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We demonstrate that projected entangled-pair states are able to represent ground states of critical,
fermionic systems exhibiting both 1d and 0d Fermi surfaces on a 2D lattice with an efficient scaling of the
bond dimension. Extrapolating finite size results for the Gaussian restriction of fermionic projected
entangled-pair states to the thermodynamic limit, the energy precision as a function of the bond dimension
is found to improve as a power law, illustrating that an arbitrary precision can be obtained by increasing the
bond dimension in a controlled manner. In this process, boundary conditions and system sizes have to be
chosen carefully so that nonanalyticities of the Ansatz, rooted in its nontrivial topology, are avoided.
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In one spatial dimension, physically relevant states of
quantum many-body systems with a local and gapped
Hamiltonian can be represented efficiently by matrix
product states (MPS) [1,2]. A natural extension of this
construction to higher dimensions was formulated in the
form of projected entangled-pair states (PEPS) [3,4]. Both
Ansätze owe their versatile applicability to an inherent area
law of entanglement [5,6]. However, critical systems, with
correlations following a power-law decay, can violate this
area law in a logarithmic manner. Do tensor networks like
MPS and PEPS then still represent efficient Ansätze for the
relevant states of such critical models? In one dimension,
this question was already answered in an affirmative way.
For gapped and criticalmodels alike, finite-size ground states
can be represented faithfully as MPS with a cost that scales
polynomially in the system size [7]. In the thermodynamic
limit, local quantities can still be obtained efficiently from
MPS ground state approximations, even for critical systems.
The theory of finite-entanglement scaling dictates correc-
tions to local observables that vanish algebraically in the
bond dimension [8–12]. Finite-entanglement scaling with
PEPS has recently also been explored for two-dimensional
critical systems which are described by bosonic conformal
field theory [13–16]. Here, we aim to investigate how
efficiently we can approximate fermionic critical states, in
particular those exhibiting Fermi surfaces.
In fermionic systems, logarithmic violations of the area

law of entanglement go hand in hand with the presence of
codimension one Fermi surfaces [17,18]. These disconti-
nuities in the system’s momentum distribution manifest
themselves already in translation-invariant, quadratic mod-
els as continuous sets of zero energy modes in Fourier
space. However, the relation between the presence of Fermi
surfaces and the entanglement scaling is not qualitatively

altered by the presence or absence of interactions. Therefore,
wewill focus on free-fermion systems with a Fermi surface,
which allows for the application of the Gaussian and
fermionic version of the PEPS Ansatz (GfPEPS) [19],
thereby reducing the computational cost of the required
simulations.We first show that in one dimension these states
can reproduce the aforementioned power-law improvement
of the precision as a function of the bond dimension by
considering the critical points of the Kitaev chain.
Subsequently, both 1D and 0D Fermi surfaces in 2D lattice
systems are treated by considering the p-wave supercon-
ductor. In both cases, we again obtain a power-law relation
between bond dimension and precision in the thermody-
namic limit (albeit with different exponents), indicating that
PEPS can describe gapless models and in particular Fermi
surfaces of arbitrary dimensions.
Gaussian fermionic PEPS.—Consider a 2D lattice built

up by a periodic repetition of N1 × N2 ¼ N unit cells,
spanned by a1 and a2. To each vertex we attribute f
physical fermionic orbitals with creation (annihilation)

operators aj
†

n ðajnÞ, where n ¼ niai with ni ¼ 0;…; Ni −
1 is the site and j ¼ 1;…; f the orbital index. Corres-

ponding Majorana operators are denoted by c2j−1n ¼ aj
†

n þ
ajn and c

2j
n ¼ −iðaj†n − ajnÞ. Within this framework, a PEPS

Ansatz is obtained by first introducing four sets of virtual
Majoranas per site: fcl;i1n g, fcr;i1n g, fcd;i2n g, and fcu;i2n g with
i1 ¼ 1;…; χ1 and i2 ¼ 1;…; χ2. Next, a maximally corre-
lated state ρin is constructed on the virtual level by
entangling neighboring Majoranas in both directions (see
Fig. 1). This is realized by placing the Majoranas in their
joint vacuum, essentially creating χi virtual Majorana
chains in the direction of ai. Finally, the maximally
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correlated state is locally projected onto the physical level
by a channel E ¼ ⊗

n
Eloc
n encoding the fermionic PEPS

tensor and yielding the (possibly mixed) ρout ¼ EðρinÞ (see
Supplemental Material [20] for more details on ρin and E).
By increasing the number of virtual Majoranas, the
variational set can be enlarged. Note that, as the number
of Majoranas can be different in each direction, the
resulting effective bond dimensions, Di ¼

