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ABSTRACT 

A human listener embedded in a sonic environment will rely on meaning given to sound events as 

well as on general acoustic features to analyse and appraise its soundscape. However, currently used 

measurable indicators for soundscape mainly focus on the latter and meaning is only included indi-

rectly. Yet, today’s artificial intelligence (AI) techniques allow to recognise a variety of sounds and 

thus assign meaning to them. Hence, we propose to combine a model for acoustic event classification 

trained on the large-scale environmental sound database AudioSet, with a scene classification algo-

rithm that couples direct identification of acoustic features with these recognised sound for scene 

recognition. The combined model is trained on TUT2018, a database containing ten everyday scenes. 

Applying the resulting AI-model to the soundscapes of the world database without further training 

shows that the classification that is obtained correlates to perceived calmness and liveliness evalu-

ated by a test panel. It also allows to unravel why an acoustic environment sounds like a lively square 

or a calm park by analysing the type of sounds and their occurrence pattern over time. Moreover, 

disturbance of the acoustic environment that is expected based on visual clues, by e.g. traffic can 

easily be recognised. 

 

1. INTRODUCTION 

ISO standard ISO 12913-1:2014 defines an urban soundscape as the acoustic environment as per-

ceived and understood by people or society within a context. This definition stresses the importance 

of the human in the emergence of a soundscape and thus goes well beyond the physics of sound 

waves, amount of energy, or even spectral information. Understanding implies that meaning is asso-

ciated to the sound that is perceived. An meaning can be understood as the associations triggered in 

the human mind by the perception of the sounds in a given context [1]. Assigning a verbal label to 

the sounds that are heard, is a typical human way of assigning and communicating meaning. Thus, 

measurement equipment capable of automatically classify the sonic environment with soundscape in 

mind should be able to classify the sounds that could be heard in the sonic environment, where clas-

sifying in this context refers to assigning verbal labels (auditory event classification, AEC). In earlier 

work, prior to the advent of modern artificial intelligence, we showed that there is a relationship 

between automatic event classification and soundscape quality  [2]. 

The type of sounds that can be identified contribute to the overall soundscape perception and hence 

the above-mentioned ISO standard also stipulates that assessment of soundscapes via interviews 
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should also include a question on the types of sounds that can be heard. But, soundscape is more 

holistic than a simple sum of the sounds that people hear. It is governed by a complex interplay of 

attention and saliency [3], expectations [4], and audiovisual interactions [5].  

Artificial Intelligence methods today are far from being able to take into account all these factors that 

affect human perception and understanding. However, strong advances have been made in the areas 

of Acoustic Event Classification (AEC) [6] and Acoustic Scene Classification (ASC). The latter re-

ferring to the detection of a typical sound environment for a specific (urban) environment, e.g. the 

soundscape of a park. It stands beyond doubt that ASC and AEC are strongly related and hence mul-

tiple attempts have been made to combine part of the task  [7,8]. Most prior work in this area assumes 

that the relevant basic features for classification are the same resulting in a common set of feature 

extracting layers in the convolutional neural networks (CNN) or transformer models. Here, we intro-

duce a second link at the level of the labeled events which allows the scene classification not only to 

rely on the acoustic features but also on the pseudo-labels assigned to specific events. 

Acoustic scene classification adds an additional layer of meaning to the acoustic environment by 

identifying combinations of sounds together with a background ambience that make an environment 

sound typical. Yet, not only the probability of hearing specific sounds determine how an acoustic 

environment is perceived, also the sequence and interweaving of these sounds over time can have a 

noticeable influence. In this, predictability and complexity may be suitable indicators. Early music 

theory and urban soundscape analysis identified the complexity in the sequence of level and pitch as 

possible indicators  [9,10]. This type of complexity could be referred to as sensory complexity as it 

does not involve recognition and understanding. Similarly, once a sequence of recognized sounds is 

identified, the complexity this could be assessed [11]. This form of complexity may be referred to as 

semantic complexity to distinguish it from the former. The relevance of semantic complexity and 

predictability [12] for appraisal of soundscapes can be hypothesized on the basis of theories on the 

pleasure in predictability  [13]: an environment that is sufficiently predictable to allow predictive 

coding to be efficient, yet not too predictable may give the highest pleasure. Very complex and hardly 

predictable partners could only be appreciated by field experts  [14]. 

