
Spikemax: Spike-based Loss Methods for
Classification

Sumit Bam Shrestha1∗, Longwei Zhu1, Pengfei Sun1,2
1Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

2Ghent University, Belgium
Email: {sumit bam@i2r.a-star.edu.sg, wayne zhu@i2r.a-star.edu.sg, pengfei.sun@ugent.be}

Abstract—Spiking Neural Networks (SNNs) are a promising
research paradigm for low power edge-based computing. Recent
works in SNN backpropagation has enabled training of SNNs for
practical tasks. However, since spikes are binary events in time,
standard loss formulations are not directly compatible with spike
output. As a result, current works are limited to using mean-
squared loss of spike count. In this paper, we formulate the
output probability interpretation from the spike count measure
and introduce spike-based negative log-likelihood measure which
are more suited for classification tasks especially in terms of
the energy efficiency and inference latency. We compare our
loss measures with other existing alternatives and evaluate using
classification performances on three neuromorphic benchmark
datasets: NMNIST, DVS Gesture and N-TIDIGITS18. In ad-
dition, we demonstrate state of the art performances on these
datasets, achieving faster inference speed and less energy con-
sumption.

I. INTRODUCTION

Error backpropagation is the key technology that propels the
current deep learning revolution. The basic strategy for training
these Artificial Neural Networks (ANNs) is to compute the
gradient of a loss measure of the output of the network and
its desired target, and use gradient descent steps to arrive at
an optimal/sub-optimal set of parameters. It has been very
successful in various applications ranging from image classi-
fication, object recognition, object tracking, signal processing,
natural language processing etc. and many more.

Spiking Neural Networks (SNNs) have garnered increased
interest in recent times as a promising option for extremely low
power edge-based computing devices with the development of
neuromorphic hardware [1]–[5]. They are a more biologically
plausible form of ANNs whose computational unit is a spiking
neuron. Therefore, it’s input and output are both in the form
of spike events in time. Until recently, using backpropagation
for SNNs has been quite challenging, especially for deep ar-
chitectures. ANN to SNN conversion strategies [6]–[11] were
the only available options to configure practical SNN systems.
These methods, although effective, require a substantially large
amount of time steps to produce a reliable output. In addition,
they cannot be used to process event-based data directly as the
data is already in the form of spike which cannot be handled
natively by an ANN.

∗Corresponding Author

With recent efforts like [12]–[17], it is now possible to train
relatively deep SNNs (by SNN standards) using backpropaga-
tion. In these works, the loss measure is usually a mean-square
error of the spike count at the output or a loss measure of the
internal state, i.e. membrane potential of the output neurons
[18], [19]. In this paper, we propose spike-based negative
log-likelihood losses which are better suited for classification
tasks. We first propose an output probability estimate from
the output spike-trains and then subsequently use it in the
cross-entropy setting. We further derive the gradient of this
spike-based loss formulation. The proposed loss methods are
hyperparameter free which is a plus. We call this spike-based
loss formulation spikemax.

We have released1 the implementation of spikemax loss as
an add-on to SLAYER-PyTorch [15] repository which is an
SNN backpropagation implementation in PyTorch.

We experimentally evaluate the effectiveness of our loss
measure with other existing alternatives on three different neu-
romorphic benchmark problems: NMNIST [20], DVS Gesture
[21], and N-TIDIGITS18 [22]. We use these neuromorphic
benchmark datasets for evaluation because the SNN can di-
rectly process the raw data. As a result, there is no contribution
of input to spike conversion method and the performance
variation is solely due to the SNN training method. We report
state of the art, if not competitive, results on these benchmark
problems. In addition we also analyze the inference latency
and spike activity of the resulting network which translate
to power consumption in the hardware implementation and
evaluate the methods on based on their relative power profile.

The rest of the paper is organized as follows. We will briefly
introduce the preliminaries of an SNN and its gradient-based
training. Then, we will delve into spike-based losses. Here
we will formally introduce our spikemax loss and its variants
spikemaxg and spikemaxs. We follow it with experiments
on the aforementioned neuromorphic benchmark datasets and
their analysis. Finally, we will present the concluding remarks.

