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Abstract

The steelmaking continuous casting scheduling problem concerns the construction
of production schedules for steelmaking from the basic oxygen furnace to the contin-
uous casters. Start and completion times are determined to complete the operations
associated with different steel charges. The real-life problem under study comprises dif-
ferent complicating dual-resource transportation and blocking constraints and embeds
routing and sequencing flexibility to process charges of different steel grades. In this
paper, we present a mixed-integer linear problem and propose a two-stage local search
heuristic adjusting the charge sequence and machine assignments to minimise makespan
and waiting times of charges. The algorithm makes use of a novel charge-sequence ini-
tialisation method and local search operator to find promising neighbouring schedules.
Computational experimentation is performed on real-life instances to validate heuris-
tic design choices and benchmark the proposed method to alternative methodologies.
Results demonstrate that the proposed heuristic provides better initial solutions and a
faster convergence to high-quality solutions in short run times.

Keywords: Scheduling; Two-Stage Local Search; Flexible Job Shop; Steelmaking
Continuous Casting

1 Introduction

The Steelmaking Continuous Casting (SCC) Scheduling Problem plays an important role
in the steel industry. It considers at what time, in which sequence, and on which machine
charges, i.e. furnace loads of steel, should be processed in the different stages of the steel-
making production process (Atighehchian et al., 2009). The unique feature, discerning this
problem from other scheduling problems, is that in the last stage, the casting stage, charges
have to be processed in continuous casts, which is a batch of different charges that is op-
erated without waiting times between consecutive charges. The order of charges within a
cast and the machine on which the casts are processed are decided upon in advance. An
effective schedule can reduce energy consumption and increase productivity. In this paper,
we study a variant of the SCC-scheduling problem, encountered in real-life. This real-life
problem is more complex compared to problems from literature because of the following
features. First, different routing plans for different steel grades are allowed, which turns the
underlying problem into a flexible job-shop problem. This is necessary to accommodate for
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the large number of steel grades modern steel plants produce. Second, more realistic trans-
port constraints are explicitly implemented by formulating dual-resource constraints. The
production floor in steel plants is typically organised in production lines. Transportation
of charges between production lines is conducted using cranes, whose availability is limited
and are explicitly considered a scarce resource to compose a suitable schedule. Furthermore,
steel wagons are used to transport charges between machines lying on the same production
lines. These steel wagons are occupied by single charges during the processing of necessary
operations, transportation between machines, and waiting times. The scheduling objectives
are relative to efficiency and product quality, i.e. we minimise makespan and sum of waiting
times. The latter ensures the steel temperature does not drop significantly, which would
deteriorate the quality of steel.
We tackle this complex optimisation problem by relying on a two-stage local search heuristic.
This hill-climbing heuristic relies on a dual-schedule encoding, composed of two lists rep-
resenting the sequence of processed charges and machine assignments for the operations of
these charges. Schedule encodings are decoded using a recursive schedule generation scheme,
which greedily determines start and completion times per charge, and a repair mechanism
to ensure the feasibility of the constructed schedule. The schedule generation scheme min-
imises the makespan or completion time for processing all charges and introduces waiting
times between operations to satisfy precedence relations between consecutive operations.
These waiting times are improved via the schedule repair mechanism, which relies on math-
ematical linear programming, considering only a limited subset of the decision variables. In
order to find a high-quality schedule in a limited run time, we propose a dedicated initiali-
sation heuristic and two local search neighbourhoods, which improve the initial schedule in
two stages. The proposed methodology was tested using real-life data from ArcelorMittal
(Ghent, Belgium), one of the largest steelmaking companies in Europe. In the computational
experiments, we validate heuristic design choices and benchmark the algorithm to alternative
procedures from the literature.

The remainder of the manuscript is organised as follows. An overview of the relevant lit-
erature is given in Section 2. A detailed description of the real-life problem and associated
mixed-integer linear programming (MILP) formulation are provided in Section 3. Although
this model can theoretically be solved using standard software packages, solution approaches
based on mathematical programming are not satisfactory and not practical for solving real-
life use cases. To this end, we propose an efficient heuristic in Section 4. Section 5 presents
computational experiments to demonstrate the heuristic produces high-quality solutions in
short run times. Conclusions and directions for future research are given in Section 6.

2 Literature review

As the scheduling problem under study is inherently a flexible job-shop scheduling problem,
we discuss in Section 2.1 relevant literature on this scheduling problem and an overview of
proposed solution approaches. In addition, we review the studied characteristics and pro-
posed solution methods related to the SCC-scheduling problem in Section 2.2. A conclusion
based on the literature is drawn in Section 2.3.

2.1 Flexible Job-Shop Problem

Previous works on the SCC-scheduling problem have modelled the problem as a hybrid flow
shop, whereas the problem under study embeds routing and sequencing flexibility, modelling
the problem as a flexible job-shop problem (FJSP). The FJSP is an extension of the classic
job-shop scheduling problem, in which multiple jobs are processed on several machines.
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Related operations are assigned to specific machines and need to be sequenced (Demir and
İşleyen, 2013). Because there are many significant real-life applications, the FSJP has been
extensively studied in different forms and guises. For the properties of the general FJSP, we
refer the reader to the survey papers of Chaudhry and Khan (2016), Xie et al. (2019) and
Xiong et al. (2022).

The FSJP has been researched with consideration of different types of objectives. These are
categorised by Xiong et al. (2022) into time-based, job-number-based, cost-based, revenue-
based and energy and pro-environment-based measures. Most popular have been the time-
based objectives (e.g. minimising makespan, sum completion times or job waiting times,
(weighted) tardiness, resource idle times) together with minimisation of processing cost (e.g.
Zheng and Wang, 2019) and total energy consumption (e.g Zhang et al., 2017). Regarding
the schedule requirements, different studies considered some discerning features in addition
to the general properties of the FJSP, such as blocking (e.g. Gröflin et al., 2011; Mati and
Lahlou C., 2011), no-wait constraints (e.g. Aschauer et al., 2017), controllable processing
times (e.g. Lu et al., 2017), dual resource constraints (e.g. Andrade-Pineda et al., 2019),
which are relevant attributes related to the problem under study. The blocking of a machine
implies that a machine is blocked by a waiting job after the completion of an operation, i.e.
a job has to wait on the current machine until a suitable machine for processing the next
operation of the job is available and in the meanwhile, no other job can be processed (Gröflin
et al., 2011). The research of Hansmann et al. (2014) with application in rail car maintenance
extended this concept and is the only other study that considered the blocking of so-called
work centres or production lines, i.e. any busy machine in a production line blocks access to
all machines of the line. However, in contrast to the problem under study, they do not allow
any switching of jobs between production lines. No-wait constraints, which imply that two
consecutive operations of a job must be processed without interruption, have been imposed
in literature for a variety of reasons, e.g. absence of space for products to wait, reduction of
the work-in-process (Allahverdi, 2016). Aschauer et al. (2017, 2020) present the only other
studies, apart from this study, that consider not only no-wait constraints but also controllable
processing times to prevent the deterioration of product quality caused by interruptions
between consecutive operations relative to a job. They assume that the processing times
of certain production operations can be adjusted within given bounds without additional
costs. In recent years, flexible job-shop problems with dual-resource constraints have gained
more attention (cf. the survey of Dhiflaoui et al., 2018), assuming that tasks can only be
processed on machines with the required assistance of other resources, which are typically
workers. In this context, Agnetis et al. (2014) and Andrade-Pineda et al. (2019) discuss
interesting applications related to the problem under study, for which the workers are shared
between multiple machines.

Multiple methods have been proposed to solve the problem, such as mathematical program-
ming, dedicated branch-and-bound methods, construction heuristics and meta-heuristics
(e.g. Tabu Search, Genetic Algorithm, hybrid techniques). For an exhaustive overview,
we refer to the survey papers of Chaudhry and Khan (2016) and Xie et al. (2019). In this
review, we focus on Mixed-Integer Linear Programming (MILP) and local search heuristics.
These methods typically split the problem into the sequencing of operations and the assign-
ment of operations to machines, which is revealed in the definition of integer variables in
the MILP model and the stage-wise design of heuristic methods defining different types of
operators to improve schedules.
Formulating and solving the problem via MILP provides an exact approach, albeit slow for
larger problem sizes and, hence, not useful for practical purposes. Demir and İşleyen (2013)
provide a review of different formulations to solve the FSJP. These mainly differ in the choice
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of integer variables for the sequencing of operations, which are either sequence-position vari-
ables, precedence variables, or time-indexed variables. Sequence-position variables assume
each machine has a number of positions to which jobs can be assigned. Precedence variables
are based on the sequence of operations on machines and indicate if an operation is performed
before or after another operation on that machine. Time-indexed variables assume a discrete
time horizon and indicate whether an operation is started processing on a machine during a
particular period. Comparison in computational performance demonstrates the superiority
of the use of precedence-based variables instead of considering all possible starting times for
every operation Özgüven et al. (2010); Demir and İşleyen (2013); Sierra et al. (2015). The
latter observation has not only been verified for the classical FSJP, but also for extended
models (e.g. for the dual-resource constrained FSJP (Andrade-Pineda et al., 2019)).
The study by Shi et al. (2018) states that hybrid and multi-stage search structures that
apply different heuristic operators in an independent manner, are the most suited heuris-
tic strategies for solving the FJSP. Accordingly, several studies (e.g. Saidi-Mehrabad and
Fattahi, 2007; Zhang et al., 2011; Ishigaki and Takaki, 2017; Rooyani and Defersha, 2019)
manipulate in an iterative manner the operation sequencing and the machine assignments in
separate stages. For example, Fattahi et al. (2007) propose a two-stage optimisation approach
for solving the FSJP following the meta-heuristic framework of Tabu Search and Simulated
Annealing and a combination of these two methods. Following the structure of the FJSP,
the machine assignments are fixed in a first stage, and random exchanges of job positions in
the charge sequence are performed. In the second stage, the charge sequence is fixed and the
machine assignment of operations is changed. In their experiments, they demonstrate that
a two-stage method outperforms a single-stage method that considers changes to machine
assignments and charge sequences simultaneously. Zhang et al. (2011) propose a Genetic
Algorithm that applies different operators to change the operation sequence and machine
assignments individually, relying on a two-vector chromosome notation. Chromosomes are
decoded into feasible and active schedules using a dedicated schedule generation scheme.
Rooyani and Defersha (2019) present also a genetic algorithm to determine first the order in
which operations will be assigned and determine the machine assignment afterwards using
a greedy approach that chooses for each operation a machine with the shortest completion
time based on machine load and processing time. Aschauer et al. (2017, 2020) solve the
no-wait job-shop scheduling problem with controllable processing times by decomposing the
problem. They consider first solving the sequencing subproblem followed by the timetabling
subproblem. The controllable processing times are handled in the second stage by applying a
recursive decoding algorithm to transform the job sequence into a non-delay schedule.