ffiffiffi

2
p

χi , can differ
as well.
Since ρin is a free-fermion state, Gaussianity of

the PEPS can be enforced by restricting the channel E to
be Gaussian as well [21,22]. Not only can then both the
input and the output state be fully described in terms of
their real and antisymmetric correlation matrices, Γij

nm ¼
ði=2ÞTrðρ½cin; cjm�Þ, but there is also a link between both,
prescribed by E, in the form of a Schur complement,
Γout ¼ Aþ BðDþ Γ−1

in Þ−1BT . Here, E is in fact parametri-
zed by A ¼ ⨁nA

loc
n and analogous decompositions apply

for B and D with Aloc
n ∈ R2f×2f, Bloc

n ∈ R2f×2ðχ1þχ2Þ, and
Dloc

n ∈ R2ðχ1þχ2Þ×2ðχ1þχ2Þ. Furthermore, X ¼ ð A
−BT

B
DÞ is anti-

symmetric and XXT ≤ 1 with the equality holding for a
pure state.
For translation-invariant Gaussian states, it is more con-

venient to work in Fourier space where these states can be
described completely in terms of the Fourier transformed
correlation matrix, Gij

kq ¼ ði=2ÞTrðρ½dik; dj
†

q �Þ. Herein,
dik ¼ ð1= ffiffiffiffi

N
p ÞPn e

−ik·ncin with momentum modes k. In
the case of periodic boundary conditions these are given
by k ¼ P

iðki=NiÞbi, where bi are the reciprocal lattice
vectors and ki ¼ 0;…; Ni − 1, whereas for antiperiodic
boundary conditions k ¼ P

ið1=NiÞðki þ 1
2
Þbi. The

Fourier transformed correlation matrix is anti-Hermitian,
GG† ≤ 1 (with the equality again holding for a pure state)
and for translation-invariant states G decomposes in diago-
nal blocks G ¼ ⨁

k
GðkÞ with, for instance,

GinðkÞ ¼
�

0 eik·a1

−e−ik·a1 0

�⊕χ1
⊕

�

0 eik·a2

−e−ik·a2 0

�⊕χ2

ð1Þ

for the input state [20]. Assuming translation invariance of
the PEPS, so that Eloc

n is independent of n, the transition
matrix X decomposes into identical blocks and yields
GoutðkÞ ¼ Aloc þ Bloc½Dloc − GinðkÞ�−1Bloc where the
purity of the input state was used to replace G−1

in ðkÞ
by −GinðkÞ.
As real-space correlation matrices are real valued, their

Fourier transformed analogues have the property that
Gð−kÞ ¼ G�ðkÞ. This implies that GðkÞ is real and
antisymmetric in points where k ¼ −k, the time-reversal
invariant modes (TRIMs). For pure Gaussian states, these
GðkÞ can thus be interpreted as ordinary, pure correlation

matrices with a definite parity hPki ¼ hð−1Þ
P

j
aj

†
k ajki ¼

hQj id
jð1Þ
k dj

ð2Þ
k i ¼ Pf½GðkÞ�. Any pure fermionic Gaussian

state hence has a specific TRIM parity configuration. E.g.,
the GinðkÞ of the input state [Eq. (1)] amounts to hPkiin ¼
Pf½GinðkÞ� ¼ ðeik·a1Þχ1ðeik·a2Þχ2 so that the center of the
Brillouin zone always has an even parity, hP0iin ¼ 1,
while for the other TRIMs hPðbi=2Þiin ¼ ð−1Þχi and
hP½ðb1þb2Þ=2�iin ¼ ð−1Þχ1þχ2 . A ðbi=2Þ jump in Fourier
space thus corresponds to an extra factor ð−1Þχi.
Remarkably, this virtual parity configuration is lifted to
the physical level by the Gaussian channel E. Indeed, in
order for the full pure PEPS Ansatz to have a fixed global
parity, the projectors from the virtual to the physical level
(i.e., the Kraus operators of Eloc

n ) are designed to be parity
conserving (changing) [19]. Combining this with their local
and translation-invariant nature, GfPEPS have the same
(opposite) parity configuration as the valence bond state.
We conclude that pure, regular GfPEPS can only realize
2d × 2 (even/odd χi in each direction and parity conserving
or changing E) parity configurations while for an arbitrary,
pure Gaussian state, there are 22

d
possible configurations.

