehensive investigation. Yin and Pindera
[22] tried to address this issue by proposing a
hybrid homogenization theory that combines ele-
ments of finite volume and locally-exact elasticity
approaches. Their proposed methodology achieves
greater reductions in execution times relative to
the finite volume micromechanics. The develop-
ment of MOR framework proposed in this work is
the alternative to help reducing the computational
cost and broaden the investigations on the effect
of varying fibre distributions on local behavior of
the composites. Though the proposed strategy is
applied to linear regime in this paper, it paves the
way for the application in nonlinear regime in the
future.

This work addresses some fundamental issues
in MOR, namely sampling of the parametric
space, intrusiveness, error estimation and handling
geometrical parameter. The proposed solutions
are tailored for the MOR application on the anal-
ysis of composite material with fibre distribution
as the design parameter. The proposed MOR
framework uses the proper orthogonal decompo-
sition (POD) to construct a reduced order basis
(ROB) and the Galerkin projection to formulate a
ROM. This MOR approach has proved to be very
successful to study different aspects of material
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modeling, such as the heat conduction in com-
posites [23] or the hyperelastic response in porous
elastomers [24].

However, when the design parameter involves
geometric features like the fibre distribution, usual
POD-based procedures cannot be carried out due
to the different spatial discretizations. To over-
come this issue, a premeshed RVE strategy is
proposed. This strategy makes it possible to gen-
erate different fibre distributions without altering
the mesh topology. Once the process to con-
struct a ROB can be carried out, the next step
is to construct a ROB that represents the phys-
ical characteristics of the problem. For this, the
microstructural ranking indicator is established to
ensure that those microstructures with different
geometrical characteristics are taken into account
in the construction of the ROB. Lastly, POD-
based approach does not provide any information
on the accuracy of the solution obtained from the
ROM. In this work, the internal forces in the FEM
domain of the RVE is monitored and used to deter-
mine the state of the ROM solution. To assess the
capability of the proposed methodology, the com-
parison of the homogenized elastic properties and
stress distributions obtained from the FOM and
the ROM are presented.

This paper is organized as follows. Section 2
presents an overview of the multiscale problem,
its discretization by the FEM and the Galerkin-
POD based MOR approach applied to the prob-
lem at microscale. The resolutions to the issues
arisen from applying Galerkin-POD based MOR
approach to the analysis of UD composites at
microscale are detailed in Section 3. Section 4
presents the assessment of the accuracy and effi-
ciency of the developed ROM by comparing the
global and local responses of microstructures with
the FE simulations. Concluding remarks are pro-
vided in Section 5.

2 Model order reduction for
multiscale computational
homogenization

This section gives a brief introduction to the
multiscale computational homogenization and the
implementation of the projection-based MOR.

2.1 Multiscale computational
homogenization

Computational homogenization procedure will be
outlined for the UD-based laminates in this work.
As a result, modelling of such composite structure
becomes a two-scale problem where the character-
istic length at microscale lµ is very small compared
to the macroscopic length scale l. This separa-
tion of length scales is the underlying assumption
of the first-order computational homogenization
[25]. Under this framework, the problem describ-
ing the response of a structure driven by the
heterogeneous microstructure can be decomposed
into two boundary value problems at microscale
and macroscale.

At the microscale, the displacement at point x
can be split as:

uµ(x) = ū(x) + ũµ(x). (1)

where ū is the displacement induced by the macro-
scopic strain ε̄εε defined as ε̄εε · x and ũµ is the
displacement fluctuation. Assuming small-strain
kinematics, the microscopic strain εεεµ is then given
by the symmetric gradient of the displacement at
the microscale:

εεεµ(x) = ∇su(x)µ = ε̄εε+ ε̃εε(x), (2)

where ε̃εε(x) = ∇sũµ(x) is the strain fluctuation.
Note that the superscript µ indicate the variables
at the microscale.

The displacement vector field at the microscale
uµ is governed by the equilibrium condition along
with the well-posed boundary condition. In the
absence of a body force, the equilibrium condition
at the microscale is described as:

div σσσµ = 0, (3)

where σσσµ is the microscopic stress.
The problem has to be completed by the con-

stitutive relations of the constituents. In this work,
the materials are considered linear elastic which
can be defined as:

σσσµ = C(r) : εεεµ, (4)

where C(r) is the fourth-order elasticity tensor of
phase r. The material properties of each phase are
known at the microscale.
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The relationship between the microscale and
the macroscale is established based on two prin-
ciples. The first principle states that the volume
average of the microscopic strain εεεµ is equivalent
to the macroscopic strain ε̄εε:

ε̄εε =
1

V µ

∫
Ωµ
εεεµdΩµ. (5)

where Ωµ is a heterogeneous microstructure with
a volume V µ.

The second principle is through the adoption
of the Hill-Mandel condition [26, 27]. It states the
equality of the virtual work per unit volume at
macroscale and the volume average of the virtual
work at microscale:

σσσ : δεεε =
1

V µ

∫
Ωµ
σσσµ. : δεεεµdΩµ. (6)

Consequently, the macroscopic stress σσσ can be
obtained as the volume average of the microscopic
stress:

σσσ =
1

V µ

∫
Ωµ
σσσµdΩµ. (7)

The Hill-Mandel condition is ensured by imposing
periodic boundary conditions (PBCs) [28].

When a RVE is used to represent the compos-
ite microstructure, applying PBCs also prevents
border effects and makes it possible to use such a
small simulation domain to represent the mechan-
ical state of the linear structure [29]. The following
formulation describes the relative displacement
between the opposing faces of the RVE due to the
imposed PBCs:

ui+j − u
i−
j = εij li (i, j = x, y, z), (8)

where εij is the component of the macroscopic
strain, li is the length of the RVE between the
opposite faces in the i-direction and u∗j is the dis-
placement in j−degree of freedom on the indicated
face in the i-direction. Following the notations in
Figure 2, the surface BCGF, namely x+ face, cor-
responds to the yz-plane at the side of the RVE
on the positive x-axis. Its counterpart, x− face,
is at the side of the RVE on the negative x-axis
aligned with the surface ADHE. The definition for
the other faces follows the same reasoning. When
the lengths of the RVE li are fixed, the term εij li
can be regarded as the displacement component j
of a reference point. The nodes at the vertices B, D

and E (see Figure 2) are used as a reference point
for linking nodes in opposite x-, y- and z-faces,
respectively. When the macroscopic strain tensor
εεε is specified, Equation (8) describes the nodal dis-
placement constraints that replicate a desired load
case. Note that the set of equation (8) requires a
conformal mesh such that PBCs can be imposed
on all nodes on one surface and their counterpart
nodes on the opposite face as shown in Figure 2.
A detailed implementation of PBCs on the RVE
can be found in [30].