II. BACKGROUND

In this section, we will briefly introduce the preliminary
concepts of an SNN and gradient based training of an SNN
in the spiking domain.

1The code for spikemax loss is publicly available at: https://github.com/
lava-nc/lava-dl/blob/main/src/lava/lib/dl/slayer/loss.py

https://github.com/lava-nc/lava-dl/blob/main/src/lava/lib/dl/slayer/loss.py
https://github.com/lava-nc/lava-dl/blob/main/src/lava/lib/dl/slayer/loss.py


A. SNN Model

An SNN is a biologically plausible form of an ANN.
Succinctly put, an SNN is a special form of an ANN which
uses a spiking neuron as its activation/computational unit. A
spiking neuron is a mathematical abstraction of a biological
neuron. As a result an SNN inherits the intrinsic property of
information exchange in the form of events in time known as
spikes.

There are many models of a spiking neuron such as Leaky
Integrate and Fire (LIF) [23], [24], Adaptive Exponential In-
tegrate and Fire (AdEx) [25], Izhikevich [26], Spike Response
Model (SRM) [27], Hodgkin Huxley [28], etc. which repre-
sents the behavior of a biological neuron with a varying degree
of realism. In this paper, we focus on the simple yet versatile
SRM model of a spiking neuron. A SRM model of a spiking
neuron is completely defined by a spike response kernel, ε(·)
which describes the temporal response of the neuron to an
input spike; a refractory kernel, ν(·), which describes the
post-spike behavior of the neuron; and a neuron threshold, ϑ,
which describes how easily the neuron spikes. We use ε(t) =
t/τs exp(1− t/τs)Θ(t) and ν(t) = −2ϑ t/τr exp(1− t/τr )Θ(t)
as the spike response kernel and refractory kernels where τs
and τr are their respective time constants.

Mathematically, for a layer l with Nl neurons and inbound
spikes, s(l−1)(t), through the synaptic weights W (l−1) ∈
RNl×Nl−1 , the internal voltage or the membrane potential, of
the neuron is described as

u(l)(t) = W (l−1)
(
ε ∗ s(l−1)

)
(t) +

(
ν ∗ s(l)

)
(t) (1)

and the output of the layer is described as

s(l)(t) = fs

(
u(l)(t)

)
(2)

where fs(u(t)) =
∑

tf
δ(t − tf ) : {tf : u(tf ) ≥ ϑ} is the

spike function.

B. Gradient Based Training of SNN

Error backpropagation has been the workhorse for the
current advancement in deep learning. One of the earliest
attempts for error backpropagation in SNN was formulated in
SpikeProp [29]. The authors used event-based error backprop-
agation. Further developments in the work have been proposed
in [30]–[33]

On the other end of the gradient-based learning for SNN
spectrum is dt-based error backpropagation. These approaches
[12]–[16], [34] have been successful in recent times for
training deep SNNs. There are two main obstacles to be
tackled for dt-based error backpropagation in SNN. The first
is the derivative of the spike function (it is also an issue in
event-based backpropagation) and the second is the temporal
dependencies of the signals.

Since, the spike generation mechanism in a spiking neuron
is a discontinuous function, it’s derivative does not exist in
a mathematical sense. However, it is essential in the back-
propagation chain for gradient propagation. This issue can
be circumvented by using a proxy function for the spike

u− ϑ

∂fs
∂u

(a)

Forward Prop:

spike

PSP
ε ∗ s

Backprop:

error

temporal
credit

ε⊙ e

(b)

Fig. 1: Error backpropagation in SNN (a) Spike function derivative.
(b) Temporal credit assignment of an impulse error during backprop-
agation.

function derivative. There are different possible representations
of this proxy function such as spike escape rate function [15],
or simply a linear function with finite voltage support [12],
or a half-sigmoid function [34]. These proxy functions are
best interpreted as a surrogate gradient function as described
in [13]. Various forms of surrogate gradient functions are
depicted in Figure 1 (a).