Certain parity configurations thus cannot be reached by
GfPEPS in spatial dimensions larger than 1, unless singular
behavior is present [23–26].
Kitaev chain.—Consider the 1D Kitaev chain of

length N with Hamiltonian H¼−t
P

N−1
n¼0 ða†nanþ1þH:c:Þ−

Δ
P

N−1
n¼0 ða†na†nþ1þH:c:Þ−μ

P

N−1
n¼0 a

†
n. Further assume that t

is positive and that (anti-)periodic boundary conditions,
anþN ¼ ð−1Þan, apply. In Fourier space this can be
expressed as H ¼ P

k ϒ
†
k½hðkÞ · σ�ϒk − ðμ=2ÞN, where

hðkÞ ¼ ð−2t cos k;−2iΔ sin k;−μÞ, ϒk ¼ ðak a†−kÞT and
the k values are as prescribed in the previous section.
For jμj > 2t, the system is in a trivial phase with the
ground state reducing to a product state whenΔ ¼ 0 and all
momentum modes filled (empty) when μ > 2t (μ < −2t).
ForΔ ≠ 0 and jμj < 2t, on the other hand, the system is in a
topological phase with winding number jνj ¼ 1 and an
isolated gapless Majorana mode on both ends of the wire
when the chain is cut. Critical lines lie at μ ¼ �2t and at
Δ ¼ 0 when jμj < 2t (Fig. 2). We optimized GfMPS by

FIG. 1. Schematic of a GfPEPS on a 2D lattice with unit
vectors a1 and a2. Majorana modes (gray balls) are entangled
(blue lines) to form a maximally correlated state which is
locally projected by a Gaussian map (big blue circles) to the
physical fermions (red balls).
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minimizing their energy density for both gapless and
gapped parameter choices and for a number of virtual
Majorana modes, χ, ranging from 1 to 15. The resulting
energy density errors, defined as the difference between the
GfMPS energy density and that of the exact ground state at
the system size under consideration, are displayed in Fig. 2.
In the left panel, periodic boundary conditions apply

and for the critical hopping model at ðt; μ;ΔÞ ¼ ð1; 0; 0Þ
(point A in the phase diagram), a power-law improvement
of the precision is obtained in the case of an odd number
of virtual Majoranas. An even χ, on the other hand, yields
a saturating profile for Δe. Similar observations apply in
the chiral phase (point B) but with an even faster
convergence as the area law of entanglement is not
violated. In particular, GfMPS constitute an exact ground
state with χ ¼ 1 when Δ ¼ �t, μ ¼ 0. For gapless
Hamiltonians on the critical lines between the chiral
and trivial regions [e.g., point C at ðt; μ;ΔÞ ¼ ð1; 2; 1Þ],
we obtain a power-law improvement of the precision but
with a higher exponent than for the critical line between
the two topological phases. These findings exemplify
well-known results about the approximation of one-
dimensional critical points with MPS where the rate of
convergence depends on the conformal field theory (and,
in particular, the central charge) underlying the critical
point. Note that point C is indeed an Ising-like transition
(with conformal charge c ¼ 1=2), whereas point A cor-
responds to a massless Dirac fermion (with c ¼ 1).
Finally, optimization in the trivial phase (point D) results
in profiles similar to those in the chiral phase but with the
odd and even χ curves interchanged.

In the previous section we explained how the number of
virtual Majorana modes determines the parity configuration
of the regular GfMPS Ansatz: an even (odd) χ should be
used when the parity in the two TRIMs is equal (opposite).
When using a χ with the wrong parity, one TRIM (and thus
1 out of N modes in momentum space) cannot have the
correct correlation matrix, leading to an energy density
error of order 1=N, which is confirmed in Fig. 2(a). Only
singular behavior with nonanalyticities in the problematic
TRIMs can circumvent the fixed parity structure but this
fine-tuned case is not supported by our variational method
[20]. There is also a link between the parity configuration
and the Z2 invariant characterizing the topological features
of the model [27]. Here, this is reflected by the fact that an
even χ should be used in the trivial phase while an odd χ
should be utilized in the topological regions, in accordance
with the relevant underlying physics with isolated
Majorana edge modes. When using antiperiodic boundary
conditions, the TRIM in the zone center is never sampled.
As a result, fixed energy errors due to an incorrect parity
configuration will never occur and the resulting energy
convergence curves will not saturate. This is confirmed in
Fig. 2(b) and thus proves to be the most pragmatic solution
to study the convergence of the energy precision. Again, we
report a seemingly exponential improvement in the gapped
models whereas a power-law scaling (with different expo-
nents in A and C) is obtained at criticality. Finally, note that
adding one extra virtual Majorana to a GfMPS with a
correct parity configuration does not improve the energy
precision (in points A, B, and D). Indeed, this extra virtual
Majorana chain decouples completely from the physical
system, yielding a singular norm-zero state when closed
with periodic boundary conditions. Closing with antiperi-
odic boundary conditions on the other hand yields a
nonzero norm but with the same energy as with one
Majorana less. Only in point C, which is on the critical
line between the phases with opposing parity configura-
tions, does the addition of one virtual Majorana improve the
results. Indeed, as the TRIM at k ¼ π coincides with the
Fermi surface at this critical line, its ground state parity is
not uniquely defined.
p-wave superconductor.—Switching to 2D, the ana-