Once the domain’s boundary conditions are
established, the multiscale computational homog-
enization problem now reduces to the resolution of
the displacement in a RVE for a given macroscopic
strain εεε.

2.2 Enforcement of the periodic
boundary conditions in the
finite element analysis

Finite element analysis is one of the typical
approaches used for the numerical resolution of
structural microscale problems. In practice, the
boundary conditions can be enforced by one of the
following approaches; (i) elimination of dependent
degrees of freedom, (ii) the penalty method or (iii)
Lagrange multipliers [31]. When looking at the
PBC formulation in Equation (8), it is intuitive
and straightforward to enforce PBCs by Lagrange
multipliers. When imposing the constraints via
Lagrange multipliers, the discretization of the
weak form of Equation (3) along with the PBCs
(8) leads to the following system of equations:[

K(p) GT (p)
G(p) 0

]{
uµ(p)
λλλ(p)

}
=

{
0

q(p)

}
, (9)

where K ∈ RN×N is the unconstrained stiffness
matrix, uµ ∈ RN is the nodal displacements at
microscale, λλλ ∈ RNc is the vector of Lagrange
multipliers which enforce the (periodic boundary)
constraints, G ∈ RNc×N is the constraint matrix,
q ∈ RNc is the displacement constraint vector
due to the macroscopic strain εεε, N is the total
number of degrees of freedom and N c is the num-
ber of degrees of freedom at which the PBCs are
imposed. All these variables depend on the design
parameter p, which can be any material param-
eter, loading parameter and/or microstructural
geometrical parameter. For the sake of brevity,
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Fig. 2: 3D RVE describing parallel faces and node pairs

The explicit parametric dependence of the vari-
ables and the superscript µ indicating the vari-
ables at the microscale will be omitted for the
remainder of the paper.

The constraint matrix G consists ofN columns
equal to the total number of degrees of freedom
while the number of rows N c relates to the num-
ber of degrees of freedom at which the PBCs
are imposed. One row in the constraint matrix
G stands for one equation in the PBCs from
Equation (8). Conforming mesh is used in this
work. And under this assumption, the coefficients
in each row can be only 1, -1, and 0. The col-
umn that corresponds to the degree of freedom on
the positive face is equal to 1 while it is -1 for
the degree of freedom on the negative face. The
coefficient for the remaining degrees of freedom is
0. Equation (10) is an example of the constraint
matrix G like:

G =


...

0 ... −1 0 ... 1 0 ... 0
0 ... 0 1 ... 0 −1 ... 0

...

 . (10)

The system of Equation (9) will be referred
to as the full order model FOM. It has a size of
N +N c which can be very large as a result of the
complex geometries and high stress gradients often
encountered at the microscale in the composites.

Conventionally, the evaluation of the FOM is
carried out for a potentially large set of design

parameters of interest. The computed displace-
ment u corresponding to each design parameter p
is referred to as a snapshot. The goal of this work
is to substitute the FOM with a lower cost ROM
by means of projection-based reduced order basis
method for several of these parameter samples, as
will be outlined in the following sections.

2.3 Model order reduction for a
system with periodic boundary
conditions

In this work, a projection-based reduced order
basis method is applied. The main elements of
projection-base reduced order basis methods are
the construction of the ROB which is based on the
proper orthogonal decomposition (POD) and the
projection of the governing equations resulting in
a ROM.

Following the displacement decomposition of
Equation (1), the need for Lagrange multipliers
in the ROM for microscale problems with PBCs
can be avoided by assuming that the displacement
fluctuation ũ equals to:

ũ = Nun, (11)

where N ∈ RN×(N−Nc) is the null space of the
constraint matrix G, such that GN = 0 and un ∈
RN−Nc is the coefficients associated to the null
space N. In order to exploit this assumption for
the ROM, it is not necessary to explicitly compute
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the null space N and the corresponding coeffi-
cients un as it will be shown in the next paragraph.
More specifically, the approach will be set up such
that the term Nun is directly approximated using
the POD-based method. The decomposition of
Equation (1) can then be approximated as:

u ≈ ur = ū + Buαααu, (12)

where Bu ∈ RN×r is a ROB which allows the
ROM to be solved consistently with the displace-
ment ū induced by macroscopic deformation and
complied with PBC constraints and αααu ∈ Rr are
the reduced order degrees-of-freedom. For a given
set of displacement ū, and consistently with the
POD approach, a snapshot matrix S is defined
as the collection of solutions (relative to the dis-
placement ū) of the microscale problem for s
parameters:

S = [u1 − ū, u2 − ū, ..., us − ū] ∈ RN×s. (13)

The POD-based approach identifies a ROB
such that the error e defined as:

e =

√√√√ s∑
k=1

‖(uk − ū)−Buαααu,k‖2L2
(14)

is minimized. The symbol ‖ · ‖L2 stands for the
L2 norm. This allows the best approximation of
the snapshot matrix S in a least square error
sense [32]. With the appropriate sets of s design
parameters to form the ROB, the obtained ROB
can be used further to find the solution to the
FOM for any set of design parameters. In prac-
tice, the construction of the ROB via POD-based
approach involves solving an eigenvalue problem,
which allows the use of efficient algorithms to find
these reduced order bases [33]. The ROB Bu is
obtained by keeping only r eigenvectors φi asso-
ciated with the r largest eigenvalues µi of the
following eigenproblem:

Cφφφi = µiφφφi, (15)

where C is the correlation matrix defined by

C = SST . (16)

This results in the ROB:

Bu = [φφφ1 φφφ2 ... φφφr]. (17)

It is possible to prove that as long as all snap-
shot samples comply with the constraint matrix
G, the resulting ROB Bu also complies with this
constraint matrix and is in the span of the null
space N [34], such that:

GBu = 0. (18)

As a result, a ROM can be obtained by
substituting the full order displacement u in
Equation (9) by the reduced order approximation
in Equation (12) and then performing a Galerkin
projection. The resulting ROM is expressed in αααu:[

(Bu)T 0
0 I

] [
K GT

G 0

]{
ū + Buαααu

λλλ

}
=

{
0
q

}
.

(19)
Using the identity of Equation (18) leads to
the following ROM that is independent of the
Lagrange multipliers for αααu, namely

(Bu)TKBuαααu = −(Bu)TKū (20)

or in short:

Krαααu = −(Bu)TKū. (21)

The equation (21) is referred to as the ROM and
is the system of size r instead of size N + N c

in the FOM. Since there is no explicitly interest
in an (approximate) solution toward λλλ, the cor-
responding equations are omitted. Now that the
ROM is constructed, obtaining the solution of a
new set of design parameters can be done using
the ROM instead. The proposed approach results
in the construction of the ROM that can be easily
interfaced with any existing third party finite ele-
ment software. The only information needed from
the software is the displacement vector which is
the typical output from any software.