2.2 Steelmaking Continuous Casting Scheduling Problem

A literature review of the SCC-scheduling problem and other relevant scheduling problems
within the steel industry is given by Tang et al. (2001). Their review focuses on the de-
scription of specific problem types encompassing steel-production methods and proposed
solution methodologies to solve related scheduling problems. Since then, a wide range of
methods has been applied to different variations of the problem (Long et al., 2018). Table 1
provides a literature synthesis of considered problem characteristics and proposed solution
methodologies. All previous studies consider the SCC-scheduling problem as a hybrid flow-
shop scheduling problem as they consider no sequencing flexibility, apart from the study of
Long et al. (2018) that considers the skipping of particular operations. The only type of
scheduling flexibility that has been considered regularly in literature is the adjustment of
processing times, most frequently involving operations on the continuous caster (CC) to en-
able that charges relative to a cast are processed in a continuous manner. Imposed resource
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constraints regard typically only the required availability of machines to process charges,
whereas other types of resource constraints have not been considered. Hence, problems in
literature do not consider any additional resources that may be shared between different ma-
chines or production lines. In this perspective, the scheduling of operations on transportation
resources is typically not modelled as only the needed transportation times are accounted for
to accurately calculate completion and waiting times. Furthermore, most authors consider
multiple objectives, depending on the problem definition and implementation of imposed
hard or soft constraints. For example, some authors see a cast break as an objective that
should be minimised, whereas others consider this to be a hard constraint. Predetermined
cast sequences may comprise either the strict planning of start times or the minimisation of
earliness and tardiness of completion times relative to previous casts. In general, objective
function components for the SCC-scheduling problem are classified into the following cat-
egories, i.e. (i) casting interruption cost; (ii) waiting time or steel temperature drop cost;
(iii) total completion time; (iv) earliness and/or tardiness; and (v) other objectives such
as the minimisation of transportation costs (Atighehchian et al., 2009), poor quality costs
(Atighehchian et al., 2009), average sojourn time (Sun and Yu, 2015; Peng et al., 2018) and
adjustments of standard processing times (Long et al., 2018).

Table 1: Overview of problem definition and solution methodology of relevant research

Manuscript

Problem definition Solution
PT T SR SF OBJ method

FPT APT TT TR No Yes NSF SK FSF CIC WT TC ET Ot Exact Heur

Atighehchian et al. (2009) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bellabdaoui and Teghem (2006) ✓ ✓ ✓ ✓ ✓ ✓
Mao et al. (2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sun and Yu (2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pan (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Peng et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tang et al. (2000) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tang et al. (2002) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Xuan and Tang (2007) ✓ ✓ ✓ ✓ ✓ ✓
Long et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Xu et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Legend
PT Processing times FPT Fixed processing times APT Adjustable processing times
T Transportation TT Transportation times TR Transportation resources
SR Shared resources SF Sequencing flexibility
NSF No sequencing flexibility SK Stage skipping FSF Full sequencing flexibility
OBJ Objectives CIC Casting interruption costs WT Waiting time/temperature drop cost
TC Total completion time ET Earliness and/or tardiness Ot Other objectives
Exact Exact method Heur Heuristic method

A wide range of methods has been proposed in literature for solving the problem. These
can be roughly categorised into two categories, i.e. exact and heuristic methods. Exact
methods typically rely on mathematical programming and Lagrangian relaxation to obtain
suitable schedules. In this regard, Tang et al. (2000) and Bellabdaoui and Teghem (2006)
propose a MILP model and solve these models using commercial software packages. Tang
et al. (2002), Xuan and Tang (2007) and Sun and Yu (2015) apply Lagrangian relaxation
and dynamic programming, potentially with some heuristics appended. Mao et al. (2014)
present a Lagrangian relaxation approach with an improved subgradient algorithm to im-
prove run times. Apart from exact methods, (meta-)heuristics are widely used to solve the
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SCC-scheduling problem. The proposed methods concern mainly Genetic Algorithms and
Swarm Intelligence. Atighehchian et al. (2009) use a hybrid algorithm relying on Ant Colony
Optimisation for machine assignment and sequencing combined with a non-linear optimisa-
tion step to determine the continuous variables. Pan et al. (2012) propose an Artificial Bee
Colony Optimisation heuristic, which is improved by Pan (2016) relying on two so-called
swarms to determine the cast sequences on the one hand and schedule the charges on the
other hand. The Artificial Bee Colony Optimisation heuristic is further improved by Peng
et al. (2018) via an improved encoding and decoding strategy. Long et al. (2018) use an elitist
Genetic Algorithm with a post-processing step to improve the yielded schedules via math-
ematical programming. Xu et al. (2020) also propose a Genetic Algorithm in combination
with a local search method to intensify the search in promising regions.

2.3 Conclusion based on literature

The studies presented thus far in the literature relative to the steelmaking continuous casting
problem have not considered full routing and sequencing flexibility of jobs, the presence of
resources shared between different machines or operations on scarce transport resources. The
basic structure of the encountered real-life problem comprises an FSJP. Unlike the classical
FSJP, the problem is characterised by some discerning features, such as the blocking of
production lines, dual resource constraints, no-wait constraints, and controllable processing
times as some special requirements relative to the steel production process are needed to be
met. Although some of these features have been well studied in the literature, no study is
present that has considered these characteristics together in a single problem definition and
proposed an adequate solution methodology.

3 Problem description and formulation

3.1 Problem context at ArcelorMittal

This section presents a general overview of the steelmaking process relative to the problem
under study. The relevant stages are the converter stage, the refining stage, and the con-
tinuous casting stage and its main components are illustrated in Figure 1, which presents
an abstraction of the real-life process at ArcelorMittal. In these stages, different operations
are performed on charges, which are the basic job units in production scheduling within
steelmaking. A charge is a furnace load of steel.

The relevant process starts at the converter stage that takes charges of pig iron, which is
impure liquid iron, from the Basic Oxygen Furnace, removes impurities, and refines it to
liquid steel (Verspurten and Henrion, 2019). In the converter stage, an oxygen source is
needed to perform some of the operations. At ArcelorMittal, the oxygen resource is shared
between the two converter machines. After the converter stage, charges are transported to
the refining stage, which is recognised to form the bottleneck within the process. Transport is
done using transport cranes, which are limited in number and perceived as scarce resources.
Hence, in contrast to the literature, we explicitly consider the functioning of these transport
cranes, for which importance is stressed by Gao and Pan (2016). In the refining zone, the
steel is further refined to the required chemical composition and temperature (Long et al.,
2018). In this stage, a charge undergoes a number of different processes depending on the
steel grade, which refers to the chemical and physical properties of the steel. These operations
do not always follow the same order and are performed on different machines. Consequently,
the scheduling of operations allows for some routing and sequencing flexibility. Routing
flexibility refers to the choice to schedule operations on different machines, while sequencing
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flexibility encompasses the possibility to schedule the operations to process a charge to some
extent in a different order. Machines in the refining zone are organised in production lines,
which may have different numbers and types of machines. Each of these production lines
share one steel wagon to transport the charges between machines of the production line, for
which its functioning imposes some constraints on the problem under study. These steel
wagons are occupied by a charge during related transports, waiting times and operations
on machines. The occupation of a steel wagon blocks other machines on the associated
production line from being used for other charges. Transport of charges between production
lines is done using the transport cranes.

After the refining stage, the charge is transferred to the casting stage using a crane. In
this stage, the steel is cast into slabs. This happens on the continuous caster (CC) by
means of, as the name indicates, a continuous process after undergoing a cooling process in
revolving towers. Multiple charges of similar steel grade, i.e. charges from the same cast,
are treated in direct sequence without waiting times in between the charges (Tang et al.,
2000). The casting of batches of charges in the continuous casting stage is the discerning
feature of SCC scheduling. A batch of charges is referred to as a cast, which is the basic
unit in the continuous casting production stage (Pan et al., 2012). The charges within a
cast (number and type) are predetermined at ArcelorMittal Ghent and given input to the
problem under study. Between two casts, a setup time is needed to prepare the CC. In order
to ensure subsequent charges within a cast are processed in a consecutive manner without
waiting times, the processing times of the CC can be adjusted to complete a charge. More
precisely, casting speeds of charges on the CC can be reduced by 10% at ArcelorMittal in
order to ensure direct precedence between charges of a cast. The objectives postulated by
ArcelorMittal are relative to minimisation of makespan or duration to process all charges and,
especially, waiting times of charges between successive operations. The latter are considered
to be more important in steelmaking production (Long et al., 2018).

CV1

CV2

OXYGEN

CRANE1

CRANE2

SW1

SW2

SW4

SW3

RH1

RH2

AF1

AF2

LE1

LE2

LE3 LF

DT1

DT2

CC1

CC2

converter stage Refining stage Casting stage

CRANE3

CRANE4

Figure 1: Abstract overview of the steelmaking production process

(Legend. CV1-2: converter 1-2; SW1-4: steelwagon 1-4; RH1-2: Ruhrstahl Heraeus degassers 1-2; LE1-3: mettalurgy
1-3; AF1-2: deslagger 1-2; LF: ladle furnace; CRANE1-4: cranes 1-4; DT1-2: revolving tower 1-2; CC1-2: continuous
caster 1-2.)

3.2 Steelmaking Continuous Casting Scheduling Problem

The Steelmaking Continuous Casting (SCC) production scheduling problem determines the
sequence, time and specific production machines to process the molten steel at various pro-
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duction stages from steelmaking to continuous casting. The problem under study focuses
on sequencing and scheduling of charges, as the sequence of casts on continuous casting
machines is predetermined by a master schedule at ArcelorMittal and is thus input to the
problem under study. The basic structure of the scheduling problem is similar to a flexible
job shop, for which a job corresponds to a charge, complicated by additional constraints and
special requirements relative to the steel production process at ArcelorMittal, described in
Section 3.1.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CV1 1 1 1 2 2 2