log of the Kitaev chain is the p-wave superconductor
on a square lattice. The Hamiltonian has an identical
Fourier space description but now with hðkÞ ¼
−2½tðcos kx þ cos kyÞ; iΔðsin kx þ i sin kyÞ; ðμ=2Þ�, where
the phase difference between the two spatial components
of the pairing term is necessary to open a gap. Again taking
t > 0, topologically, trivial regions are found when
jμj > 4t. For 0 < μ < 4t, one obtains a chiral phase with
Chern number C ¼ −1, whereas −4t < μ < 0 yields
C ¼ þ1. Critical lines lie in between and at analogous
places as for the 1D Kitaev chain (Fig. 3). For Δ ¼ 0
and −4t < μ < 4t the model exhibits a 1D Fermi surface.
In order to circumvent fixed energy errors related to

(a) (b)

FIG. 2. (a) Energy density error of optimized GfMPS for a
Kitaev chainwithN ¼ 1000 and periodic boundary conditions at 4
different points in the phase diagram (shown in the inset) as a
function of the bond dimension D ¼ ffiffiffi

2
p

χ . GfMPS with a χ that
reproduces the exact parity configuration can approximate the
exact solution with an arbitrary precision whereas the precision of
parity obstructed GfMPS saturates to values of order 1=N.
(b) Energy density error of optimized GfMPS for a Kitaev chain
with anti-periodic boundary conditions. As the TRIM in k ¼ 0 is
avoided, fixed energy errors due to incorrect parity configurations
do not occur. Results for two system sizes were compared,
showing that the thermodynamic limit is well probed atN ¼ 1000.
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problematic parity configurations, we will only work with
antiperiodic boundary conditions in both directions so that
for any system size the TRIM in the Brillouin zone center is
not sampled. Furthermore, the utilized linear system sizes
are always even so that also the other TRIMS are avoided.
GfPEPS were first optimized for point A where μ ¼ 0

and the model reduces to spinless fermions hopping on a
square lattice, exhibiting a one-dimensional Fermi surface
that divides the Brillouin zone in a filled and a vacated half.
The energy density errors as a function of both the
geometric mean of the bond dimensions,

ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
, and

the linear system size, L ¼ ffiffiffiffi

N
p ¼ N1 ¼ N2, are displayed

in Fig. 4. The right panel shows that by increasing the
system size and keeping

ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
fixed, the energy error

saturates, indicating that the thermodynamic limit is
probed. For the largest system size, this is the case for
all the considered bond dimensions and the curve for L ¼
1000 in Fig. 4(a) can hence be taken as the energy density
error as a function of

ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
in the thermodynamic limit.

Herein, a power-law improvement of the precision can
clearly be discerned. This curve was also copied in Fig. 3,
where we compare it to results obtained in a similar way for
the B and C points in the phase diagram. The B point was
studied because the exact parity configuration of the target
state cannot be reproduced by GfPEPS in this case due to
the incommensurate filling. The GfPEPS will thus approxi-
mate singular behavior. However, as we used antiperiodic
boundary conditions, this does not spoil the energy con-
vergence study and Fig. 3 confirms that the energy
precision increases according to the same power law as
for the square lattice hopping model. We conclude that 2D
models with 1D (and thus codimension one) Fermi surfaces
can (even in the thermodynamic limit) be approximated by
PEPS with an arbitrary precision by increasing the bond
dimension in a controlled way. To solidify this claim even
more, Fig. 5 displays the occupation number hnðkÞi ¼
ha†kaki of the GfPEPS with the highest bond dimension,
ðχ1; χ2Þ ¼ ð8; 7Þ, for point A and B, clearly showing that

the Fermi surfaces are resolved successfully. In the bottom
panels the filling profile along the diagonal of the Brillouin
zone is compared for multiple bond dimensions, again
demonstrating that by increasing the bond dimension, the
sharp edges of the Fermi surface are reproduced to a good
degree (see also Supplemental Material [20] for additional
results). Point C, on the other hand, is interesting because in
this case the criticality exists only in one k mode,
essentially realizing a 0D Fermi surface with a linear
dispersion around it, i.e., a Dirac cone. Optimizing
GfPEPS at point C shows that energy precision again
increases according to a power law. Just as in the 1D case
the exponent of this power law is higher than in the A and B