3 Application on
unidirectional composites

In the preceding section, the elements to imple-
ment the projection-based MOR for the general
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parametrized system are introduced. There are
particular challenges that are arisen from applying
projection-based MOR to the analysis of UD com-
posites at microscale. The challenges and proposed
procedures are detailed in this section. Figure 3
illustrates the overview of MOR implementation
to the microscale problem of interest.

3.1 Meshing strategy for utilizing
POD approach with various
fibre distributions

In this paper, fibre distribution is the parameter
of interest. Without strict control on mesh genera-
tion, a mesh generator would typically produce the
discretized RVEs with different number of nodes
even for microstructures with the same RVE size,
fibre diameter and number of fibres as shown in
Figure 4. In other words, the meshes would be
topologically different. Consequently, snapshots
from each microstructure may be inconsistent (dif-
ferent number of nodes, different node numbering,
etc.). This raises an issue during the construction
of ROB via POD procedure because the procedure
requires that all snapshots are from the same spa-
tial mesh so that the snapshot matrix can be set
up.

A similar situation occurs when POD-based
MOR is applied to the snapshots from adaptive
FEM [35–37]. Several approaches were proposed
to overcome the issue. Fang et al. [35] used a fixed
reference mesh where the snapshots were interpo-
lated onto. Gräßle and Hinze [36] constructed the
POD basis using the eigensystem of the correla-
tion matrix without the necessity of interpolating
snapshots into a common finite element space.

In this work, the concept of a premeshed RVE
is proposed. It involves visualizing the possible
locations of the fibres in all microstructures that
are to be analyzed. All possible locations with the
accompanying fibre diameters are then appointed
to a RVE, which is subsequently discretized. The
resulting mesh has allocated portions where either
fibre or matrix properties can be assigned to. This
concept is an alternative tailored specifically to
the case of fibre distributions in composites. As
a consequence, the variation of fibre distribution
can be handled without worrying about the spatial
discretization of the snapshots. For the example in
Figure 5, the constructed mesh offers nine possible
positions in which the fibres can be located, as it

is shown by the grey areas in Figure 5a. Material
property assigned to these grey areas can be inter-
changed between fibre and matrix. As a result, it
is now possible to use the same discretized RVE
for different fibre distributions. Figures 5b-5f show
the examples of various fibre distributions utilizing
the concept of a premeshed RVE.

Generating different fibre distributions on the
same discretized RVE is possible because the fibre
locations are assumed a priori. Though this could
be seen as a limitation, statistical analysis can
be performed on the generated fibre distributions
to demonstrate that the resulting fibre distribu-
tions show varying degree of randomness as seen
in Section 4.1.1 for the premeshed RVE consid-
ered in this work. For this purpose, the Voronoi
polygon and a spatial correlation function called
Ripley’s K function are used to quantitatively
characterize the randomness of the fiber spatial
distributions obtained by assigning either matrix
or fibre properties to the allotted locations in the
premeshed RVE. Pyrz [38] showed that these sta-
tistical descriptors are effective in characterizing
different fibre patterns. For more details of these
statistical descriptors, see Appendix A.

In practice, one might be concerned about
the consistency of the results when the computa-
tional domain that is discretized for the purpose
of employing premeshed RVE. Figure 6 compares
the discretization of the matrix phase between the
mesh which is used as the premeshed RVE and
the conventional mesh in the region where a fibre
could be located according to the concept of pre-
meshed RVE. An example of stress distributions is
also shown in the figures. In the top figure, small
elements are used in the small space between the
fiber and the area preserved for a possible fibre.
It can be seen that stress distributions look indis-
tinguishable despite the different arrangement of
mesh elements.

3.2 Dynamic snapshot selection

For the construction of the ROM, it is important
to obtain the ROB that can represent the char-
acteristics of the problem well for the considered
parameter space. Conventionally, a set of param-
eters would be specified in advance. The model
associated to each parameter value is analyzed as
the FOM. The snapshots from these analyses are
then used to obtain a ROB. In this conventional
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Fig. 3: Procedure of applying projection-based MOR to the analysis of UD composites at microscale

Fig. 4: Discretized RVEs of 1 fibre with 10,500
nodes (top), 9750 nodes (middle), 10,040 nodes
(bottom), shown in 2D for clarity

procedure, the ROB is computed only once and
used to construct the ROM which is subsequently
used for the evaluation of other parameter val-
ues. The choice of snapshots to be included in
obtaining the ROB is crucial to the quality of the
ROM. This leads to a generic MOR issue on how
to effectively sample the parameter space.

The snapshots can be selected using a priori
sampling methods like random sampling [8], Gaus-
sian processes [8], Sobol sequences [39], among
others. They can provide a distribution of points
in the parameter space. The drawback is that they
do not take into account the characteristics of the
problem. Another popular approach for snapshot
selection is to couple greedy sampling technique
with a posteriori error estimate [40, 41]. The algo-
rithm detects the location in the parameter space
where the error from the ROM is the largest. The
identified parameter value is subsequently evalu-
ated as the FOM. The ROM is then updated based
on the new snapshot. The drawback of the greedy
algorithm is in the derivation of problem-specific
error estimate. Besides, it is not straightforward to
apply these sampling methods when the paramet-
ric space is not continuous like the varying fibre
distributions. Adaptive sampling is an alternative
to these a priori deterministic sampling methods.
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(a) Possible fibre locations (b) 1 fibre (c) 2 fibres

(d) 4 fibres (e) 6 fibres (f) 8 fibres

Fig. 5: Utilization of premeshed RVE

Fig. 6: Discretization in the region where a fibre
could be located for the use of premeshed RVE
(top) and as conventional discretization (bottom)

It is an ongoing topic of research in the field of
MOR [42, 43].

In this work, the ROB needs to be able to
capture the physical behaviour of the composite
material with the focus on varying fibre distribu-
tions as the parameter space. A dynamic snapshot
selection scheme is proposed. In the first stage, it
accounts for the differing geometrical characteris-
tic of the microstructures in the construction of

ROB through microstructural ranking. Secondly,
instead of specifying a set of microstructures in
advance for the construction of the ROB, the
selection scheme will determine which microstruc-
tures should be evaluated as the FOM or as the
ROM on-the-fly using two convergence criteria.
Once the snapshots are available, they will be used
to enrich the ROB gradually and selectively in
the evaluation of the subsequent microstructures.
The selection scheme features two key elements:
(i) microstructural ranking and (ii) convergence
criteria, which are detailed in the following sub-
sections.