OXY converter zone

CV2 3 3 3 4 4 4

CRANE 1 1 3 2 4

LF1 1

SW1 Refining zone line 1

RH1 1 2

CRANE 2 2

LF2 2

SW2 Refining zone line 2

RH2 3 4 4

CRANE 3 1 3 2 4

CC1 Casting zone 1 2

CC2 3 4

Figure 3: Example schedule from the converter stage to the casting stage

An example schedule is shown in Figure 3 to further illustrate the specific problem properties,
based on the production process illustrated in Figure 1. This is a simplified example with a
smaller number of machines and operations per charge. We consider four charges (1,2,3,4),
which belong to two casts, including charges 1 and 2 and charges 3 and 4, respectively. The
casts first enter the converter stage. The first cast is planned on converter 1 (CV1) and the
second on converter 2 (CV2). Charge 1 is processed on moments 1 to 3, whereas charge 3 is
processed on moments 2 to 4. In the converter stage, an oxygen resource is shared for only
some of the operations. Each charge undergoes three operations on a convector. The middle
operation always utilises the oxygen resource. Thus, the middle operation of two charges
cannot be completed at the same time. Occupation of the oxygen resource (OXY) is shown
by the arced bars, whereas the arrows indicate the job that occupies the shared resource.
For charges 1 and 3, these operations occur on moments 2 and 3, respectively. Operations of
transport cranes are explicitly indicated in Figure 3, as these are considered scarce resources
in the problem under study. Crane 1 is used to transport the charges from the converter
to the refining zone. The depicted schedule shows that charge 1 (3) is transported to the
refining zone on time point 4 (5). Charge 2 and 4 are processed starting from moments
5 and 6 on CV 1 and CV 2, respectively. Two production lines in the refining zone are
displayed, which each have a steel wagon (respectively SW1 and SW2), a ladle furnace (LF)
and a Ruhrstahl Heraeus degasser (RH). It is shown using the arced bars that operations on
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one of these machines also block the other machine on the production line from being used.
The latter is due to the use of the associated steel wagon of the production line, which is
occupied by a specific charge. In this regard, charge 1 is processed by LF1 on time point 5
and by RH1 on time points 6 and 7. During this period, from time point 5 to 7, no other
charge can be processed on this first production line. For example, at time point 5, when
charge 1 is processed on LF1, no charge can be processed on RH1. Charge 2 is subsequently
processed at time point 9 on LF2 of production line 2, transported by crane 2 to production
line 1 on time point 10 and processed on RH1 during time points 11 and 12. The difference
in routing plans between steel grades is illustrated by the fact that charges 3 and 4 do not
have an operation on the ladle furnace in the refining stage. The fact that a charge also
occupies a steel wagon during the waiting time on a production line is shown by the red bar,
where charge 4 is waiting on crane 3 for one time unit to be transported to the continuous
casting stage. As a result, production line 2 is occupied for an additional time slot (time
point 13). In the casting stage, charges 1 and 2, and charges 3 and 4 must follow each other
directly due to the required continuity of casting.

3.3 Problem formulation

This section presents the mathematical formulation of the problem under study, for which
following notation is used:

Sets
J Set of charges (j ∈ J)
I Set of operations (i ∈ I)
Ij Set of ordered pairs of operations (i, i′) with direct precedence relations for charge j, indicating

operation i′ directly follows operation i
Ik Set of operations that can be executed on machine k
Ic Set of ordered pairs of operations (i, i′) with direct precedence relations in cast c, indicating casting

operation i′ directly follows casting operation i
T Set of transport operations in the refining zone
R Set of refining operations
O Set of operations that need the oxygen resource in the converter stage
A Set of casting operations
D Set of revolving tower operations
M Set of machines (k ∈ M , with k = a denoting the artificial machine (cf. infra))
MCC Set of continuous casting machines
L Set of production lines (l ∈ L)
Mi Set of machines on which operation i can be performed
Ck Set of casts on continuous casting machine k (c ∈ Ck)
Bj Set of ordered 3-tuples of operations (i, i′, i′′) with direct precedence relations relative to charge j

(with i, i′′ ∈ R, i′ ∈ T )
Dk Set of pairs of operations on machine k in which the first operation is the last operation of a cast,

and the second operation the first of the subsequent cast
Qj Set of ordered pairs of operations (i, i′) with direct precedence relations relative to charge j (with

i ∈ T , i′ ∈ R)

Parameters
pmin Minimum processing time for casting operation
pmax Maximum processing time for casting operation
pik Processing time of operation i on machine k
s Setup time between two consecutive casts
lk Production line of machine k
M Large positive number (>> 0)
δ1 Objective weight coefficient for makespan objective
δ2 Objective weight coefficient for total waiting time objective

Variables
Si Start time of operation i
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Ci Completion time of operation i
Cmax Makespan or completion time of all charges
Pi Processing time of continuous casting operation i
Wi Waiting time of operation i
Wj Waiting time of charge j
W Total waiting time
Xik 1, if operation i is performed on machine k; 0, otherwise
Yii′ 1, if operation i is (in-)directly performed before operation i′; 0, otherwise
Zli 1, if steel wagon of production line l is used for operation i; 0, otherwise

Mathematical Formulation

Min δ1 × Cmax + δ2 ×W (1)

s.t.
∑
kϵMi

Xik = 1 ∀i ∈ I (2)

Ci = Si +
∑
kϵMi

pikXik +Wi ∀i ∈ I \ (A ∪D) (3)

Ci = Si′ i /∈ D;∀(i, i′) ∈ Ij ;∀j ∈ J (4)

Ci = Si +
∑
kϵMi

pikXik ∀i ∈ D (5)

Ci +Wi = Si′ i ∈ D;∀(i, i′) ∈ Ij ;∀j ∈ J (6)

Yii′ + Yi′i ≥ Xik +Xi′k − 1 ∀i ̸= i′ ∈ Ik;∀k ∈ M \ {a} (7)

Ci ≤ Si′ +M∗ (1− Yii′) ∀i ̸= i′ ∈ I (8)

Wj =
∑
i∈Ij

Wi ∀j ∈ J (9)

W =
∑
jϵJ

Wj (10)

Cmax ≥ Ci ∀i ∈ I (11)

Ci + s ≤ Si′ ∀(i, i′) ∈ Dk; ∀k ∈ MCC (12)

Ci = Si′ ∀(i, i′) ∈ Ic; ∀c ∈ Ck; ∀k ∈ MCC (13)

Ci = Si + Pi ∀i ∈ A (14)

Objective (1) minimises a weighted function of the makespan, i.e. the completion time of
the last processed charge, and total waiting time. Constraint (2) makes sure that exactly
one machine is chosen to process each of the operations relative to a charge. Constraint
(3) calculates the completion time of an operation, which is equal to the start time of the
operation plus its processing time on the selected machine and waiting time. Constraint (4)
ensures that the start time of each operation of a charge j is equal to the completion time
of the directly preceding operation of the same charge. Note that these completion times
may include waiting times to model the blocking of machines and/or production lines, which
is applicable for all types of operations except for the casting operations on the revolving
towers and continuous casters (CC). Operations on the CC machines should be processed in
a consecutive manner without waiting times, which is facilitated by the possibility to adjust
the processing times on these machines (cf. infra). Constraint (5) models completion times of
operations on the revolving towers. These calculations do not include waiting times, because
the waiting of a charge for the next operation does not prevent these machines from being
used for operations relative to other charges. The start time of the next operation for charge
j on the revolving tower is calculated via constraint (6). Constraint (7) guarantees that one
of the variables Yii′ or Yi′i, denoting the (in-)direct sequence between operations, is equal to
one in case the same machine is chosen for operation i and i′; i.e. either operation i precedes
i′ or vice versa. In case the two operations use the same machine, the right-hand side equals
one, which forces that one of the precedence variables on the left-hand side is set equal to
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one. Constraint (8) prohibits operations from being processed simultaneously on the same
machine, imposing that the completion time of a preceding operation i should be smaller
than or equal to the start time of any succeeding operation. Variable Yii′ , which indicates
if an operation is performed (in-)directly before or after another operation, is used to make
this constraint relevant or redundant. If this variable is one, the large positive number is
multiplied by zero, and the constraint is relevant, forcing the start time of operation i′ to be
larger than or equal to the completion time of operation i. Otherwise, if the variable is zero,
the constraint becomes redundant. Constraint (9) determines the waiting time of each charge
by taking the sum of waiting times relative to all operations to process the charge. Con-
straint (10) calculates the total waiting time by aggregating the waiting times of all charges.
Constraint (11) models the makespan or duration to process all charges, which is larger than
or equal to the completion time of any operation. Constraint (12) indicates that the start
time of a cast’s first operation (Si′) can only start after the previous cast’s completion time
(Ci) plus a setup time (s) on the CC machines. Constraint (13) enforces the continuity of
casting within a cast, requiring the direct precedence between charges of the same cast on
the CC machines without waiting times. Constraint (14) determines the processing times
for the casting operations as these are adjustable, represented by the decision variables Pi.
Constraints (2) to (14) model the flexible SCC-scheduling problem with adjustable process-
ing times and full sequencing flexibility. In the following, we model constraints relative to
resources that are shared between different machines or operations.

Yii′ + Yi′i = 1 ∀i ̸= i′ ∈ O (15)

Constraint (15) specifies that when two operations require the use of the shared oxygen
resource, these operations cannot be performed simultaneously. In other words, either oper-
ation i should be processed before operation i′ (Yii′ = 1) or vice versa (Yi′i = 1). Precedence
relations are enforced via constraint (8).

Yii′ + Yi′i ≥ Zli + Zli′ − 1 ∀l ∈ L; ∀i ̸= i′ ∈ (T ∪R) (16)

Zli ≥ Xik l = lk;∀k ∈ Mi; ∀i ∈ R (17)

Xik +Xi′′k′′ − 1 ≤ Xi′a lk = lk′′ ; ∀k′′ ∈ Mi′′ ; ∀k ∈ Mi; ∀(i, i′, i′′) ∈ Bj ;∀j ∈ J (18)

Xia +Xi′k′ − 1 ≤ Zli l = lk′ ;∀k′ ∈ Mi′ ;∀(i, i′) ∈ Qj , ∀j ∈ J (19)

Xik +Xi′′k′′ − 1 ≤
∑

k ̸=a∈Mi′

Xi′k lk ̸= lk′′ ; ∀k′′ ∈ Mi′′ ; ∀k ∈ Mi; ∀(i, i′, i′′) ∈ Bj ;∀j ∈ J (20)

When an operation of a charge is executed in the refining stage, the steel wagon dedicated
to the employed production line is occupied and no (regular or transport) operations of the
same or another charge can be processed at the same time on this production line. We model
this shared resource via constraint (16), which is similar to constraint (7). The following con-
straints ensure the appropriate steel wagon or transportation resource is selected. Constraint
(17) relates to operations in the refining stage, apart from transport operations in this zone,
and ensures that the steel wagon is selected relative to the production line of machine k on
which operation i is scheduled. When charges are transported from one operation to the
next operation between machines on the same production line, the steel wagon is also used.
In order to model that a charge occupies the steel wagon for those transport operations, we
assume that the transport operation is performed on a so-called artificial machine (a ∈ M).
The artificial machine, as its name suggests, does not refer to a physical machine and is left
out of constraint (7). Assigning the operation to an artificial machine blocks the production
line during the time a charge is transported between subsequent operations on the same
production line and prevents the production line from being used to process another charge.
This time consists of both the actual time to transport the charge and the waiting time
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between successive operations. As the former is negligible, this time basically comprises the
waiting time only. Constraint (18) models that this artificial machine is chosen when the
previous and next operation’s machines are located on the same production line. Constraint
(19) stipulates that a steel wagon resource is occupied when relying on an artificial machine
to conduct the transport operation to the charge’s next operation. The activation of the
steel wagon via constraints (16)-(19), together with constraint (8), prevents a production
line is occupied by two charges at the same time. However, transport operations in the
refining zone do not necessarily use a steel wagon resource. In case a charge is switched
between production lines, a crane is used for transport and the steel wagon is no longer
occupied. This is represented via constraint (20). This constraint ensures that a crane, and
not the artificial machine, is selected in case the operation before and after the transport
operation use machines that are on different production lines. Note that the processing time
of a charge on the artificial machine is intrinsically equal to zero, in contrast to the effective
transportation time required by a crane.