Another important, and often overlooked (often for com-
putational reasons) aspect of dt-based error backpropagation
in SNN. However, it is important because of the inherent
temporal nature of a spiking neuron. An input spike at a point
of time to a spiking neuron induces a post-synaptic response
over a range of time. Therefore, it is necessary to compensate
for this behavior during error backpropagation. As shown in
Slayer [15], this forward temporal effect (represented by the
convolution operation in time: ∗) must be compensated by
similar temporal distribution of error signal back in time i.e.
correlation operation (⊙). This is illustrated in Figure 1 (b).

In this work, we use SLAYER-PyTorch [15] framework as
the SNN training method as it is publicly available2 and has
proven to be effective for training SNNs.

III. SPIKE BASED LOSSES

The training cost of the SNN, given a target spike train ŝ(t)
is usually formulated as

L =

∫ T

0

l(s(nl)(t), ŝ(t)) dt (3)

where nl is the last/output layer and t ∈ [0, T ] is the
simulation time interval. In spike regression problem, the
target spike train is usually known. In this case, with l(t) ={
ε ∗

(
s(nl) − ŝ

)
(t)

}2
, the cost can be formulated as a van-

Rossum distance [35].
However, the target spike train is not known for classifica-

tion problems. Typically, in SNN based classification, we want
the true output neuron to spike the most number of times.
One of the prevalent strategies is to maximize the membrane
potential of the true output neuron [14], [36], usually at the
end of simulation time. One would have to wait till the end
of the simulation to get the classification output. In addition,
in a real neuromorphic hardware, the membrane potential is
not visible. Although maximizing membrane potential usually

2SLAYER-PyTorch is publicly available at: https://github.com/bamsumit/
slayerPytorch

https://github.com/bamsumit/slayerPytorch
https://github.com/bamsumit/slayerPytorch


results in more spike count, however, it does not guarantee it
always.

Another common strategy is to directly maximize the spike-
count or spike-rate [12], [15]. The spike-rate loss can be
formulated as

L =

{
1

T

∫ T

0

s(nl)(t) dt− r̂

}2

(4)

where r̂ is the desired spike rate at the output.
Next, we will formulate negative log-likelihood losses based

on the probability interpretation of spikes. This is the main
theoretical contribution of the paper.

A. Probability Interpretation of Spikes

Each spike event at the output is like a vote for the output
being that particular class. The count of the spike, thus,
represents the totality of the votes, which can be defined as

ci(t) =

∫ t

t−W

si(τ) dτ (5)

where W is the spike count estimate window and i ∈
{0, 1, · · · , Nnl

− 1} is the neuron index. Then the probability
estimate of the output at time t is

pi(t) =
ci(t)∑Nnl
−1

i=0 ci(t)
(6)

One can make the length of the sliding window as large
as the simulation interval. In that case, the global probability
estimate is

pi =
ci∑Nnl
−1

i=0 ci
, where ci =

∫ T

0

si(τ) dτ (7)

Note the absence of time dependency disambiguates between
running probability estimate and global probability estimate.

B. Spikemax Losses

With the probability estimate from the spike output and one-
hot target output ŷi(t) = ŷi, we formulate the negative log-
likelihood loss as follows:

L =
1

T

∫ T

0

l(t) dt , l(t) = −
∑
i

ŷi(t) log
(
pi(t)

)
(8)

We term this formulation of loss as spikemax. The gradients
with respect to spikemax loss are

∂L
∂pi(t)

=
∂L
∂l(t)

∂l(t)

∂pi(t)
= − ŷi(t)

pi(t)
(9)

∂pk(t)

∂ci(t)
=

{
1−pi(t)∑

i ci(t)
if i = k

− pk(t)∑
i ci(t)

otherwise
(10)

∂L
∂si(t)

=

 ∂L
∂pi(t)

∂pi(t)

∂ci(t)
+
∑
k ̸=i

∂L
∂pk(t)

∂pk(t)

∂ci(t)

 ∂ci(t)

∂si(t)

=
pi(t)− ŷi(t)

ci(t)/W
. (11)

Note, for numerical stability, an infinitesimal count can be
added. In addition, using the global probability estimate, we
define the spikemaxg loss and derive it’s gradient as

L = −
∑
i

ŷ log(pi),
∂L

∂si(t)
=

pi − ŷi
ci/T

. (12)

It is also possible to use softmax probability estimate from
spike count and use negative log-likelihood loss.