3.2.1 Microstructural ranking

When constructing the ROB, it is important that
the ROB is enriched by varying deformations
in the microstructures. The study by Brocken-
brough et al.[44] has shown that the tensile and
shear deformations are influenced by the fibre dis-
tributions. It is thus deduced that the diverse
snapshots arise from the diverse microstructures.
Microstructures can be distinguished based on
their fibre distributions by various statistical
descriptors [38]. The benefit of using the statisti-
cal descriptors is that there is no need to complete
any FOM analyses.
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Deciding on which statistical descriptor to
use is based on two criteria, its connection to
the material response of interest and its com-
putational demand. The distribution of nearest
neighbor distances (NND) is chosen to charac-
terize the microstructures. This distribution is
defined as the probability of finding the nearest
neighbor of each fibre in the microstructure at a
particular distance [45]. The study by Hojo et al.
[46] shows that the NND between fibres have a
substantial effect on the stresses at the fibre/ma-
trix interface, leading to the effect on the overall
mechanical properties of the composite. By incor-
porating the distribution of NND in the process
of ROB construction, the ROB will be enriched
by the snapshots from dissimilar microstructures.
Moreover, the distribution of NND is easy to
compute.

The distributions of the NND of two
microstructures are shown in Figure 7. When com-
paring the distributions of the NND, it is possible
to quantify how much a microstructure differs
from another microstructure. For example, the
difference ∆ between microstructre M1 and M2

illustrated in Figure 8a can be measured as follows

∆ =

nNND∑
i=1

(PM1
(di)− PM2

(di))
2 (22)

where nNND is the total number of normalized
NND d, PM1

(di) and PM2
(di) are the probability

of finding the nearest neighbor at the normal-
ized NND di in the microstructure M1 and M2,
respectively. The NND is normalized by the fibre
diameter. All microstructures of interest are com-
pared with the referenced microstructure, which
is the one with the shortest distance between all
fibres. A larger value of ∆ indicates a larger dif-
ference between the compared microstructures.
The differences are sorted in a descending manner
resulting in the microstructural ranking shown in
Figure 8b.

Whether evaluated as the FOM or the ROM,
the microstructures of interest are to be evaluated
following the order in the microstructural ranking
rather than following in an arbitrary order. The
ROB is meant to be gradually enriched by the
snapshot from a microstructure that is different
from the previous one. It is worth mentioning that

Fig. 7: Distribution of nearest neighbor distance
of microstructure M1 (top) and microstructure M2

(bottom)

a microstructural ranking is very cheap to com-
pute since it stems from the simple calculation of
distribution of NND between microstructures. It
therefore adds only trivial computational cost to
the MOR scheme.

3.2.2 Convergence criteria

Once a ROM is constructed and used for the eval-
uation of a microstructure, it is necessary to decide
if the result obtained from the ROM is satisfac-
tory. However, the POD-based approach does not
provide any information on the accuracy of the
approximated solution obtained from the ROM. A
posteriori error estimators were derived for some
problems in various research communities [47].
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(a) Difference between microstructures (b) The resulting microstructural ranking

Fig. 8: Summation of differences between two NND distribution in (a) leading to the microstructural
ranking in (b)

When it is possible, the derivation of error esti-
mator is generally associated with high theoretical
cost and also a problem-specific strategy.

In this work, the monitoring of the convergence
of two variables is proposed to serve as a guideline
without providing a formal error criterion. Though
this convergence monitoring is also a problem-spe-
cific strategy, it is a pragmatic scheme based on
the physics of the problem and makes use of the
available solution from the ROM. The first vari-
able to be monitored is the homogenized elastic
properties, whether it be the Young’s modulus or
shear modulus. For orthotropic material as most
composite materials are, these elastic constants
can be calculated from the stresses obtained from
imposing 6 independent mechanical loads [48]. It
appears that the values of the homogenized elastic
property obtained from the ROM are approaching
a certain value which is in the vicinity of the value
obtained from the FOM. An example of converg-
ing transverse Young’s modulus (Eyy) is shown
in Figure 9a as a solid line with diamond symbol
along with the value from the FOM in dashed line.

Besides monitoring the convergence of the
homogenized properties, the second criterion
comes from monitoring the internal force (fint)
shown as a solid line with circle symbol in Figure
9a. Since the resultant force due to PBCs is only
applied at boundary of the domain, the internal
force inside the RVE domain equals to zero which

is the case for the results from the FOM. For
those obtained from the ROM, non-zero values
are clearly present as shown in Figures 9b-9d. As
the ROM is increasingly enriched (represented by
point A to point C in Figure 9a), the non-zero
values of the normalized internal force become
smaller. The internal force is normalized by the
average of the resultant force due to PBCs (favg).
Only the y-component of the normalized inter-
nal force is shown here. Similar results are also
observed in other components. From this obser-
vation, the magnitude of the normalized internal
force inside the RVE domain (|fint/favg|) is con-
sidered in this work as a convergence indicator
together with the homogenized elastic properties.
The result from the ROM is accepted as the
final solution when the rate of change of both
convergence indicators are below a user-specified
tolerance. This tolerance is used to control the
accuracy of the results from the ROM. It is taken
to be 0.01 or 1% rate of change in this study.

Along the process, it is possible that the added
snapshot increases the magnitude of the normal-
ized internal force instead as shown in Figure
10a. In this case, the particular snapshot will be
excluded from the ROB. The ROM is continued
to be enriched by the next available snapshot
in the microstructural ranking until the conver-
gence criterion is met or until there is no more
available snapshot. When the convergence indi-
cators are still not converged after the available
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(a) Converged ROM solution (b) Normalized internal force at point A

(c) Normalized internal force at point B (d) Normalized internal force at point C

Fig. 9: Convergence of homogenized properties and internal force in the interior domain of the RVE

snapshots are depleted as shown in Figure 10b,
the FOM analysis is thus needed for the given
microstructure.

3.2.3 Algorithm

Algorithm 1 outlines the computational process
to analyze a set of microstructures and deter-
mine which microstructures are to be evaluated
as the FOM or the ROM. The algorithm takes
as input the microstructural ranking and user-
specified tolerance mentioned in sections 3.2.1 and
3.2.2.

In the beginning, the ROM cannot be con-
structed immediately. The first few microstruc-
tures need to be evaluated as the FOM to create
the snapshot database. Once the snapshots are

available, a ROB can be constructed. The sub-
sequent ROM is used for the evaluation of the
microstructure. The homogenized property and
internal force from the ROM are checked for con-
vergence. If the convergence criteria are not met,
the ROB is enriched step by step by the next
snapshot in the microstructural ranking. If the
homogenized property and/or the internal force
are still not converged after the snapshot database
is depleted, the microstrucutre will be evaluted as
the FOM.