Xik ∈ {0, 1} ∀i ∈ Ik, ∀k ∈ M

Yii′ ∈ {0, 1} ∀i ̸= i′ ∈ I

Zli ∈ {0, 1} ∀i ∈ R ∪ T, ∀l ∈ L

Si, Ci,Wi ≥ 0 ∀i ∈ I

Wj ≥ 0 ∀j ∈ J

pmin ≤ Pi ≤ pmax ∀i ∈ A

W,Cmax ≥ 0 (21)

Constraints (21) model the variable domain constraints.

4 Solution methodology

In this section, we describe a hill-climbing heuristic solution procedure to solve SCC in-
stances with dual shared-resource and blocking constraints. This method is an iterative
approach that starts from an initial solution, makes incremental changes to the solution en-
coding and updates the solution only if a better solution is found. Via this method, instances
can be solved in a short computational run time, which is required due to the operational
character of the problem under study and has been indicated as important by the collabo-
rating company to effectuate its use in real life. The relevance of hill-climbing heuristics has
been demonstrated in various application domains (see e.g. Vaughan et al. (2005)). As a
drawback, the proposed heuristic does not include mechanisms to escape from local optima
(e.g. perturbations, memorisation of previous changes). These require a significantly higher
amount of valuable CPU time to again improve the solution point after a perturbation or
worsening move and reach an acceptable solution quality. However, the proposed method
does not rely on a single operator but applies different operators with problem-specific knowl-
edge embedded to yield high-quality solutions in small CPU times. These operators search
the solution space in a diversified manner. A general overview of the procedure is given via
the flowchart, depicted in Figure 4. The heuristic operates on a schedule representation that
consists of two lists, i.e. a charge-sequence list and a machine-assignment list, which are
explained in Section 4.1. The algorithm starts with an initialisation step, which is detailed
in Section 4.2. In this step, we build a first schedule taking problem-specific information into
account. Instead of randomly selecting individual charges, we select casts produced on CC
machines and let the charge sequence of the initial solution follow the sequence of charges
on the casters, which is given as input by the cast schedule of ArcelorMittal. The initial
schedule is improved following two local neighbourhood searches or so-called improvement

12



stages, discussed in Section 4.3. In the first improvement stage, the machine assignments are
kept fixed and better solutions are searched in the neighbourhood of the solution by chang-
ing the order charges are processed using a dedicated operator. In the second improvement
stage, the charge sequence is kept fixed and machine assignments are adapted for singular
operations to improve the solution. Each of these neighbourhoods is searched for a number
of moves. Each move generates a different schedule by performing a random neighbourhood
operator that constructs a new schedule (new) in the neighbourhood of the current incum-
bent schedule (current). After each move, the quality of a solution encoding is evaluated in
two steps, which is described in Section 4.4. In the first step, the encoding is transformed
into a schedule using a decoding mechanism, i.e. a schedule generation scheme, that relies on
a recursive algorithm to optimise the makespan or total duration to complete all charges. In
the second step, the generated solution is repaired using linear programming to take into ac-
count the continuity of casting, setup times, adjustable processing times, and waiting times.
The newly generated and repaired schedule is compared with the current schedule based on
the objective function value. If the objective value of the current solution is better than the
objective value of the incumbent solution, the current solution is retained and the incumbent
solution is updated. These two improvement stages are visited for a number of iterations
until the maximum number of iterations is reached.

Start

Stage 1

Charge-
sequence move

Solution generation

Decoding

Repair

New best?

Update solution

Stop Stage 1?

Stage 2

Machine-
assignment
move

Solution generation

Decoding

Repair

New best?

Update solution

Stop Stage 2?

Stop search?

Stop

Yes
Yes

Yes

Yes

Yes

No

No
No

No

No

Figure 4: Flowchart of the proposed hill-climbing heuristic
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4.1 Encoding

In the proposed heuristic, the different components and heuristic operators are applied on
a schedule, which is represented by a schedule representation scheme. In order to encode a
schedule, we make use of two vector notations, i.e.

- In order to represent the sequence of charges, a Job-Based-Representation-First (JBRF)
representation is used, similar to studies of Long et al. (2018) and Xu et al. (2020). This
vector encoding represents the order in which charges, indicated by their job number,
are processed. The designation ’First’ refers to the fact that only the order of charges
in the first production stage, i.e. the converter stage, is encoded. The sequence in other
stages is decided by the decoder. Figure 5 shows an example encoding of a 5-charge
problem designating the order of charges in the first production stage. Following the
example encoding, charges are processed as first charge 4, followed by charges 1, 3, 2 and
5. The order of charges guides the decoding mechanism, relying on the FindSchedule
algorithm, to determine the full schedule (cf. Section 4.4.1).

4 1 3 2 5

Figure 5: Example JBRF encoding for a 5-charge problem

- In order to represent the machine assignments of necessary operations to complete a
job, the representation displays the tuples (i,m) relative to an operation of a charge,
indicating the assignment of operation i to machine m. This representation is similar
to the one suggested by Pezzella et al. (2008). This list comprises also transportation
operations, except for those in the refining stage. This is caused by the fact that trans-
portation of charges between machines on the same production line uses the associated
steel wagon whereas cranes are used for transportation between different production
lines, which is dependent on the machines processing the two subsequent production
operations. Figure 6 shows an example of a charge that requires 5 operations for
completion.

(0,1) (1,2) (2,3) (3,0) (4,0)

Figure 6: Example machine-assignment encoding for a particular charge

4.2 Initialisation step

4.2.1 Charge sequence

The proposed initialisation heuristic embodies an adaptation of the construction heuristic
proposed by Xu et al. (2020) for sequencing charges. The heuristic of Xu et al. (2020) makes
use of problem-specific properties of the SCC-scheduling problem, because their initialisation
algorithm for the charge sequence is based on the casting sequence in the continuous casting
stage. We propose an adaptation to this heuristic. Instead of randomly choosing a charge
from each CC machine, we select a cast from each CC machine using a round-robin selection
mechanism, i.e. casts are selected from each machine in equal portions and in a circular order,
and add the charges in that cast in the same order to the generated sequence of charges.
This provides us with a logical order of charges, in the sense that the order of charges in
the first stage will be similar to the order of charges on the casters. The specific steps of
the initialisation heuristic are shown in Algorithm 1, which takes as inputs the casters and
the charge sequence on the CC machines. Figure 7 illustrates the initialisation heuristic for
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an example with two CC machines such that we select a list of charges from one of the two
casting machines in an alternate manner, i.e. we first select Cast 1 from CC1 followed by
Cast 3 from CC2, Cast 2 from CC1 and Cast 4 from CC2. In this way, the generated sequence
of charges in the converter stage reflect the order of charges in the continuous casting stage,
i.e. first sequence 1-2-3-4-5, followed by sequence 11-12-13-14, sequence 6-7-8 and sequence
16-17-18-19-20.

Algorithm 1: Initialisation of charge sequence (Casters, CC machines)

Step 1: Choose a CC machine using round-robin selection.
Step 2: Select first non-scheduled cast from CC machine.
Step 3: Add charges from cast in predefined order to charge sequence.
Step 4: Return to step 1 if not all casts are sequenced, else finish.
return charge sequence

1 2 3 4 5

Cast 1

CC1: 6 7 8

Cast 2

1 2 3 4 5 11 12 13 14 6 7 8 16 17 18 19 20Charge sequence:

11 12 13 14

Cast 3

CC2: 16 17 18 19 20

Cast 4

Figure 7: Example initialisation of charge sequence based on four casts on two casting
machines

4.2.2 Machine assignment

The initialisation of the machine assignments relies on the random assignment for each
operation i to a machine m out of the set of eligible machines Mi. The random assignment
is based on random number generation and a discrete probability distribution with equal
probabilities for every eligible machine.

4.3 Local neighbourhood search

The initial solution is improved in two different stages, each applying a local search method,
defined by a different neighbourhood operator changing either the sequence of charges (Sec-
tion 4.3.1) or the assignments of operations to machines (Section 4.3.2).

4.3.1 Stage 1: Neighbourhood exploration using the charge-sequence opera-
tor

The proposed hill-climbing heuristic relies on the so-called cast operator to obtain a neigh-
bouring solution of the considered schedule, by changing the charge sequence. Using the
casts as a starting point takes into account the predetermined, and thus immutable, order
of charges on a CC in the continuous casting stage and allows for a faster improvement than
the mutation operators proposed in the literature, i.e. the swap and shift operators. The
swap operator randomly selects two jobs in the sequence and switches their position (Xu
et al., 2020). The shift operator places a randomly chosen job in another position and shifts
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the position of all jobs in between to one position earlier or later, depending whether the
selected job is moved forward or backward (Long et al., 2018). The proposed cast operator
selects a random cast and interchanges encountered charges of the selected cast in the charge
sequence and the last encountered charge of the previous cast if specific conditions are met,
creating an overlap in the processing of charge sequences of different casts. In this way,
the proposed operator primarily focuses on the makespan minimisation, while keeping the
waiting times as small as possible.

Algorithm 2 gives an overview of the cast operator, which considers the perspective of casts
and not of individual charges to change the charge sequence. If we relate the sequence of
individual charges to their respective casts, we can clearly see the order of grouped casts
resulting from the initialisation method. This will from now on be referred to as the cast
sequence. The goal is to let these casts overlap to gain a possible reduction in makespan.
This is done by randomly selecting a cast and swapping the first occurrence of this cast
with the previous entry relative to the previous cast in this cast sequence. If this is the first
time the cast is selected, the new cast sequence can be converted to the charge sequence.
Otherwise, we should look further in the cast sequence to perform additional swaps between
cast entries. Whenever there are two consecutive entries in the cast sequence after the first,
second, . . . occurrence of the selected cast and before its last occurrence, which are not equal
to the selected cast, an additional swap is done between an entry from the selected cast and
the other cast. In this way, an alternating sequence of casts is created and an overlap of
charges relative to these casts is generated.

Algorithm 2: Iteration of cast operator

Input : Current charge sequence.
Output: New charge sequence.
Step 1. Replace charges in the charge sequence with their respective cast numbers.
Step 2. Choose a random cast which is not the first cast in the initialisation.
Step 3. Find the first occurrence of the selected cast in the cast sequence and switch positions
with the previous element in the cast sequence.

Step 4. Iterate starting from the first occurrence of the selected cast for the remaining length of
the cast sequence. If there are two consecutive cast numbers on positions i− 1 and i, which are
not the chosen cast, whereas cast number on position i+ 1 is of the selected cast, swap position
i with i+ 1 and continue applying step 4 starting from position i.

Step 5. From the new cast sequence, build the new charge sequence by replacing casts by
associated charges in the order of the charge sequence.