ps
i =

exp(ci)∑Nnl
−1

i=0 exp(ci)
(13)

L = −
∑
i

ŷ log(ps
i),

∂L
∂si(t)

= ps
i − ŷi (14)

We will simply call it spikemaxs in the rest of this paper.
With losses and their respective gradient formulation de-

rived, we can incorporate them in the SLAYER-PyTorch
computational graph to train an SNN. The advantage of the
proposed loss methods in contrast to the common spike-rate
loss formulation is that spikemax losses are parameter free
i.e. there is no need to tune the output spike rates manually.
In addition, spikemax loss optimizes the spiking output for
producing continuous classification output using a sliding
window, therefore, is more suitable for use in a real-time
system.

IV. EXPERIMENTS AND RESULTS

In this section, we will compare the performance of spike-
max losses with spike-rate loss on three different neuromor-
phic classification tasks. We use SLAYER-PyTorch [15] as
our SNN backpropagation framework. Our loss methods are
implemented on top of it.

All the results presented in this paper are averaged over 5
different independent trials. Same random seeds were used for
each of the loss methods for a fair comparison. We will follow
the shorthand notation in [15] to represent the architecture:
layers are separated by -, spatial dimensions are separated by
x, an N×N convolution filter with K channels is represented
by KcN, an N×N aggregate pooling filter is represented by Na
and a dense layer with N neurons is represented by the number
itself. Note that the convolution and dense layer neurons also
have trainable axonal delays [37]. In all our experiments,
we use neuron threshold ϑ = 10 mv, and sampling time of
1 ms. The spike response time constant, τs, and refractory
time constant, τr, were optimized for each of the datasets. We
consider the datasets with inputs as spike events which are then
fed directly to the SNN. This also eliminates spike encoding
out of the processing pipeline and hence we can focus on SNN
training only.

We will compare the results based on the overall accuracy
obtained. We will also see how the methods compare in
terms of inference latency. In a real system, the network
that can classify with reliable accuracy faster does not need
to look at the entire duration of the input, therefore, can
result in a power efficient inference system. We compare
the network’s classification accuracy versus the time-length



TABLE I: Benchmark Classification Results

Method Params Accuracy
N

M
N

IS
T

Lee et al. [38] 1,857,600 98.66%
Wu et al. [12] 17,664,256 99.53%
Spike-based BP. [39] 68,537,760 99.61%
spike-rate 2,171,728 99.33± 0.03%
spikemax 2,171,728 99.27± 0.02%
spikemaxg 2,171,728 99.33± 0.04%
spikemaxs 2,171,728 99.26± 0.06%

D
V

S
G

es
tu

re

TrueNorth [21] 1,992,476 91.77(94.59)%
DECOLLE [36] 1,245,696 95.54%
Ghosh et al. [40]† 2,119,080 95.94%
Spike-based BP. [39] 6,798,292 97.57%
spike-rate 1,068,368 96.21± 0.63%
spikemax 1,068,368 95.83± 0.48%
spikemaxg 1,068,368 95.53± 0.37%
spikemaxs 1,068,368 95.15± 0.65%

N
-T

D
ID

IG
IT

S1
8 GRU-RNN [22]† 109,200 90.90%

Phased-LSTM [22]† 610,500 91.25%
ST-RSBP [41] 351,241 93.63± 0.27%
spike-rate 84,736 94.19± 0.18%
spikemax 84,736 93.21± 0.32%
spikemaxg 84,736 93.01± 0.38%
spikemaxs 84,736 92.43± 0.25%

† Non SNN implementation.

of the input sequence to evaluate the network’s latency for
classification. Lower classification latency means that we do
not need to process the rest of the inputs which saves the
energy consumption of the end system. In addition, we will
compare the networks in terms of average spike count. Since
we are not implementing the system in a hardware, spike
count is a good measure of the relative inference energy of the
network [14]. More spike activity usually means more energy
is consumed by the neuromorphic hardware during inference.
Ideally, one would want higher accuracy, earlier inference and
low spike count.