The proposed algorithm prevents the unnec-
essary computation of snapshots by dynamically
constructing the snapshot database as the evalua-
tion of microstructures is advancing. It can be seen
that the selection scheme is embedded coherently
in the construction and evaluation of the ROM.
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(a) Increase in fint/favg (b) Non-converged ROM solution

Fig. 10: Examples of rejected ROM solutions

Algorithm 1 ROM construction embedded with dynamic snapshot selection

1: Generate microstructures Mi(i = 1, ...,m)
2: Establish microstructural ranking rk . See section 3.2.1
3: Input user-specified tolerance τ . See section 3.2.2
4: Initialize displacement collector U to the empty matrix, number of available snapshots nsnapshot = 0
5: for i = 1, ...,m do
6: Set rate of change of the homogenized property rprop = 100, rate of change of the internal force
rf = 100

7: if nsnapshot < 2 then
8: Run FE simulation of microstructure Mrki for displacement u . Solve the FOM
9: Update U = U ∪ (u− uPBC)

10: Update nsnapshot = nsnapshot + 1
11: else
12: Obtain stiffness matrix K of microstructure Mrki

13: Initialize snapshot matrix S to the empty matrix, index j = 1
14: while rprop > τ and rf > τ and j ≤ nsnapshot do
15: Update S = S ∪ Uj
16: Construct ROB B̂

u
from S . See section 2.3

17: Solve the ROM of microstructure Mrki . See equations (12) and (20)
18: Compute homogenized property Hj and internal force f int,j

19: if |fint,j | > |fint,j−1| then . See Figure 10a
20: Restore S = S \ Uj
21: else
22: Update rprop, rf

23: end if
24: Update j = j + 1
25: end while
26: if rprop > τ or rf > τ then . When all available snapshots are used
27: Run FE simulation of microstructure Mrki . Solve the FOM
28: Update U = U ∪ (u− uPBC)
29: Update nsnapshot = nsnapshot + 1
30: end if
31: end if
32: end for
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4 Numerical examples

The capability of the proposed approach to reduce
computational cost when performing microme-
chanical analysis of UD composites with fibre
distributions as design parameter is demonstrated
in this section. The responses from FOM and
ROM are compared to assess the accuracy of the
proposed approach.

4.1 Microscale model

The RVE at microscale consists of fibres of diam-
eter df = 5µm distributed randomly in the xy-
plane as seen in Figure 11. The fibres are posi-
tioned randomly using a microstructure generator
which is based on a collision model [49, 50]. The
generator takes as basic input the number of
fibres, fibre diameter, the targeted volume frac-
tion, the minimum distance between fibres, and
a seed to initiate the random number genera-
tor. The dimension of transverse section lx and
ly are calculated accordingly. The resulting 2D
fibre array is then extruded to build the 3D model
and eventually the premeshed RVE. To minimize
the computational effort but still maintaining the
accuracy, 8 layers of elements are used in the
longitudinal direction in such a way that lz is
determined by the element size.

The fibre volume fraction considered in this
paper is 59.4%. In order to generate sufficient
microstructures at 59.4% fibre volume fraction,
the premeshed RVE consists of 100 possible loca-
tions of fibre as seen in Figure 11a as the starting
point. This allows for the consideration of vol-
ume fraction from 0% to 60%. At 59.4% volume
fraction, 99 fibres have to be present in the RVE
For this particular selection choice, a total of 100
different fibre arrangements with 59.4% volume
fraction can be generated having the same dis-
cretization. An example of a fibre distribution
with 99 fibres used in this study is shown in
Figure 11b. The RVE is discretized with 6-node
full integration wedge elements and 8-node full
integration hexahedral elements. The model has in
total 129,680 elements, 180,162 nodes and 540,486
degrees of freedom.

4.1.1 Statistical characteristics of the
generated microstructures

The resulting 100 fibre distributions with 59.4%
volume fraction generated by using the concept
of premeshed RVE were analyzed statistically to
characterize their randomness. The degree of ran-
domness is determined in terms of the coefficient
of variation from the Voronoi polygons as well
as the Ripley’s K function. Even though the
fibre distributions were generated by assuming
the possible fibre locations a priori, the statis-
tics from Voronoi polygons in Table 1 and Figure
12 and the comparison of Ripley’s K function of
Poisson point pattern and the generated fibre dis-
tributions shown in Figure 13 demonstrate the
varying degree of randomness in the resulting fibre
distributions.

Table 1 shows the coefficient of variation of
the areas of Voronoi polygons (ρA) and of the
distances to neighbouring fibres in Voronoi poly-
gons (ρD) for the generated fibre distributions
from premeshed RVE and other microstructure
generating algorithms. Note that the coefficient of
variation is the ratio of the standard deviation to
the mean value. As a reference for the degree of
randomness in the microstructures, the coefficient
of variation obtained from other microstructure
generating algorithms are also shown in Table 1. In
the literature, the result from only 1 microstruc-
ture is available for each Matsuda’s method while
the average value from 5 microstructures is avail-
able for Melro’s and Wongsto’s methods. It can
be seen that both ρA and ρD from premeshed
RVE are comparable to other algorithms. Figure
12 shows the values of ρA and ρD for all 100 fibre
distributions from premeshed RVE. Though some
ρD are similar, none of ρA is the same. Therefore,
each combination of ρA and ρD and hence each
fibre distribution from premeshed RVE is unique
from the perspective of Voronoi polygons.

Another statistical tool used for distinguishing
the pattern of fibre distributions is the Ripley’s
K function. Figure 13a shows the curve of func-
tion L(h) which measures the difference between
the Ripley’s K function of the Poisson point pat-
tern and those of the generated fibre distributions
from premeshed RVE. The curve itself represents
the average value while the error bars indicate
the range of values for 100 fibre distributions. An
example of individual L(h) for 5 fibre distributions
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(a) Premeshed RVE with 100 locations of
fibre (b) RVE with 99 fibres

Fig. 11: RVEs and mesh detail

Table 1: Coefficient of variation of Voronoi polygons areas and distances to the neighbouring fibres in
Voronoi polygons

Microstructure generating approaches Volume fraction
ρA ρD

average range average range
premeshed RVE 59.4 0.138 0.123-0.159 0.168 0.157-0.209
Matsuda’s Y-distribution [51] 56 0.106 - 0.190 -
Matsuda’s point distribution [51] 56 0.135 - 0.256 -
Melro’s method [45] 56 0.137 - 0.196 -
Wongsto’s method [52] 56 0.129 - 0.190
Melro’s method [45] 65 0.099 - 0.170 -
Wongsto’s method [52] 65 0.077 - 0.125 -

is shown in Figure 13b to demonstrate the unique-
ness of each curve and hence the fibre distribution
from the perspective of the Ripley’s K function.