In this contribution we introduce a new model for collaborative acoustic scene and event classification 

and apply it to a collection of urban soundscape recordings. In Section 4 we will evaluate how this 

AI classification is related to human evaluation of these audiovisual environments and how semantic 

complexity calculated on the basis of the AEC typically varies between acoustic scenes. 

 

2. COLLABORATIVE ACOUSTIC SCENE AND EVENT CLASSIFICATION 

A few previous studies explored joint classification of scenes and events based on two frameworks: 

classification based on the same embedding space  [7] (denoted as Framework1), and classification 

based on shared low-level and separated high-level embedding spaces  [8,15,16] (denoted as Frame-

work2). Framework1 attempts to learn the same acoustic representations applicable to both scenes 

and events based on the multi-task learning paradigm  [17]. The resulting models are thus more effi-

cient as multiple tasks can be performed at the same time. However, models based on Framework1 

have difficulties adapting to the intricate scenes and events in real life using the same learned embed-

dings. Thus, Framework2 explores the shared joint scene-event representations and separated task-

dependent representations for ASC and AEC. The models based on Framework2 are able to utilize 

diverse information of both joint and individual representations of scenes and events, resulting in 

better performance  [18]. However, real-life acoustic scenes and audio events naturally have implicit 

relationships with each other, and these relationships between scenes and events are not fully explored 



 
and used in Framework2. To this end, we recently proposed a new Relation-Guided ASC (RGASC) 

model to further exploit and coordinate the scene-event relation for the mutual benefit of scene and 

event recognition [19]. 

 

Inspired by the idea of RGASC  [19], to jointly classify the auditory scene and label sound events, 

the collaborative scene-event classification (CSEC) framework is introduced. It uniquely extends 

current practice models by introducing a learnable coupling matrix between a scene classification 

branch that solely relies on basic acoustic features and an event identification branch that solely relies 

on acoustic features, to assist the acoustic scene classification. 

 
Figure 1 The proposed collaborative scene-event classification (CSEC) framework. 

As shown in Fig. 1, the input time-frequency representations are mapped by the encoder layers and 

transformed into the joint classification space of scenes and events. The shared encoder encodes input 

representations into joint scene-event representations 𝑹𝒔𝒆. Next, from the joint representations, the 

separated encoder further extracts scenes representations 𝑹𝑺 and events representations 𝑹𝑬, respec-

tively. Subsequent embedding layers transform 𝑹𝑺 and 𝑹𝑬 into the embeddings of scene 𝑬𝒔 and the 

embeddings of event 𝑬𝒆 in the latent semantic spaces.  Then, the scene classification layer maps the 

embeddings of scenes 𝑬𝒔 onto target scene components by 𝑾𝑺 and outputs the prediction of scene 

class 𝑦ො𝑠. Similarly, the event classification layer maps the embeddings of scenes 𝑬𝒆 by 𝑾𝑬 and out-

puts the prediction of scene class 𝑦ො𝑒. The weight matrices 𝑾𝑺 and 𝑾𝑬 in final classification layers 

can be viewed as the core knowledge about targets learned by the model.  