A. NMNIST digit classification

NMNIST dataset [20] is the neuromorphic version of stan-
dard MNIST images. The images are converted into spikes
using a Dynamic Vision Sensor (DVS) moving on a pan-
tilt unit in a three-saccadic motion, each lasting 100 ms
long. Resulting event-data is 34 × 34 pixels, with “on” and
“off” spike-events. The events last for 300 ms per sample.
In our experiments, we do not stabilize the NMNIST data to
compensate the saccadic movement. Raw spike data is used,
without any processing. The train and test split is the same as
standard MNIST: 60,000 training samples and 10,000 testing
samples.

We use a spiking CNN architecture with the following
specification: 34x34x2-16c5-2a-32c3-2a-64c3 -512-10.
The neuron time constants are (τs, τr) = (1, 1) ms, the target
spike rate are (True,False) = (0.2, 0.04) for spike-rate loss,
and W = 30 for spikemax loss. The overall classification
results for our loss methods are listed in Table I with other
reported benchmarks. The overall accuracy for spike-rate,
spikemaxs, spikemaxg and spikemax loss are very similar
at around 99.3%. The result is lower than the best reported

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

time (ms)

T
es
ti
n
g
A
cc
u
ra
cy

spike-rate
spikemax
spikemaxg
spikemaxs

Fig. 2: Testing accuracy over inference runtime for NMNIST classi-
fication.

0 2 4 6

·105

spike-rate

spikemax

spikemaxg

spikemaxs

Spike Count

layer 0
layer 1
layer 2
layer 3
layer 4

Fig. 3: Spike count distribution per layer for NMNIST classification.

accuracy of 99.61% [39] on NMNSIT. However, the network
we use is significantly smaller (31× less parameter).

Figure 2 shows the plot of accuracy and inference latency.
Spikemax networks clearly show the minimum inference
latency (≈ 70 ms) among all the methods whereas spike-
rate networks demonstrate the slowest inference latency (≈
250 ms). The networks trained with negative log-likelihood
losses (spikemaxs, spikemax and spikemaxg) clearly show
faster inference times compared to spike-rate networks.

The plot of average spike count per layer is shown in
Figure 3. The networks trained with spike-rate spike the most
whereas spikemaxs networks demonstrate minimum spike.

B. DVS Gesture classification

The DVS Gesture [21] is a public dataset by IBM Research.
It is a neuromorphic dataset that consists of 29 different
individuals performing 11 hand gestures (clapping, drumming,
hand-wave, etc.) under three different lighting environments
captured using a DVS camera. The standard train-test split of
first 23 subjects for training and the last 6 subjects for testing
is used. The data is 128×128 pixels wide with “on” and “off”
polarity. We train on randomly sampled 300 ms long sequence
and test on first 1.5 s event sequence.

The network architecture is 128x128x2-4a-16c5

-2a-32c3-2a-512-11 . The neuron time constants
are (τs, τr) = (5, 5) ms, the target spike rate are
(True,False) = (0.35, 0.07) for spike-rate loss, and W = 35
for spikemax loss. The results are listed in Table I. We report
the best accuracy of 96.97% using spikerate loss. spikemaxs,
spikemax and spikemaxg results are also very good: better
than the results using non-spiking CNN [40] and other SNN



0 200 400 600 800 1,000 1,200 1,400

0.2

0.4

0.6

0.8

1

time (ms)

T
es
ti
n
g
A
cc
u
ra
cy

spike-rate
spikemax
spikemaxg
spikemaxs

Fig. 4: Testing accuracy over inference runtime for DVS Gesture
classification.

0 1 2 3 4

·106

spike-rate

spikemax

spikemaxg

spikemaxs

Spike Count

layer 0
layer 1
layer 2
layer 3

Fig. 5: Spike count distribution per layer for DVS Gesture classifi-
cation.

based approaches. Compared with the latest best-reported
result [39], we only use 6× less parameter.

Figure 4 shows the plot of accuracy versus inference time
for all the loss methods. We can observe that spikemax loss
is able to reliably predict the classification output as early
as approx. 50 ms. The networks trained using spike-rate and
spikemaxs show inference latency of approx. 100 ms and the
networks trained using spikemax show inference latency of
approx. 150 ms. Past 200 ms, the inference accuracy of all
the networks are similar and saturate after 700 ms.