This is further illustrated with an example. We consider two casts with four charges each,
i.e. cast 1 consisting of charges 1 to 4 and cast 2 consisting of charges 5 to 8. The charge
sequence that would result from the previously explained initialisation step is shown in Figure
8. An example of two iterations is shown, in which cast 2 is selected as random cast. In
the first iteration, the charge sequence is first transformed into a cast sequence. The first
occurrence of the selected cast is swapped with the previous sequence entry, i.e. positions 4
and 5 are switched. This new cast sequence is then converted to the new charge sequence.
In the second iteration, the same random cast, i.e. cast 2, is selected. The first occurrence
of cast 2 is again swapped with the previous entry, switching positions 3 and 4. Since this
cast has been selected before, the charge-sequence encoding is further investigated. There
are two consecutive positions, positions 4 and 5, in the cast sequence that are different from
the selected cast 2. The latter of these positions is swapped with the next entry, switching
positions 5 and 6. The result is a new cast sequence that shows a larger cast overlap, leading
to an alternating sequence of charges relative to the associated casts. Note that the proposed
cast operator relies on a higher built-in intelligence compared to the swap or shift operator
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to yield high-quality solutions in a more efficient manner. The cast operator focuses on
specific positions in the cast sequence to change the charge sequence, in contrast to the well-
known swap operator, which may swap any pair of positions likely with the same selection
probability. Moreover, the cast operator may switch multiple pairs of positions in a single
operation.

Iteration 1

Input: charge
sequence

Cast sequence

New cast se-
quence

Output: new
charge se-
quence

1 2 3 4 5 6 7 8

1 1 1 1 2 2 2 2

1 1 1 2 1 2 2 2

1 2 3 5 4 6 7 8

Iteration 2

Input: charge
sequence

Cast sequence

New cast se-
quence 1

New cast se-
quence 2

Output: new
charge se-
quence

1 2 3 5 4 6 7 8

1 1 1 2 1 2 2 2

1 1 2 1 1 2 2 2

1 1 2 1 2 1 2 2

1 2 5 3 6 4 7 8

Figure 8: Example of the cast operator

4.3.2 Stage 2: Neighbourhood exploration using the machine-assignment oper-
ator

The machine-assignment operator randomly changes the machine of an operation in the
encoding. One of the operations is chosen in a uniformly random manner, and another
machine out of the set Mi, eligible to execute operation i, is chosen.

4.4 Solution generation and repair step

In order to evaluate the associated objective value of an encoding, a solution is generated
based on the solution representation in two different steps following a construction-and-repair
approach. First, we transform the charge-sequence and machine-assignment encoding into
an actual production schedule using a decoding mechanism, which takes only the makespan
into account as objective. However, the decoding mechanism results in a sub-optimal or even
an infeasible schedule that may violate some of the problem-specific constraints, because the
continuity of casting is not taken into account. To that purpose, a repair method is appended
that considers adjustable processing times in the casting stage, enforces continuity of casting
and required setup times, and minimises waiting times.

4.4.1 Decoding mechanism

Most decoding heuristics in the SCC-scheduling literature are based on the latest completion
time on a machine/resource of previous operations, such as the ones proposed in the studies
of Long et al. (2018) and Gao and Pan (2016), which implemented a decoding mechanism
that schedules production operations one by one as these are identical for all charges. In
this way, when planning these operations, they consider the latest completion time of any
operation on a machine as the earliest available time for that machine. However, for the
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problem under study, for which flexibility is allowed in the number and sequencing of opera-
tions to process charges, such a decoding mechanism would negatively impact the makespan,
and thus the objective value. Given that we plan charge by charge due to this additional
flexibility, using the method described above would not recognise that a machine might have
been idle for a long time in between two scheduled operations, during which operations of
other charges could have been processed. In response, the proposed heuristic relies on the re-
cursive algorithm by Aschauer et al. (2017) to decode a solution representation for a flexible
job-shop problem. In contrast to the decoding mechanisms devised for the SCC-scheduling
problem, the decoding mechanism of Aschauer et al. (2017) considers no-wait constraints and
controllable processing times, preventing gaps between subsequent operations, and blocking
constraints. These blocking constraints model the occupation of resources or machines dur-
ing waiting times before charges can be transported to the next machine/production line,
and/or (potentially longer) times to process charges. However, because the problem con-
sidered in Aschauer et al. (2017) does not correspond to the exact problem under study,
several adaptations have been conducted to the decoding heuristic, which is described in the
following.

The decoding mechanism processes the charges one by one as indicated by the charge se-
quence and tries to find the earliest available time slots to schedule the subsequent operations
of a single charge. The pseudocode for the recursive algorithm FindSchedule is presented
in Algorithm 3, which has as input arguments the charge j, the operation number n, the
earliest start time Se and latest possible start time Sl. The selected start time Sjn and the
processing time Pjn are the relevant output of the algorithm. The algorithm recursively calls
itself to find a directly connecting time slot with a specific start and completion time for
the next operation using the function FindSlot, which is done until the last operation is
reached (status true). This might not be successful and an error (err = 1) might be returned,
because of which the start times and/or processing times of previously scheduled operations
need to be adjusted. At the end of an iteration of the decoding mechanism, i.e. when all
operations relative to a charge are scheduled, the job timetable and resource schedules of
involved machines are updated and fixed for future iterations to accurately schedule other
charges. In the following, we explain the functions FindSchedule and FindSlot , and the
update of the resource schedules in more detail and provide an illustrative example.

The function FindSchedule
The function is initialised as follows. The function is called with a particular charge (in the
order of the charge sequence) and its first operation (n = 0) as input. Its earliest and latest
start times can be set respectively to 0 and +∞ for the first function call of a charge. The
charge and its operation number correspond to an operation i = ijn. The machine that is
assigned to this operation in the encoding is retrieved, i.e. k = ki. Based on the assigned
machine, the processing time pik is retrieved, representing the lower bound (plb) for the time
to process the charge. To calculate the upper bound (pub) on the processing time, amargin is
added, representing a reasonable maximum waiting time. The FindSlot function provides
the first available time slot with S1 and S2 as respective start and end times of the time slot
for the selected machine k, considering the earliest start time and the lower bound of the
processing time. The processing time of the operation is set to its lower bound (Pjn = plb),
and the error indicator variable is initialised to a value of 0 (err = 0).

Subsequently, after the initialisation step, a while loop is initiated to schedule all operations
relative to a charge that will recursively call the function FindSchedule for the next opera-
tion, and the current operation’s completion time as earliest start time. First, the algorithm
checks if the start time of the considered time slot (S1) is not later than the latest possible
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start time (Sl). If Sl < S1, the operation start time Sjn is set to S1 and an error (err = 1) is
returned, terminating the function because it is impossible to find a feasible schedule. Oth-
erwise, it is verified whether the last operation is reached (n = Nmax). This would indicate
that for all the previous operations a suitable time slot has been found, leading to a complete
schedule, and the function can terminate. In other cases, the function FindSchedule has
to be called for the next operation. This function call for the next operation will return
information that is of importance for the current operation, i.e. the start time (Sjn+1), the
processing time (Pjn+1), and the error code (err+1) of the next operation, indicated by the
index ’+1’. If the next operation has an error code equal to 0, there are three possible cases.
The first one is the ideal case, in which the current operation can be scheduled directly before
the next operation, i.e. Sjn = Sjn+1 − plb. The second case adjusts the processing time of
the current operation (Pjn = Sjn+1 − Sl) to schedule the current and next operations in a
consecutive manner, i.e. Sjn = Sl. In the third case, none of the previous options is possible
and an error code of 1 is returned, implying that no proper start time could be assigned
due to the violation of a start-time condition and the start time or processing time of the
operation before the current operation needs to be adapted. Note that whenever an error
code equal to 1 is returned (err+1 = 1), the else-clause relative to the current operation is
invoked. Then, the FindSlot function is called until a suitable, later time slot [S1, S2] is
found, for which some waiting time has been inserted and thus increasing the operation’s
completion time. This time slot satisfies the required conditions, i.e. the completion time
of the current operation can be aligned with the next operation’s start time. This new time
slot is then used again to determine the start time of the next operations, following the outer
while loop. If the algorithm is successful, the charge will have a start time, processing time,
and machine assigned for each operation. This procedure is repeated until the whole charge
sequence is planned. The resulting schedule ensures all operations of a charge concatenate,
and thus a charge utilises a machine or resource for the time it is processed. The decod-
ing algorithm ensures that foremost the makespan is minimised and includes waiting times
when necessary to find a feasible schedule. The minimisation of waiting times and other
problem-specific constraints are introduced in the repair method in Section 4.4.2.

Note that the machine-assignment encoding does not consider the transportation operations
in the refining stage, i.e. transportation of charges between machines on the same produc-
tion line using the associated steel wagon (modelled via the artificial machine) or between
different production lines using cranes. This is caused by the fact that the use of the steel
wagon or crane is dependent on the machines processing two subsequent production opera-
tions, which cannot be modelled adequately via the machine-assignment list. Accordingly,
whenever a suitable time slot for the next operation in the refining zone is searched, the
function FindSlot concurrently allocates always the earliest available crane to carry out
the transport, which accounts for an upper bound on the actual transportation time between
machines. The required resource type and associated processing time for transportation in
the refining zone are precisely determined when the schedule information is updated (cf.
infra). The reasons for neglecting the artificial machine in this stage are the following. First,
the artificial machine is not an actual machine, but rather embodies a technical implementa-
tion to model the selection of the steel wagon and enable the blocking of a production line.
Hence, there is no artificial machine representing the steel wagon resource per production line
nor an actual timetable or resource schedule associated with the artificial machine. Using
the function FindSlot relative to this machine, would not be correct. Second, the function
FindSlot operates in a greedy manner to determine the earliest time slot and associated
machine to operate the next operation. The function would mistakenly always select the
artificial machine as processing times on this machine are zero, leading to the inadequate
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timing of subsequent operations, or would unnecessarily complicate the function FindSlot
increasing the required run times of the algorithm. Third, the introduced unnecessary wait-
ing times are easily rectified via the repair mechanism that must be applied anyway to find
feasible schedules for the problem under study.