4.1.2 Material properties of the
composite constituents

Material properties of fibre and matrix used in this
study are listed in Table 2 where E is the Young’s
modulus, G is the shear modulus, and ν is the
Poisson’s ratio. The matrix is assumed to be an
isotropic linear elastic material which represents a
generic epoxy. The fibre is considered as a trans-
verse isotropic linear carbon fibre. Perfect bonding
between fibre and matrix is assumed.

4.1.3 Applied loading conditions

To compare the results obtained from FOM and
ROM, analyses have been carried out for three
load cases:

1. Applying load along the y-axis on the sur-
face perpendicular to the y-axis (termed as
transverse tension)

2. Applying load along the y-axis on the sur-
face perpendicular to the x-axis (termed as
transverse shear)

3. Applying load along the x-axis on the sur-
face perpendicular to z-axis (termed as in-plane
shear)

In all load cases, a prescribed displacement which
results in 1% macroscopic strain is applied to
the RVE through PBCs. Figure 14 shows the
deformed microstructure under these load cases.
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Table 2: Material properties of fibre and matrix

Material properties Carbon fibre [53] Material properties Epoxy [54]
Exx = Eyy (GPa) 15 E (GPa) 3.76
Ezz (GPa) 276 ν (-) 0.39
Gxz (GPa) 15
νxy (-) 0.3
νzx (-) 0.2

(a) ρA from premeshed RVE

(b) ρD from premeshed RVE

Fig. 12: Scattering of coefficient of variation from
100 fibre distributions generated from premeshed
RVE

The deformed shapes are magnified by a factor of
10 for a better visualization.

4.2 Computational efficiency

Computational efficiency gained by using the
ROM is quantified by two measures, the reduction
in model dimension and the reduction in runtime.
The computational cost to obtain the displace-
ment vector and the stress field scales with the
dimension of the model. By reducing the amount
of degrees of freedom, the number of equations
to be solved and, consequently, the computational
cost also reduce. For the set of 100 fibre distri-
butions considered in this study, the dimension of
the FOM and the ROM is shown in Table 3. It
can be seen that there is a significant reduction in
model dimension by using the ROM.

Table 3: Comparison of model dimension in the
FOM and the ROM

Load cases FOM ROM
Transverse tension

540,486 DOFs
20 DOFs

Transverse shear 20 DOFs
In-plane shear 12 DOFs

However, there are twofold interpretations
behind the dimension of the ROM. For exam-
ple, for the case of applied transverse tension, 20
out of 100 microstructures were evaluated as the
FOM. The rest of the microstructures were solved
as a ROM with the dimension no larger than
20. The size of the ROM also reveals how many
microstructures are needed to be evaluated as the
FOM to provide the information for the ROM con-
struction. It relates to the number of snapshots
that are included in the POD procedure. At last,
snapshots come from solving the FOM. Table 4
compares the total amount of degrees of freedom
involved in evaluating 100 microstructures as (i)
the FOM only and (ii) as a combination of the
FOM and the ROM according to the proposed
MOR scheme for each load case. The amount of
DOFs involved in evaluating one microstructure as
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the ROM does not simply equal to the dimension
of the ROM. Evaluating one microstructure does
not mean solving the ROM only once. The ROM
has to be solved repetitively with increasing size
after each iteration until the convergence criteria
are met. The amount of DOFs solved in the ROM
analysis are consequently accumulated. Nonethe-
less, the large part of DOFs involved in evaluating
microstructures as the ROM comes from acquiring
the snapshots.

The reduction in computational time can be
seen as well. However, it is important to first
clarify that various tasks are executed as part of
the FOM and the ROM analysis to obtain the
displacement vector and the stress field for one
microstructure. The runtime in the FOM analysis
can be divided into the time used to assemble the
global stiffness matrix and the constraint matrix
(’assemble’) and the time used to solve the system
of linear equations (’solve’). In the ROM analy-
sis, there are two additional tasks included in the
runtime which are the time used to construct the
ROB (’construct’) and the time used to perform
Galerkin projection (’project’). Table 5 summa-
rizes the runtime used for each task to evaluate
one microstructure. The runtime of the FOM was
measured from the reference simulation done by a
commercial FE software. For the ROM, the com-
putational time was estimated by measuring the
time needed to perform these tasks as a function
in a non-optimized in-house MATLAB(R) code.
All tasks are run on a laptop Intel(R) Core(TM)
i7-8650U processor with 32 GB memory.

From Table 5, it can be seen that the ROM
significantly reduces the runtime in solving the
system of linear equations due to the small size of
the ROM. The share of the runtime spent on run-
ning the additional tasks in the ROM case is also
very low compared to the solving time in the FOM
case. Note that the runtime spent on assembling
the global stiffness matrix could be reduced fur-
ther in the ROM case if an approximation strategy
[47] is introduced to establish an affine relation
between the global stiffness matrix and the corre-
sponding fibre distribution. Ultimately, the MOR
approach requires performing some FOM simula-
tions to set up the ROM. Hence, the total number
of microstructures to be evaluated need to reach
a certain number to balance this additional cost
and achieve the overall runtime speedups as shown
in Figure 15. The speedups expect to become

even greater when evaluating much larger set of
microstructures.

4.2.1 Effect of microstructural ranking
on computational efficiency

The effect of evaluating microstructures based
on the order in the microstructural ranking is
assessed in this section. Two experiments are
performed to construct the ROM and to obtain
the homogenized properties and the stress dis-
tributions. In the first experiment, the order to
evaluate microstructures is done according to the
microstructural ranking proposed in section 3.2.1.
In the second experiment, the order is assigned
arbitrarily. The effect of evaluating order on the
solution accuracy is negligible. The effect on
the computational effort is compared in Table
6 for the case of applied transverse tension
in the y-direction. When microstructures were
evaluated in an arbitrary order, the algorithm
decided to evaluate microstructures as the FOM
significantly more. This demonstrates that the
ROM is enriched by meaningful snapshots when
microstructural ranking is included. The ROM
with microstructural ranking achieves an extra
gain of about 1.7 times of runtime compared to
the ROM with arbitrary order of microstructures
as seen in Figure 16.

4.3 ROM verification

Various RVE responses are compared between
FOM and ROM to evaluate the mechanical relia-
bility of the proposed MOR scheme. The responses
include the prediction of the homogenized elastic
properties, the principal stress distributions in the
matrix and the interface stress distributions.