The average spike count distribution of each layer of the
networks is shown in Figure 5 for the final inference time
of 1500 ms. Spikemaxg networks demonstrate the least spike
activity among all, therefore, are relatively energy efficient.
However, these networks require a longer inference time.

C. N-TIDIGITS18 audio classification

N-TIDIGITS18 [22] is the neuromorphic version of the
TIDIGITS [42] audio classification dataset. The TIDIGITS
audio signals were converted into a 64 channel spiking events
using a silicon cochlea sensor: CochleaAMS1b [43]. The
output classes are digit utterances from “zero” to “nine” and
“oh”. We use the standard train-test split of the dataset as used
in [22].

We use a fully connected architecture, 64-256-256-11,
with neuron time constants, (τs, τr) = (5, 5) ms,
(True,False) = (0.2, 0.02), and W = 40, in our experiments.
The classification results are tabluated in Table I. We achieve
the best performance of 94.45% using spike-rate loss, better
than the recurrent SNN architecture [41] with 4× less pa-
rameters. Networks trained with spikemax also show good

0 500 1,000 1,500 2,000 2,500 3,000

0.2

0.4

0.6

0.8

time (ms)

T
es
ti
n
g
A
cc
u
ra
cy

spike-rate
spikemax
spikemaxg
spikemaxs

Fig. 6: Testing accuracy over inference runtime for N-TIDIGITS18
classification.

0 0.2 0.4 0.6 0.8 1

·105

spike-rate

spikemax

spikemaxg

spikemaxs

Spike Count

layer 0
layer 1
layer 2

Fig. 7: Spike count distribution per layer for N-TIDIGITS18 classi-
fication.

classification performance. Note that we achieve better results
than the conventional LSTM network [22] for all the loss
methods with 7× less network parameters.

Accuracy versus inference time is plotted in Figure 6. It
is clear that the networks trained with negative log-likelihood
based losses (spikemaxs, spikemax and spikemaxg) are able to
classify much earlier than the networks trained with spke-rate:
approx. 600 ms compared to approx. 2000 ms.

In Figure 7, the average spike count per layer for the trained
networks is plotted. The spikemaxs networks demonstrate a
remarkably low spike count. They also show earlier inference
amongst all other networks.

V. DISCUSSION

In this paper, we have proposed spike-based negative log-
likelihood based losses suitable to train an SNN for classifi-
cation tasks. We demonstrate state of the art, if not compet-
itive, classification performances on neuromorphic audio and
video datasets using these loss methods. We focus on purely
neuromorphic datasets so that we exclude the effectiveness of
spike-encoding process in the comparison and work directly
on the raw spike data.

We also compare the resulting networks in terms of their
inference time as well as the spike activity of the network.
These measures are a proxy for the energy consumed per in-
ference in a neuromorphic hardware. From the results, we can
clearly see that the proposed losses result in networks that start
to produce usable inference results earlier. Spikemaxs loss, in
particular, demonstrated considerably low spike activity in the
trained networks in two of the three benchmarks.



In addition, we also demonstrate very good classification
performances, using networks with fewer learnable parame-
ters. Particularly in N-TIDIGITS18 audio classification tasks,
our networks were able to outperform spiking recurrent net-
works as well as conventional LSTM and GRU networks. This
performance is not solely due to the loss method.

In conclusion, we show a way to use negative log-likelihood
loss in the spiking domain by estimating the probability
confidence from spikes. We see that these losses demonstrate
improvements in spike-based classification tasks, especially
from the energy perspective. The idea of probability estimate
can also be extended for other spike-based learning tasks. We
will consider these avenues in the future.

VI. ACKNOWLEDGMENTS

This research is partially supported by Programmatic grant
no. A1687b0033 from the Singapore government’s Research,
Innovation and Enterprise 2020 plan (Advanced Manufactur-
ing and Engineering domain) and the Flemish Government
under the ”Onderzoeksprogramma Artificiele Intelligentie (AI)
Vlaanderen”.

REFERENCES

[1] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S.
Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam,
Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K.
Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D.
Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha, “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[2] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana,
“The spinnaker project,” Proceedings of the IEEE, vol. 102, no. 5, pp.
652–665, 2014.