Algorithm 3: Decoding mechanism FindSchedule(j,n,Se,Sl)
(Legend. ki: Machine assigned in encoding to operation i; err: Error variable; Sjn: Start time assigned to

operation n of charge j; ijn: Operation corresponding to operation n of charge j; Se: Earliest start time; Pjn:

Processing time of operation n of charge j; plb: Lower bound processing time; Sl: Latest start time; pub: upper

bound processing time; S1: Start time slot; margin: Allowed extra processing time or waiting time; S2: End time

slot)

Input : j,n,Se,Sl

Output: Sjn,Pjn,err
i = ijn
k = ki
plb = pik; p

ub = pik +margin
[S1, S2] = FindSlot(k, Se, p

lb)
Pjn = plb

err = 0
while true do

if Sl ≥ S1 then
if n = Nmax then

Sjn = S1 return
else

Sjn+1
, Pjn+1

, err+1 = FindSchedule(j, n+ 1, S1 + plb, S2)
if err+1 = 0 then

if Sl ≥ (Sjn+1 − plb) then
Sjn = Sjn+1

− plb

else if Sl ≥ (Sjn+1 − pub) then
Sjn = Sl

Pjn = Sjn+1
− Sl

else
Sjn = Sjn+1 − pub

err = 1
end
return

else
[S1, S2] = FindSlot(k,max(Sjn+1 − pub, S2), p

lb)
while S2 < Sjn+1 do

[S1, S2] = FindSlot(k, S2, p
lb)

end

end

end

else
Sjn = S1

err = 1
return

end

end

The function FindSlot
The function FindSlot finds the earliest time slot to process a particular operation. The
arguments of the function comprise a machine k, the earliest start time Se, and the input
processing time plb. The function determines the earliest time slot with a suitable minimal
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length equal to the input processing time on the machine. If a charge is successfully planned
using the FindSchedule algorithm, the corresponding time slots cannot be used by sub-
sequent charges anymore. Note that the proposed schedule generation scheme is different
compared to the one of Aschauer et al. (2017) due to resource sharing constraints relative to
steel wagons, shared between different machines, and the oxygen resource, shared between
different operations. The latter should also be taken into account in function FindSlot, as
this resource should also be available, similar to a machine, to find a suitable time slot.

Update of schedule information
The function FindSchedule is called following the order of the charge sequence as deter-
mined by the local search heuristic. At the end of an iteration of the decoding mechanism,
i.e. after all operations relative to a charge have been scheduled and feasible start times and
machines are chosen, the availability of involved resources is updated to plan subsequent
charges. This boils down to adjusting the timetables of the scheduled machines and the oxy-
gen resource with the start and completion of scheduled operations to denote the resource
usage. For production operations in the refining zone, this comprehends not only adjusting
the resource schedules of the assigned machines but also the timetables of the other machines
on that production line to enable the blocking of the line. This corresponds to the function-
ing of the steel wagon variables Zli in the MILP model. When planning transport operations
in the refining zone, the decoding mechanism always accounts for the use of a crane to carry
out the transport between the operations in the refining zone (cf. supra), requiring effective
transportation time. However, a crane is not always required. When transporting a charge
between operations on machines of the same production line, the production line needs to
be blocked, which is done by allocating the artificial machine to the involved operation. For
that purpose, when updating the schedule information, we consider the selected machines to
process the production operations relative to a charge in a chronological manner and deter-
mine if a switch in production lines and associated use of the scheduled crane is required. If
this is not the case, the crane is deselected, and the artificial machine is assigned, blocking
all machines on the involved production line during the time the charge is transported. The
latter implies that the resource schedules of all these machines are adapted and fixed for fu-
ture iterations. The information concerning the utilisation of machines, the relative position
of operations on machines and production lines, and the order in which operations use the
shared oxygen resource are input to the repair mechanism. These deduced parameters are
further shown in the following section.

Note that, although the processing times relative to the use of an artificial machine are zero in
contrast to using a crane and therefore some of the operations can possibly be advanced, the
start and completion times of the scheduled operations are retained as long as the algorithm
FindSchedule is run to schedule other charges in the charge sequence as the main goal
of this algorithm is to determine the charge sequencing, machine assignment, and resource
occupation. However, as a result, the schedule yielded by the decoding mechanism may
include some unnecessary waiting times due to the needless allocation of a crane to carry out
the transport between operations, which overestimates the transport times. These waiting
times are minimised together with the makespan via the application of the repair mechanism
anyway, after the execution of the decoding mechanism.

Illustrative example
In the following, we provide a simple illustration of the main principles underlying the
decoding mechanism based on the example introduced in Section 3.2 and visualised in Figure
3. The decoding mechanism works by iterating over the charge sequence [1,3,2,4]. Assume
all operations relative to charge 1 have been scheduled and the associated resource schedules
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have been updated. Subsequently, we schedule the operations relative to charge 3. In this
illustration, we focus on the operations in the converter stage, consisting of three operations
of a single time unit, and following transport operation to the refining zone. The second
operation in the converter stage requires the use of the oxygen resource. The function
FindSchedule starts with the first operation of charge 3 (plb = pik = 1, Se = 1, Sl = + inf),
which needs to be planned on one of the converter machines. The machine encoding indicates
that the operation needs to be processed on CV2 and the function FindSlot returns moment
1 as the first available time slot on CV2. However, to find a feasible time slot for the first
operation, the algorithm recursively calls the function FindSchedule. The next operation,
i.e. operation 2, though, can only start at moment 3 on CV2 as the oxygen resource is
already occupied at moment 2 by the second operation of charge 1 on CV1, which has been
detected via the function FindSlot. This would create a waiting time between this operation
and the previous operation, which the algorithm does not allow as the maximum waiting
(margin = 0) is assumed to be exceeded and the processing time of converter operations
cannot be extended (pub = pik). The function FindSchedule returns in that case an error
(err+1 = 1), which implies the first operation is rescheduled via the function FindSlot and
delayed to moment 2 to ensure there is no waiting time between the two operations. This
newly determined start time for operation 1 is accepted, as operations 2 and 3 can be assigned
to consecutive time slots, i.e. moments 3 and 4 respectively. The subsequent operation is
the transport to the refining zone that can be planned at moment 5 using CRANE1. In this
way, all operations in the converter stage for charge 3 are successfully planned. Based on
the availability of all machines for subsequent operations, the function FindSchedule will
succeed in finding a suitable time slot for all operations in the refining zone and the casting
stage relative to this charge. Afterwards, the production timetable is updated, accounting for
the resource usage of assigned machines and shared resources at relevant times, and blocking
the machines on the used production lines.

4.4.2 Repair mechanism

Given that the above decoding heuristic only tries to minimise the makespan, and does not
consider either the continuity of casting, setup times, adjustable processing times or minimi-
sation of waiting times, an improvement mechanism relying on the MILP model proposed
in Section 3.3 tries to repair the schedule generated by the decoding mechanism. A similar
approach has been implemented by Long et al. (2018). Note that the quality improvement
method proposed by the latter only decreases waiting times and adds the ability to adjust the
processing times. For the problem under study, improvement is also necessary to incorporate
critical constraints in the casting stage, such as the continuity of casting and setup times
in the casting stage. The repair mechanism takes the schedule generated via the decoding
mechanism (cf. Section 4.4.1) as input and fixes the binary variables Yii′ (∀i ̸= i′ ∈ I), Xik

(∀i ∈ Ik,∀k ∈ M) and Zli (∀i ∈ R ∪ T, ∀l ∈ L) referring to the charge sequences, machine
assignments and resource occupation. The fixed decision values are represented by addi-
tional parameters ei, fk, gi and hi defined below and input to the repair mechanism. As a
result, the original model (1)-(21), i.e. a MILP problem, is reduced to the simplified model
(22)-(35) presented below, i.e. a LP problem, which can be solved via linear programming.
In this way, start times Si (∀i ∈ I), completion times Ci (∀i ∈ I), waiting times Wi (∀i ∈ I)
and Wj (∀j ∈ J), and adjustable processing times Pi (∀i ∈ A) are specified, together with
performance measures Cmax and W . As the computational effort for executing the repair
mechanism is small, no time limit is imposed, and the model is solved to optimality.

Additional parameters
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ei Machine assigned to operation i
fk Operations assigned to machine k ∈ M \ {a}
gi Operation scheduled after operation i on machine k
hi Operation scheduled after operation i on the oxygen resource

Mathematical formulation

Min δ1 × Cmax + δ2 ×W (22)

s.t.

Ci = Si + pik +Wi k = ei;∀i ∈ I \ (A ∪D) (23)

Ci = Si′ i /∈ D;∀(i, i′) ∈ Ij ;∀j ∈ J (24)

Ci = Si + pik k = ei; ∀i ∈ D (25)

Ci +Wi = Si′ i ∈ D;∀(i, i′) ∈ Ij ;∀j ∈ J (26)

Ci ≤ Si′ i′ = gi;∀i ∈ fk;∀k ∈ M (27)

Wj =
∑
i∈Ij

Wi ∀j ∈ J (28)

W =
∑
jϵJ

Wj (29)

Cmax ≥ Ci ∀i ∈ I (30)

Ci + s ≤ Si′ ∀(i, i′) ∈ Dk; ∀k ∈ MCC (31)

Ci = Si′ ∀i; i′ ∈ Ic; ∀c ∈ Ck; ∀k ∈ MCC (32)

Ci = Si + Pi ∀i ∈ A (33)

Ci ≤ Si′ i′ = hi; ∀i ̸= j ∈ O (34)

Si, Ci,Wi ≥ 0 ∀i ∈ I

Wj ≥ 0 ∀j ∈ J

pmin ≤ Pi ≤ pmax ∀i ∈ A

W,Cmax ≥ 0 (35)

Equations (22) to (33) are similar to the model presented in Section 3.3. Contrary to the
previously presented model, operations can now occupy more than one machine in constraint
(27). More precisely, the input parameter fk indicates not only the use of a specific machine
for a particular operation but also the blocking of other machines. This way, the steel wagons
are blocked when an operation is performed on one of the machines of a production line,
preventing another charge can be processed on the same line. Constraint (34) avoids that
the shared oxygen resource is used simultaneously for different operations, in correspondence
to the schedule generated via the decoding heuristic.

5 Computational experiments

In this section, computational experiments are described to validate the proposed methodol-
ogy. In Section 5.1, we discuss the test design and input values for parameters characterising
the solution methodology. Section 5.2 validates design choices of the heuristic. Section 5.3
benchmarks the proposed heuristic to an exact solution methodology based on mathematical
programming and the genetic algorithm of Long et al. (2018). Experiments were conducted
on a MacBook Pro with a 2 GHz Dual-Core Intel Core i5 and 8GB of memory. The proposed
heuristic is programmed using the JDK 8 Java compiler and linked to Gurobi version 9.1.1
as (MI)LP solver.
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5.1 Test design

5.1.1 Dataset and problem settings

Experiments are conducted using real-life data from the integrated steel company Arcelor-
Mittal (Ghent, Belgium). The continuous casting facility in Ghent produces yearly approxi-
mately six million tons of semi-finished products of steel (known as blooms, billets or slabs),
leading to all kinds of high-quality applications for various industries (e.g. automotive, con-
struction, energy, packaging, mining). The company site in Ghent handles every step of
the production process, from the supply of raw materials to the coating of steel and the
production of laser-welded blanks, and is part of ArcelorMittal, one of the world’s largest
steel companies. For more information, we refer to https://belgium.ArcelorMittal.com.
In collaboration with the company, we recorded in the year 2021, 20 data instances relative
to the continuous casting scheduling problem. The instance size characteristics are shown
in Table 5, giving insight into number of casts (

∑
k |Ck|), charges (|J |), machines (|M |) and

operations (|I|) to be completed in a limited time span. To give the reader some notion of
the complexity of an instance, we illustrate in Appendix A the resulting resource schedule
associated with the solution to instance 1, yielded by the proposed procedure. Note that
this instance comprises 841 different operations, such that only a subset of the operations
could be depicted. Specific instance characteristics and data, averaged over the instances,
are further detailed below.