4.3.1 Homogenized elastic properties

The responses of 100 different microstructures at
59.4% volume fraction under three load cases are
obtained from the FOM and ROM. From these
three load cases, the following homogenized elas-
tic properties of the FRP can be extracted: (i)
the transverse Young’s modulus (Ey), (ii) the
transverse shear modulus (Gxy) and (iii) the longi-
tudinal shear modulus (Gxz). They are determined
from the ratio of the relevant homogenized stress
and strain under a given loading condition. Pre-
dictions of the three moduli obtained from FOM
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Table 4: The total amount of degrees of freedom involved in evaluating 100 microstructures

Load cases
DOF involved in evaluating as

FOM only a combination of FOM and ROM
Transverse tension 5.40× 107 1.08× 107 as FOM +1.25× 104 as ROM
Transverse shear 5.40× 107 1.08× 107 as FOM +1.16× 104 as ROM
In-plane shear 5.40× 107 6.49× 106 as FOM +7.72× 103 as ROM

(a) Average L(h) function for 100 fibre distributions

(b) Individual L(h) function for 5 fibre distributions

Fig. 13: Distinguishing the pattern of fibre distri-
butions through the Ripley K’s function

Table 5: The runtime used in solving the FOM
and the ROM

Tasks FOM ROM
Assemble 70 sec 70 sec
Solve 1950 sec �1 sec
Construct n/a 0.2 sec
Project n/a 0.6 sec

(a) transverse tension

(b) transverse shear

(c) in-plane shear

Fig. 14: Deformation of a microstructure over-
lapped with undeformed stage
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Table 6: Effect of microstructural ranking on the amount of degrees of freedom involved in evaluating
100 microstructures

Sampling experiment DOF involved in evaluating
Experiment 1: microstructural ranking 1.08× 107 as FOM +1.25× 104 as ROM
Experiment 2: arbitrary order 2.00× 107 as FOM +2.68× 104 as ROM

Fig. 15: Accumulated runtime when evaluating
100 microstructures as the FOM or the ROM for
different load cases

and ROM are listed in Table 7 along with the
analytical prediction from Chamis [18].

There is only one single value for each mod-
ulus obtained by the analytical model since the
Chamis’ formulae only accounts for the fibre vol-
ume fraction. For those from the FOM and the
ROM, the range of modulus values comes from
analyzing 100 different fibre distributions. They
are not extremely sensitive to the precise distribu-
tions of stresses and strains in the RVE of various
fibre distributions. They are found to be within
a few percent of the average values. Though the
values obtained from the ROM are slightly higher
than those from the FOM, predictions of the three
moduli from the analytical solution, FOM and
ROM agree fairly well.

Additionally, the relative differences of the
homogenized elastic properties from the FOM and
the ROM for each fibre distribution is elabo-
rated in Figure 17. The plots show how many
microstructures have the difference between FOM
and ROM results fall into a given range. It can
be seen that the relative differences of the homog-
enized elastic properties from the FOM and the
ROM are below 7% for all load cases and all

Fig. 16: Comparison of accumulated runtime
between the ROM with microstructural ranking
and the ROM with arbitrary order

microstructures. This shows that the homoge-
nized elastic properties from the FOM and the
ROM are in good agreement for 100 different fibre
distributions in consideration.

4.3.2 Principal stress distributions

Unlike the homogenized elastic properties, stress
distribution is more sensitive to the clustering of
the fibres. The maximum principal stress contour
plots obtained from the FOM and the ROM are
compared in Figure 18 for the applied transverse
tension, in Figure 19 for the applied transverse
shear, and in Figure 20 for the applied in-plane
shear. For each load case, the microstructure with
the largest relative difference between the homog-
enized elastic property from the FOM and the
ROM is selected for comparison. For clarity, stress
distributions are shown only in the matrix phase.

It can be seen that high stress in the matrix
appears where the fibres are clustered, whereas
low stress appears in the matrix-rich area. Maxi-
mum stresses in the matrix are seen between two
fibres that are close to each other in the loading
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Table 7: Homogenized elastic properties of the UD fibre reinforced composites at 59.4% fibre volume
fraction

Homogenized properties Chamis
FOM ROM

average range average range
Ey (GPa) 8.90 8.40 8.24-8.57 8.68 8.50-8.80
Gxy (GPa) 3.57 2.90 2.84-2.93 2.99 2.91-3.08
Gxz (GPa) 4.52 4.45 4.28-4.65 4.67 4.48-4.89

direction. For example, in Figure 19, the high-
est stress value is located in the area between the
fibres with a small distance between them approx-
imately in the 45-deg direction. ROM can capture
the overall stress distribution very well. The dif-
ferences are clearly visible in the areas where
the material assignment could be either matrix
or fibre. However, these regions are not deemed
critical in case of using these patterns to predict
damage initiation.

4.3.3 Interface stress distribution

Besides the distribution of maximum principle
stress in the matrix, the stress distribution at the
fibre/matrix interface around a fibre is investi-
gated in this section. These stresses are crucial
information since they contribute to damage initi-
ation and eventually affecting the strength of the
composites. Their distributions are also associated
with the fibre arrangements in the microstructure.
Since damage initiation is likely to occur in regions
where the fibres are closer together [44], the fibre
pair that has the smallest distance between them
is the main focus in this work. One fibre in the
pair is selected to demonstrate the capability of
the ROM to reproduce the interface stress distri-
bution. Fibre number 53, 52 and 51 are selected
to demonstrate this for the case of applied trans-
verse tension, transverse shear and in-plane shear,
respectively. Refer to Figure 11a for the fibre
numbering.

Stresses in the matrix nodes adjoining the
selected fibre are obtained from the FOM and
the ROM. The radial stress component (σrr) nor-
mal to the fibre surface and the tangential stress
components (σrθ, σrz) along the fibre surface are
of interest since they are the relevant compo-
nents for the damage initiation at the fibre/matrix
interface. Each stress component is illustrated in
Figure 21. The comparisons of the interface stress
around a fibre from the FOM and the ROM are

shown in Figure 22 for the case of transverse
tension, in Figure 23 for the case of transverse
shear, and in Figure 24 for the case of in-plane
shear. For each load case, the microstructure with
the largest relative difference between the homog-
enized elastic property from the FOM and the
ROM is selected for comparison.