FIG. 3. Energy density error of optimized GfPEPS for the p-
wave superconductor (left) (with its phase diagram on the right
panel) and linear size L ¼ 1000 (thus probing the thermodynamic
limit) as a function of the geometric mean of the bond dimensions
ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
. In all the considered cases the energy precision improves

polynomially with
ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
, albeit with different exponents for A

and B with 1D Fermi surfaces and C with a Dirac cone.

(a) (b)

FIG. 4. Energy density error of optimized GfPEPS for the
square lattice hopping model (point A in Fig. 3) as a function of
(a) the geometric mean of the bond dimensions

ffiffiffiffiffiffiffiffiffiffiffiffi

D1D2

p
and

(b) the linear system size L. In the latter, χ ¼ χ1 þ χ2 with χ1 ¼
χ2ðþ1Þ when χ is even (odd). The thermodynamic limit is probed
for all bond dimensions when L ¼ 1000 and the onset of a power
law can be discerned in the left panel. Results for even and odd χ
are displayed separately to obtain smooth curves.

FIG. 5. The top panels display the occupation number nðkÞ¼
1
2
½1þði=2ÞðG11ðkÞ−G22ðkÞÞþ1

2
ðG12ðkÞþG21ðkÞÞ� of the opti-

mized GfPEPS with the highest bond dimension, ðχ1; χ2Þ ¼
ð8; 7Þ, for the spinless, square lattice hopping model with
commensurate (left) and incommensurate (right) filling (i.e.,
points A and B in Fig. 3, respectively). In the bottom panels,
occupations are compared for different combinations of Majorana
numbers along the diagonal of the Brillouin zone (red line where
kx ¼ ky), showing that the sharp edges of the Fermi surface are
reproduced increasingly well.
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points. Indeed, the area law of entanglement is not vio-
lated in C.
Conclusions.—We studied whether projected entangled-

pair states can be used to describe critical systems exhibit-
ing Fermi surfaces. This question was answered in an
affirmative way. Indeed, the Gaussian and fermionic
version of the PEPS Ansatz was successfully applied to
2D free-fermion systems with both 1D and 0D Fermi
surfaces. More specifically, we considered two critical
points of the p-wave superconductor with a 1D Fermi
surface and observed that in the thermodynamic limit the
precision of the GfPEPS approximations increased accord-
ing to similar power laws as a function of the bond
dimension. This is the 2D extension of earlier results
hereabout in 1D, that were also reproduced for the gapless
Kitaev chain. Furthermore, 0D Fermi surfaces exhibiting
Dirac cones were also shown to pose no difficulties for
PEPS as the energy precision for yet another critical point
of the p-wave superconductor also increased according to a
power law but with an even higher exponent.
Though we did not address the ability of fermionic PEPS

to approximate interacting systems with a Fermi surface
directly, the qualitative features of the convergence that we
obtain should be robust against adding interactions. Indeed,
it has been amply demonstrated that the success of PEPS
(and tensor networks more generally) is not affected by the
strength of interactions, but by the scaling of entanglement.
As interactions are not expected to affect the entanglement
scaling of critical points and Fermi surfaces [28,29], neither
should be the ability for PEPS to approximate them.
Moreover, energy densities obtained in this Letter present
an upper bound to those a generic (non-Gaussian) PEPS
would be able to attain for the same (quadratic)
Hamiltonian. Indeed, it can be expected that discarding
the free-fermion structure would further improve the
accuracy as already demonstrated for the 1D case [30].
Furthermore, the variationally optimized Gaussian PEPS
obtained in this Letter can play a significant role also in the
case of interacting systems. Indeed, the ground state of an
interacting system can first be approximated in a mean-
field-like manner by a Gaussian PEPS, which is then
converted to a generic (fermionic) PEPS tensor [19] (using
e.g. the formalism of super vector spaces [31]), in order to
serve as the initial state for a full-fledged variational
optimization over the set of all PEPS. Note that the effective
bond dimensions of the Gaussian PEPS in our simulations
should be within reach of current state-of-the-art PEPS
algorithms and make this a feasible approach, that will be
investigated further in forthcoming work.
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