Instance # casts # charges # machines # operations

1 10 53 19 841
2 12 59 19 947
3 12 61 19 974
4 10 57 19 915
5 12 60 19 954
6 10 52 19 832
7 10 60 19 978
8 10 54 19 805
9 10 59 19 921
10 10 58 19 884
11 12 60 19 905
12 12 58 19 860
13 12 61 19 953
14 10 65 19 1006
15 10 58 19 850
16 8 61 19 939
17 10 62 19 904
18 10 63 19 914
19 8 65 19 1005
20 8 62 19 920

Table 5: Overview data instances

Resource characteristics
The necessary operations need to be completed by 19 machines (|M |), including transport
cranes. An operation can be performed by mostly two to three machines (|Mi|), modelling
some routing flexibility. This can differ between operations, for example, the CC machine in
the casting stage is predetermined. In the converter stage, there are two converter machines
that share one oxygen resource for a certain operation, and two metallurgy pan machines.
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During operations on these latter machines, samples of the steel are taken and the tempera-
ture is checked, among other activities. In the refining zone, production is organised in four
production lines (|L|) with one steel wagon each. There are 11 machines, comprising eight
normal machines (i.e. two Ruhrstahl Heraeus degassers, one ladle furnace, two deslaggers,
three metallurgy machines) and three transport machines, including one artificial machine
and two transport cranes to switch charges between production lines. In the casting stage,
operations are performed on two revolving towers and two continuous casters (|MCC |).

Job characteristics
The number of casts (

∑
k |Ck|) indicates the number of batches that are processed in a con-

tinuous manner on the continuous casters. Casts include charges that are of roughly the
same steel grade, each containing, on average, between 5 and 7 charges. For each instance,
about 60 charges (|J |) are to be scheduled. Note that the required operations to process a
charge can be different between charges, consisting of a different set of operations that can be
performed on different machines. The number of operations per charge mostly hovers around
15, including transport operations, but this can differ according to the steel grade. The total
number of operations (|I|) per instance is provided in Table 5 and is a good indication of
the complexity of the problem. Note that this number includes transport operations (|T |).
The number of operations in every stage of the production process (converter stage, refining
stage, casting stage) and related processing times (range and average) of actual production
and transport operations are indicated in Appendix B. In the following, we provide some
additional information on the different stages. In the converter stage, each charge undergoes
three operations on a converter machine, independent of its steel grade. One of these op-
erations requires the use of the shared oxygen resource. The charges are further processed
via one operation on one of the metallurgy pan machines. In the refining zone, the number
of operations required on each of the machines is different between charges, as this depends
on its steel grade. Averaged over the set of data instances, 32%, 30%, 31%, and 7% of the
operations are carried out on the Ruhrstahl Heraeus degassers, ladle furnace, deslaggers and
metallurgy machines, respectively. In the casting stage, each charge requires a transport
operation using a turning tower before two subsequent production operations are performed
on the revolving tower and CC, respectively. The casting speeds for processing charges on
the continuous casters can be reduced by 10% to ensure precedence between charges of a
cast, which implies that the adjustable processing times can range between 35 (pmin) and
38.5 (pmax) minutes. The time to set up the continuous casters to process a different cast is
equal to 40 minutes (s).
The sets modelling the direct precedence relations between operations (Ij , Ic, Dk) are based
on real-life data and comprise on average 856, 49, and 8 orders between operations. Sets Bj

and Qj are directly derived from Ij and thus do not comprise additional orders. Between
other operations no precedence relations are present, installing to some extent sequencing
flexibility between operations relative to a charge.

Objective function structure
The objective function weights have been determined based on discussion with ArcelorMittal.
In this way, a larger weight is put on minimising the makespan, i.e. δ1 is set to 1 and δ2 to
0.1 in the objective function.

5.1.2 Methodology parameter settings

In this section, we determine the total number of iterations and the proportion of charge-
sequence changes (cs) (stage 1) versus machine-assignment changes (cm) (stage 2) per itera-
tion of the local search algorithm. In this way, insight is gained into the number of changes to
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either the charge-sequence encoding or the machine-assignment encoding per iteration of the
two-stage procedure. The different proportions tested are provided in Table 6. In addition,
to determine the number of local search iterations, we employed in this parameter-tuning
experiment an upper bound of 5000 iterations. Note that, as the heuristic inherently relies
on randomness, we conduct 10 different runs with a different seed. For the experiment in
this section, we report average results over these runs.

cs cm

1 5 5
2 5 3
3 5 1
4 10 1
5 3 5
6 1 5
7 1 10

Table 6: Overview of tested combinations (cs, cm)

The results are illustrated in Figure 9, which shows the convergence behaviour for a single
instance, i.e. instance 1, without loss of generality. The results show that a higher proportion
of machine-assignment changes to charge-sequencing changes leads to a faster improvement
in objective function values. When cs = 1 and cm = 5, the best convergence is obtained
and the objective function value begins to reasonably stagnate around 2000 iterations. Both
these settings are used in further experiments.
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Figure 9: Evolution of objective function values for different combinations (cs, cm)

5.2 Validation of heuristic design choices

In order to study the contribution of the proposed operators in different steps of the local
search heuristic, we devise different versions of the heuristic with regard to the initialisa-
tion method, charge-sequence neighbourhoods and the number of stages. Note that in all
experiments, the algorithm is applied in a ceteris paribus setting, which implies that only
the settings under investigation are adapted leaving the other settings unchanged to the
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ones proposed in the solution methodology to have a fair comparison between the methods.
The only exception concerns the initialisation method. The cast operator can only function
together with the proposed initialisation heuristic. Hence, when comparing different ini-
tialisation methods, the best performing combination of the initialisation method and local
search operator will be used for the random initialisation and initialisation method of Xu
et al. (2020). The results, averaged over the 10 different runs conducted and over the set
of 20 test instances are displayed in Table 7. The observed standard deviation is indicated
between brackets. Apart from solution quality, we display the required run time in seconds
(CPU) and the gap to the best performing version (%Gap). In the following, we explain the
conducted experiments and discuss the results per operator.

Design choice Z CPU %Gap

Initialisation method
Random method 5582.90 (1071.31) 102.10 62.13%
Method of Xu et al. (2020) 2316.70 (207.71) 104.74 8.73%
Proposed method 2114.48 (141.68) 96.88 0.00%
Local search
Shift method 2188.68 (152.25) 98.10 3.39%
Swap method 2195.82 (152.87) 97.96 3.70%
Cast method 2114.48 (141.68) 96.88 0.00%
Number of stages
One-stage method 2502.08 (179.27) 97.89 15.49%
Two-stage method 2114.48 (141.68) 96.88 0.00%

Table 7: Validation of heuristic design choices

Initialisation method
The proposed initialisation method is compared to a random initialisation and the initiali-
sation method proposed by Xu et al. (2020), for which the charge sequence is determined by
selecting charges from casts in a random manner. Table 7 displays yielded solution quality
after running the heuristic for 2000 iterations when employing one of these three initiali-
sation methods. The results show the superior performance of the proposed initialisation
method versus the other methods. This performance is thanks to the better schedules that
result from the initialisation step; i.e. the quality of the initial schedules equals on average
12503.82, 3367.62 and 2961.98 for the random method, method of Xu et al. (2020) and the
proposed initialisation method, respectively. In this way, the proposed method improves
initial schedules by 76.31% and 12.05% compared to the random method and method of Xu
et al. (2020), respectively. Note that this better performance is observed in a consistent man-
ner, for all individual instances, and is statistically significant (based on the non-parametric
Wilcoxon Signed Rank Test). Additional experimentation with smaller and larger cast sizes
pointed out that the proposed initialisation method performs better when the instance size
increases. This can be explained by the fact that the proposed initialisation method explic-
itly takes the cast order and the order of charges within casts into account using round-robin
tournament selection. Especially for larger instance sizes, the random initialisation can place
a job further from its position given by its order on the caster, leading to larger waiting times.
For smaller instance sizes, the number of casts is smaller, and the impact on the solution
quality is smaller.

Local search operators
We compare the proposed cast operator to change the charge sequence with well-known op-
erators from literature, i.e. the shift and swap operator. Results are displayed in Table 7 and
demonstrate that the shift and swap operators perform worse compared to the cast operator,
as the quality of the final schedule when employing the cast operator outperforms schedules
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obtained via the other neighbourhoods by 3.39% and 3.70%, respectively. Moreover, the
shift and swap operators are able to improve the initial schedules only by 26.0% and 25.7%
respectively, whereas the cast operator improves the initial schedule by 28.5%. Figure 10
shows the realised improvements as a function of the number of local search iterations for a
single instance, i.e. instance 1. It can be seen that larger improvements can be realised and
that the objective function value improves faster when relying on the cast operator compared
to the swap or shift operators.
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Figure 10: Comparison of convergence behaviour of local search operators on instance 1

Note that additional experimentation with smaller and larger cast sizes pointed out that the
proposed cast method performs better when cast size increases. The shift operator performs
better than the cast operator when cast sizes are small (< 5), whereas the cast operator is
superior when dealing with larger, more realistic cast sizes (≥ 5). This can be explained
by the fact that the cast operator makes use of problem-specific properties and is effective
to create and search for better solutions as this operator takes both the order of casts and
the order of charges within casts into account. The swap operator, ignoring these features,
denotes an inferior performance for all problem sizes.

Number of stages
Comparison is made between a one-stage version and the two-stage version of the proposed
local search heuristic to validate the two-stage character. In the one-stage version, both the
charge sequence and machine assignment are changed together before a solution is decoded,
such that the number of charge-sequence changes and machine-assignment changes is iden-
tical. The two-stage method considers two separate stages for changing the charge sequence
and machine assignments before a solution is decoded, such that the number of changes in
each stage can be different. Table 7 indicates that the two-stage version performs signifi-
cantly better. A further analysis revealed that the two-stage method performs consistently
better than the one-stage method for every instance. The better performance of the two-
stage method can be attributed to the fact that this method can independently determine
the charge sequence and evaluate the outcome without the added complexity of determining
the machine assignments at the same time, which is in line with the findings of Ishigaki and
Takaki (2017).

28



5.3 Solution methodology benchmark

Benchmark for the problem under study
In this section, we compare the proposed two-stage local search heuristic with other solu-
tion methods to evaluate the computational performance and yielded solution quality of the
proposed algorithm. In the following, we analyse the performance of the following method-
ologies:

• Mixed-integer programming (MIP): This approach solves the defined model (1)-(21)
based on mixed-integer programming, using the commercial optimisation solver Gurobi.
This method does not take an initial solution explicitly into account but relies on
the multiple heuristics induced by Gurobi to obtain an upper bound (early) in the
optimisation search process. A time limit is imposed of 3600 seconds.