It can be seen in Figures 22-23 that the ROM
can capture the distribution of the radial stress σrr
and the tangential shear σrθ at the fibre/matrix
interface very well in terms of the location of the
peak value and the asymmetry shape of the curve.
Most stress values from the FOM and the ROM
are also matching very well. In Figure 22, the
ROM produces obvious higher stress at the angle
270 degree. A closer look at this particular fibre
distribution from where the results were extracted
found that the allocated portion for fibre 64 (see
Figure 11a) which is assigned as matrix in this case
is in the close vicinity and lies approximately in
the loading direction (90 or 270 degree) from fibre
53. This could possibly contribute to the higher
stress value from the ROM at 270 degree angle.
For the case of applied in-plane shear, the tangen-
tial shear σrz is the only relevant stress component
arose along the interface. As shown in Figure 24a,
the ROM can also capture the distribution of the
tangential shear σrz well. This illustrates the capa-
bility of the ROM to capture material behavior in
the out-of-plane direction as well. Similar agree-
ment in the results from the FOM and the ROM
is also observed in other fibres.

5 Discussion and conclusion

This paper presents an approach to construct a
parametric POD-based ROM capable of predict-
ing the global and local responses of UD-based
composite when considering fibre distributions as
the design parameter. The proposed framework
introduces a premeshed RVE, the microstructural
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(a) Transverse Young’s modulus (Ey)

(b) Transverse shear modulus (Gxy)

(c) Longitudinal shear modulus (Gxz)

Fig. 17: Relative differences of the homogenized
elastic properties from the FOM and the ROM

ranking and the monitoring of the internal force.
The premeshed RVE helps overcome the diffi-
culty encountered in the POD procedure due to
the different spatial discretizations. Microstruc-
tural ranking accounts for the differing geomet-
rical characteristics in the construction of ROB.
Monitoring of the internal force is employed to

(a) FOM

(b) ROM

Fig. 18: Principal stress distributions under
transverse tension in y-direction

determine if the solution from the ROM is sat-
isfactory without deriving the theoretical error
estimator.

The proposed approach was validated on the
microstructures of the UD-based composite sub-
jected to transverse tension, transverse shear and
in-plane shear in the elastic regime. The capability
of the MOR strategy employed was demonstrated
both in terms of homogenized properties and
stress states. The accurate prediction of stresses
is essential in further studies on damage initia-
tion and propagation in composites. In that sense,
this paper sets a solid foundation for the extension
on damage and other nonlinear responses affect-
ing the composite integrity. The implemented

Page 22 of 76

Prof. Dr.-Ing. habil. P. Wriggers, Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany

Computational Mechanics



For Peer Review

Springer Nature 2021 LATEX template

Article Title 23

(a) FOM

(b) ROM

Fig. 19: Principal stress distributions under
transverse shear in xy-direction

ROM delivered sufficiently accurate global and
local responses and a considerable speed up. The
success in applying parametric MOR with a vary-
ing fibre distribution as parameter space could
bridge the gap in the field of MOR for composite
materials.

However, certain limitations are acknowl-
edged. First, the ROM was validated on a par-
ticular premeshed RVE. A set of microstructures
was selected randomly from a limited amount of
samples. Different and larger set of microstruc-
tures could give an insight to more geometrical
characteristics of the microstructures. Secondly,
sensitivity analysis on the user-specified tolerance

(a) FOM

(b) ROM

Fig. 20: Principal stress distributions under in-
plane shear in xz-direction

that controls the convergence of the ROM solution
should be investigated further. Lastly, the MOR
strategy was verified based on the evaluation of
microstructures subjected to three independent
strains. Verification under more realistic loading
conditions is needed since the complex loading
such as combined transverse tension and com-
pression could lead to highly localized response
developed within the microstructure.

Ongoing research is aiming at extending an
application of the introduced MOR approach to
include matrix nonlinearity and damage initiation.
To deal with the increased complexity in the non-
linear setting, a hyperreduction method [55] will
be applied to gain the computational speedup.
Future further improvement on computational
speedup could be done by exploiting the affine
decomposition of the model matrices with respect
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Fig. 21: Stress components at the fibre/matrix
interface

(a) radial stress component (σrr)

(b) shear stress component (σrθ)

Fig. 22: Interface stress distribution around fibre
53 under transverse tension in y-direction

(a) radial stress component (σrr)

(b) shear stress component (σrθ)

Fig. 23: Interface stress distribution around fibre
52 under transverse shear in xy-direction

to the matrix and fibre properties. Addition-
ally, the approach presented in this paper could
introduce the possibility to incorporate different
microstructures in the microscale of the (FE2)
framework. To the authors’ knowledge, there is no
literature in this aspect. Further investigation will
be required to see the consequence of using dif-
ferent microstructures and other challenges that
could arise.
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(a) shear stress component (σrz)

Fig. 24: Interface stress distribution around fibre
51 under in-plane shear in xz-direction
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A Statistical tools for
characterizing the
generated microstructures
from premeshed RVE

In order to quantitatively characterize the spatial
distributions of fibres, statistical descriptors like
Voronoi polygons and Ripley’s K function can be
used.

A.1 Voronoi polygons

Dirichlet tessellation seek to construct an n-sided
polygon around each fibre center in which the
perimeter is equidistant between two neighboring
fibres [56]. This polygon is named Voronoi poly-
gon. The standard deviation of the areas of the
Voronoi polygons defines the more or less periodic
distribution of fibres. In a periodic distribution, all
Voronoi polygons are equal and the standard devi-
ation of the areas is therefore zero. From Voronoi
polygons, it is also possible to calculate the aver-
age of the distances between one given fibre and
its neighbouring fibres. A neighbouring fibre is one
that shares a side of the Voronoi polygon with the
fibre of interest. This measure provides informa-
tion on how separate from each other the fibres
are. Like the standard deviation of the areas of
Voronoi polygons, the standard deviation of the
neighbouring distances in Vornoi polygons is zero
in a periodic distribution [45]. An example of the
Voronoi polygons is shown in Figure 25.

Fig. 25: Voronoi polygons generated from Dirich-
let tessellation for 16 centers

A.2 Ripley’s K function

The second order intensity function, also known
as Ripley’s K function (K(h)), can be used to dis-
tinguish between different types of point patterns
[57]. The function is given by [58]:

K(h) =
A

N2

N∑
k=1

w−1
k Ik(h), (23)

where N is the number of fibres (points) in the
observation area A, Ik(h) is the number of other
fibre centers lying within radial distance h of the
center of a given fibre k, and wk is the correction
factor that accounts for the fibres that intersect
the edges of the observation area. The correction
factor is defined as the proportion of the circum-
ference of the circle of radius h that is contained
within the observation area. The K(h) of any
fibre distributions can be compared with the com-
pletely spatial randomness of the Poisson point
pattern. Ripley’s K function for the Poisson point
pattern Kp(h) can be evaluated analytically [59]:

Kp(h) = πh2. (24)

The functions (23) and (24) can be compared
using the following relation [45]:

L(h) =
K(h)

π
− h. (25)
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