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, et al., “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–
99, 2018.

[4] Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C Stewart,
Nick N Oza, Aaron R Voelker, Chris Eliasmith, Rajit Manohar, and
Kwabena Boahen, “Braindrop: A mixed-signal neuromorphic architec-
ture with a dynamical systems-based programming model,” Proceedings
of the IEEE, vol. 107, no. 1, pp. 144–164, 2018.

[5] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang
Wu, Guanrui Wang, Zhe Zou, Zhenzhi Wu, Wei He, et al., “Towards
artificial general intelligence with hybrid tianjic chip architecture,”
Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[6] Eric Hunsberger and Chris Eliasmith, “Spiking deep networks with LIF
neurons,” CoRR, vol. abs/1510.08829, 2015.

[7] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy,
Rathinakumar Appuswamy, Alexander Andreopoulos, David J. Berg,
Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo
di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flick-
ner, and Dharmendra S. Modha, “Convolutional networks for fast,
energy-efficient neuromorphic computing,” Proceedings of the National
Academy of Sciences, vol. 113, no. 41, pp. 11441–11446, 2016.

[8] Qian Liu, Yunhua Chen, and Steve B. Furber, “Noisy softplus: an
activation function that enables snns to be trained as anns,” CoRR,
vol. abs/1706.03609, 2017.

[9] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii
Liu, and Michael Pfeiffer, “Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing,” in 2015 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[10] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and
Emre Neftci, “Conversion of artificial recurrent neural networks to
spiking neural networks for low-power neuromorphic hardware,” in
2016 IEEE International Conference on Rebooting Computing (ICRC).
IEEE, 2016, pp. 1–8.

[11] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer,
and Shih-Chii Liu, “Conversion of continuous-valued deep networks to
efficient event-driven networks for image classification,” Frontiers in
Neuroscience, vol. 11, pp. 682, 2017.

[12] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi,
“Direct training for spiking neural networks: Faster, larger, better,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2019,
vol. 33, pp. 1311–1318.

[13] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke, “Surrogate
gradient learning in spiking neural networks,” IEEE Signal Processing
Magazine, vol. 36, pp. 61–63, 2019.

[14] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan
Srinivasan, and Kaushik Roy, “Enabling spike-based backpropagation
for training deep neural network architectures,” Frontiers in Neuro-
science, vol. 14, 2020.

[15] Sumit Bam Shrestha and Garrick Orchard, “SLAYER: Spike layer error
reassignment in time,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., pp. 1412–1421. Curran Associates, Inc.,
2018.

[16] Yingyezhe Jin, Wenrui Zhang, and Peng Li, “Hybrid macro/micro level
backpropagation for training deep spiking neural networks,” in Advances
in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., pp.
7005–7015. Curran Associates, Inc., 2018.

[17] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy, “Toward
scalable, efficient, and accurate deep spiking neural networks with
backward residual connections, stochastic softmax, and hybridization,”
Frontiers in Neuroscience, vol. 14, 2020.

[18] Pengjie Gu, Rong Xiao, Gang Pan, and Huajin Tang, “Stca: Spatio-
temporal credit assignment with delayed feedback in deep spiking neural
networks,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. 7 2019, pp. 1366–1372,
International Joint Conferences on Artificial Intelligence Organization.

[19] Chenxiang Ma, Junhai Xu, and Qiang Yu 0005, “A deep spike learning
through critical time points,” in International Joint Conference on
Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021.
2021, pp. 1–8, IEEE.

[20] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish
Thakor, “Converting static image datasets to spiking neuromorphic
datasets using saccades,” Frontiers in Neuroscience, vol. 9, pp. 437,
2015.

[21] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McK-
instry, Carmelo di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guil-
laume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael Debole, Steve
Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha, “A
low power, fully event-based gesture recognition system,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[22] Jithendar Anumula, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu,
“Feature representations for neuromorphic audio spike streams,” Fron-
tiers in Neuroscience, vol. 12, pp. 23, 2018.

[23] Wulfram Gerstner and Werner M Kistler, Spiking neuron models: Single
neurons, populations, plasticity, Cambridge university press, 2002.