• GA of Long et al. (2018): We benchmark the proposed method to the method devised
for the problem that is most similar in terms of objectives and problem structure.
Their method generates the initial population of schedules completely random and
makes use of an elitist genetic algorithm in combination with a quality improvement
method. The GA makes use of tournament selection, SB2OX as crossover operator,
and the shift method as a mutation operator. The method is implemented with identi-
cal parametrisation of methodology (e.g. stop criterion, number of local search moves)
as described in Long et al. (2018). It should be noted that the decoding heuristic and
quality improvement method by Long et al. (2018) are not directly applicable to our
problem definition. Given that the GA also results in a charge sequence as in our
method, we only compare the underlying search mechanism of the proposed GA algo-
rithm to find new solutions with our local search method. Our own decoding heuristic
and repair mechanism are implemented to devise production schedules, respecting the
specifics of the problem under study. Experiments showed that the algorithm converged
after 400 generations. This number was used on all instances and for all seeds.

• Proposed method: This method corresponds to the proposed two-stage local search
heuristic (cf. Section 4).

Table 8 shows the performance of the different tested methods, displaying the solution quality
(Z), the run time (CPU) and the deviation from the best performing method (%Gap). The
displayed results represent averages over the 20 test instances. The results in Table 8 reveal
that the proposed two-stage heuristic is able outperform the alternative solution methods.
The mixed-integer programming method needs a far larger CPU time and is not able to
retrieve any integer solution in a time span of 3600 seconds. The GA of Long et al. (2018)
takes significantly longer times to yield significantly worse solutions. The average gap to the
solution obtained by the proposed method is 30.77%. This is achieved in CPU times that
are on average ten times longer. The better performance of the proposed method can be
attributed to the problem-specific initialisation method and cast operator. These methods
allow a targeted search compared to the GA that utilises the shift operator combined with
a random initialisation. The bad performance of MIP can be explained by the high number
of binary variables for the considered instances and large instance sizes, making such an
approach unacceptable for practical use. Note, additional experiments that initialise the
alternative solution methods with the proposed initialisation heuristic, revealed that the
quality of the solutions realised via these methods improves but these improvements can
be attributed only to the better initialisation method as yielded solutions are identical or
very close to the initial solutions generated via the proposed initialisation method. Little
further improvements have been realised via the optimisation search conducted by these
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methods. Consequently, both alternative methods are not able to outperform the proposed
algorithm.

Method Z CPU %Gap

Mixed-integer programming (3600s) - 3600 -
Method of Long et al. (2018) 3054.19 (483.54) 1052.37 30.77%
Proposed method 2114.48 (141.68) 96.88 0.00%

Table 8: Computational benchmark with other methodologies for the problem under study

Benchmark for the problem described in Long et al. (2018)
As demonstrated in the previous paragraph, the proposed heuristic outperforms the GA of
Long et al. (2018) for the problem under study. However, in order to make a fair assessment of
the performance of both methods, we compare these methods relative to the problem studied
in Long et al. (2018). For this problem, we generated five instances of different sizes using
the test design described in Long et al. (2018). The generated instance size is represented
via S1*S2*S3 (cf. second column of Table 9), where S1 refers to the number of operations,
S2 to the number of casts in each CC, and S3 to the number of charges in each cast. Note
that to solve this problem, the proposed method does not require a machine assignment
in the solution encoding thanks to the simpler structure of the benchmarked problem (e.g.
absence of steel wagons, fixed processing times). More precisely, the problem considered by
Long et al. (2018) considers a standard SCC-scheduling problem with stage skipping and
adjustable processing times. Similar to our problem, the cast schedule is already planned
by a master schedule. The objective function considers the makespan, waiting times and
the deviation from adjustable processing times. In their comparison with other methods,
adjustable processing times are not considered. Therefore, we also did not implement the
deviation of processing times in the objective, such that the objective function only consists
of the makespan and waiting times, similar to our own problem. For more details concerning
the instance generation, the mathematical model, and the solution method, we refer to Long
et al. (2018). The results can be found in Table 9, which reports the objective value (Z ′)
yielded for the problem of Long et al. (2018) and the run time (CPU) for every instance. Note
that five runs have been conducted for each instance to account for the impact of randomness
in the procedures. Table 9 reveals that also for the problem studied by Long et al. (2018),
the proposed local search heuristic yields a better solution quality for all instances, except for
the smallest instance. This is partly explained by the superior performance of the proposed
initialisation method, which performs significantly better for larger instance sizes.

Method of Long et al. (2018) Proposed method
Size Z′ CPU Z′ CPU

1 3*2*6 7431.49 (270.21) 352.81 (35.58) 8539.21 (0.0) 1.7 (0.53)
2 4*3*6 15358.39 (1067.79) 951.16 (13.3) 13124.02 (0.0) 2.46 (0.33)
3 5*3*6 24859.18 (1925.96) 1350.9 (11.12) 12570.52 (428.67) 4.56 (1.4)
4 6*4*6 37617.78 (1335.63) 3061.64 (31.23) 19222.46 (506.99) 7.35 (1.33)
5 7*4*7 57988.88 (3771.28) 7963.8 (5331.72) 22590.31 (136.74) 13.35 (2.35)

Table 9: Benchmark based on problem definition of Long et al. (2018)

6 Conclusions

In this paper, we propose a local search heuristic to solve a real-life steelmaking continuous
casting problem. The proposed procedure is able to find high-quality solutions in a reasonable
time span in comparison with alternative solution methodologies. The contribution of this
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paper is twofold. First, we studied a real-life variant of the scheduling problem, extending the
characteristics studied in literature to embed a higher degree of realism. More precisely, we
consider different complicating dual-resource transportation and blocking constraints and
routing and sequencing flexibility to process charges of different steel grades, turning the
problem into a flexible job-shop scheduling problem. Discussions with practitioners revealed
that in future research this problem definition can be further extended via the consideration
of alternative process plans to process the charges into steel to improve productivity as
charges of specific steel grades can often be produced in different ways. Second, we propose
a two-stage local search heuristic operating on a dual-vector encoding that is decoded into a
production schedule using a recursive algorithm and schedule-repair improvement step. The
heuristic is initialised taking problem-specific information relative to the input cast schedule
and order of charges within casts into account. The neighbourhood of this initial solution
is investigated via a novel cast operator that changes the charge sequence and a machine-
assignment operator. Results demonstrate that these heuristic design choices provide better
initial solutions and faster convergence to high-quality solutions in acceptable run times for
real-life use.
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A Illustration of the solution of a real-life instance

In this appendix, we depict in Figure 11 the resulting resource schedule associated with the
solution of instance 1, yielded by the proposed algorithm. The schedule depicts the start
and completion times of operations on the different resources for a limited time span. The
instance considers 19 resources and 841 operations in total. The operations are depicted
by blank rectangles. The arced rectangles indicate the resource has been blocked due to a
concurrent operation on a different machine on the same production line. For illustrative
purposes, only a subset of the operations are depicted.
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Figure 11: Example resource schedule real-life schedule for instance 1

(Legend. CV1-2: converter 1-2; PM1-2: metallurgy pan machines 1-2; RH1-2: Ruhrstahl Heraeus degassers 1-2; LE1-
3: mettalurgy machines 1-3; AF1-2: deslagger 1-2; LF4: ladle furnace; ARTI: arificial machine; CRANE1-2: cranes
1-2; DT1-2: revolving tower 1-2; CC1-2: continuous caster 1-2.)
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B Detailed information related to the data set instances

Table 10 provides detailed information for each instance related to the operations in every
stage of the production process and transport operations.

Convertor stage Refining stage Transport operations Casting stage
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1 212 9.42 [5.0, 17.0] 288 8.33 [2.0, 30.0] 235 2.67 [0.0, 4.0] 106 13.67 [3.0, 35.0]
2 236 9.70 [5.0, 17.0] 326 8.99 [2.0, 30.0] 267 2.67 [0.0, 4.0] 118 13.67 [3.0, 35.0]
3 240 9.54 [5.0, 17.0] 336 8.44 [1.0, 30.0] 276 2.67 [0.0, 4.0] 122 13.67 [3.0, 35.0]
4 228 9.65 [5.0, 17.0] 315 8.85 [2.0, 30.0] 258 2.67 [0.0, 4.0] 114 13.67 [3.0, 35.0]
5 240 9.67 [5.0, 17.0] 327 8.95 [2.0, 30.0] 267 2.67 [0.0, 4.0] 120 13.67 [3.0, 35.0]
6 208 9.43 [5.0, 17.0] 286 7.96 [2.0, 30.0] 234 2.67 [0.0, 4.0] 104 13.67 [3.0, 35.0]
7 240 9.57 [5.0, 17.0] 339 8.60 [2.0, 30.0] 279 2.67 [0.0, 4.0] 120 13.67 [3.0, 35.0]
8 208 9.72 [5.0, 17.0] 272 8.84 [1.0, 30.0] 220 2.67 [0.0, 4.0] 105 13.80 [3.0, 35.0]
9 236 9.50 [5.0, 17.0] 313 8.16 [2.0, 30.0] 254 2.67 [0.0, 4.0] 118 13.67 [3.0, 35.0]
10 232 9.58 [5.0, 17.0] 297 8.42 [1.0, 30.0] 239 2.67 [0.0, 4.0] 116 13.67 [3.0, 35.0]
11 232 9.49 [5.0, 17.0] 307 8.26 [1.0, 30.0] 249 2.67 [0.0, 4.0] 117 13.79 [3.0, 35.0]
12 224 9.63 [5.0, 17.0] 289 8.99 [1.0, 30.0] 233 2.67 [0.0, 4.0] 114 13.67 [3.0, 35.0]
13 244 9.56 [5.0, 17.0] 324 8.81 [1.0, 30.0] 263 2.67 [0.0, 4.0] 122 13.67 [3.0, 35.0]
14 256 9.48 [5.0, 17.0] 342 8.30 [2.0, 22.0] 278 2.67 [0.0, 4.0] 130 13.67 [3.0, 35.0]
15 220 9.49 [5.0, 17.0] 287 8.43 [2.0, 27.0] 232 2.67 [0.0, 4.0] 111 13.80 [3.0, 35.0]
16 236 9.74 [5.0, 17.0] 321 8.75 [2.0, 27.0] 262 2.67 [0.0, 4.0] 120 13.67 [3.0, 35.0]
17 240 9.56 [5.0, 17.0] 301 8.54 [2.0, 23.0] 241 2.67 [0.0, 4.0] 122 13.67 [3.0, 35.0]
18 244 9.66 [5.0, 17.0] 304 8.87 [2.0, 23.0] 243 2.67 [0.0, 4.0] 123 13.78 [3.0, 35.0]
19 248 9.54 [5.0, 17.0] 346 8.70 [2.0, 25.0] 284 2.67 [0.0, 4.0] 127 13.78 [3.0, 35.0]
20 236 9.71 [5.0, 17.0] 311 8.68 [2.0, 23.0] 252 2.67 [0.0, 4.0] 121 13.78 [3.0, 35.0]

Table 10: Detailed information on considered production and transport operations in test
instances
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