[24] Hélène Paugam-Moisy and Sander M. Bohte, Handbook of Natural
Computing, vol. 1, chapter Computing with Spiking Neuron Networks,
pp. 335–376, Springer Berlin Heidelberg, 1st edition, 2011.

[25] Romain Brette and Wulfram Gerstner, “Adaptive exponential integrate-
and-fire model as an effective description of neuronal activity,” Journal
of Neurophysiology, vol. 94, no. 5, pp. 3637–3642, 2005.

[26] E.M. Izhikevich, “Simple model of spiking neurons,” Neural Networks,
IEEE Transactions on, vol. 14, no. 6, pp. 1569–1572, 2003.

[27] Wulfram Gerstner, “Time structure of the activity in neural network
models,” Phys. Rev. E, vol. 51, pp. 738–758, Jan 1995.

[28] Alan L Hodgkin and Andrew F Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of physiology, vol. 117, no. 4, pp. 500, 1952.



[29] Sander M Bohte, Joost N Kok, and Han La Poutre, “Error-
backpropagation in temporally encoded networks of spiking neurons,”
Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002.

[30] Sumit Bam Shrestha and Qing Song, “Robustness to training distur-
bances in SpikeProp learning,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 7, pp. 3126–3139, 2018.

[31] Sumit Bam Shrestha and Qing Song, “Event based weight update
for learning infinite spike train,” in 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), Dec 2016,
pp. 333–338.

[32] Yan Xu, Xiaoqin Zeng, Lixin Han, and Jing Yang, “A supervised multi-
spike learning algorithm based on gradient descent for spiking neural
networks,” Neural Networks, vol. 43, no. 0, pp. 99 – 113, 2013.

[33] Iulia M. Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher,
Andrea Gesmundo, and Jyrki Alakuijala, “Temporal coding in spiking
neural networks with alpha synaptic function,” 2019.

[34] Friedemann Zenke and Surya Ganguli, “SuperSpike: Supervised learning
in multilayer spiking neural networks,” Neural computation, vol. 30, no.
6, pp. 1514–1541, 2018.

[35] Justin Dauwels, François Vialatte, Theophane Weber, and Andrzej
Cichocki, “On similarity measures for spike trains,” in Advances in
Neuro-Information Processing, pp. 177–185. Springer, 2008.

[36] Jacques Kaiser, Hesham Mostafa, and Emre Neftci, “Synaptic plasticity
dynamics for deep continuous local learning (decolle),” Frontiers in
Neuroscience, vol. 14, pp. 424, 2020.

[37] Pengfei Sun, Longwei Zhu, and Dick Botteldooren, “Axonal delay as
a short-term memory for feed forward deep spiking neural networks,”
in ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022, pp. 8932–8936.

[38] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer, “Training deep
spiking neural networks using backpropagation,” Frontiers in Neuro-
science, vol. 10, pp. 508, 2016.

[39] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang,
and Yonghong Tian, “Incorporating learnable membrane time constant
to enhance learning of spiking neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
2661–2671.

[40] Rohan Ghosh, Anupam Gupta, Andrei Nakagawa, Alcimar Soares,
and Nitish Thakor, “Spatiotemporal filtering for event-based action
recognition,” arXiv preprint arXiv:1903.07067, 2019.

[41] Wenrui Zhang and Peng Li, “Spike-train level backpropagation for
training deep recurrent spiking neural networks,” in Advances in
Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, Eds., pp.
7802–7813. Curran Associates, Inc., 2019.

[42] R Gary Leonard and George Doddington, “Tidigits speech corpus,”
Texas Instruments, Inc, 1993.

[43] Shih-Chii Liu, André van Schaik, Bradley A Minch, and Tobi Delbruck,
“Asynchronous binaural spatial audition sensor with 2times64times4
channel output,” IEEE transactions on biomedical circuits and systems,
vol. 8, no. 4, pp. 453–464, 2013.


	Introduction
	Background
	SNN Model
	Gradient Based Training of SNN

	Spike Based Losses
	Probability Interpretation of Spikes
	Spikemax Losses

	Experiments and Results
	NMNIST digit classification
	DVS Gesture classification
	N-TIDIGITS18 audio classification

	Discussion
	Acknowledgments
	References