The proposed CSEC framework will first attempt to construct a coupling matrix 𝑾𝑺𝑬 based on the 

core knowledge 𝑾𝑺 and 𝑾𝑬  to capture the bidirectional relation between scenes and events, and next 

map the scene embeddings 𝑬𝒔 to event space based on the learned two-way relation matrix to infer 

the corresponding event. Then, the loss between the inferred event and the actual output of the event 

branch is calculated, and the loss is backpropagated to update relevant weights. Similarly, the event 

embeddings 𝑬𝒆 are first mapped into the scene space to infer the corresponding scene output, next 

the loss between the inferred scene output and the actual output of the scene branch is measured to 

correct the learnable weights to obtain more accurate estimates. In this process, the learnable 

𝑾𝑺𝑬 will model the implicit two-way scene-event relation, and the scene branch and event branch 

will collaborate to estimate each other’s output and classify their own targets with the assistance of 

the modeled scene-event relation, to learn better representations by considering different levels of 

information in input samples from different aspects simultaneously. 

On audio-related tasks, the Transformer-based Audio Spectrogram Transformer (AST)  [20] has re-

cently shown promising results. So, the proposed CSEC framework is instantiated on the AST to test 



 
the performance of CSEC-AST. Compared to convolution-based models  [21,22], convolution-free 

purely attention-based AST can be applied to audio spectrograms to capture long-range global con-

text. The spectrogram is split into a sequence of patches [20]. To learn the individual high-level rep-

resentations for the ASC and AEC, the scene-event joint representations 𝑹𝒔𝒆 are fed into the encoder 

layers of the ASC branch and the AEC branch in the CSEC-AST, respectively. The learned represen-

tations are then fed into the embedding layer to learn better mappings in the latent semantic space 

that will be later used for the final classification. The learning process of the coupling matrix in 

CSEC-AST is jointly driven by the losses between the derived results 𝑦𝑒ෝ  and 𝑦𝑠ෝ  and the actual pre-

dictions 𝑦ො𝑒 and 𝑦ො𝑠. 

For the dataset and training details, the development dataset of TUT Urban Acoustic Scenes 2018 

(TUT2018)  [23] with 8640 10-seconds segments from real life, totaling 24 hours of clips, is used in 

this paper. TUT2018 was recorded in six large European cities, in different locations for each scene 

class. The training/testing split of the TUT2018 dataset follows the default split of the DCASE 2018 

Task 1 Subtask A3. There are no event labels in the scene dataset TUT2018. Thus, the pretrained 

model AST is used to tag each audio clip with a pseudo label to indicate the probabilities of the 

corresponding audio events. During training, log Mel filterbank (fbank) [24] is used as the acoustic 

feature. The clip-level spectrograms are standardized by subtracting the mean and dividing the stand-

ard deviation along the frequency axis. For CSEC-AST, the audio clip is converted into a sequence 

of 128-dimensional fbank computed with the 25ms Hamming window and a hop size of 10ms, then 

the spectrogram is split into a sequence of patches following the settings of  [20]. The CSEC- AST is 

trained for a maximum of 50 epochs. A batch size of 64, and an Adam optimizer  [25] with an initial 

learning rate of 1e-6  [20] are used to minimize the losses in CSEC-AST. To prevent over-fitting, 

dropout [26] and normalization are used in this paper. 
 

3. THE SOUNDSCAPES-OF-THE-WORLD DATABASE AND ITS CLASSIFICATION  

The pretrained CSEC model is used to investigate a collection of soundscapes (https://urban-sound-

scapes.org/) that was collected at typical locations in cities around the world using the methodology 

described in  [27]. The database contains 130 unique settings where 360 degree video and ambisonics 

sound are recorded. From this database 60 sound environments were played back in virtual reality 

and evaluated by 20 persons  [28]. Of particular interest for this work is the answer to the first question 

asked after each one-minute fragment: In general how would you characterize the environment you 

just experienced? with five answer categories ranging from very calming/tranquil to very lively/ac-

tive. This question evaluates the environment as a whole, not the sonic environment in particular. The 

third question: How much did the sound draw your attention? is also considered here. 

Based on the visual setting each environment was manually classified as a park, a square or a street.  

The CSEC model is used to automatically classify the acoustic scenes. In this it should be noted that 

the training of the model allowed it to identify a wide range of acoustic scenes some of which did not 

occur in the soundscape-of-the-world database. Relevant categories are park, public square, and 

street/traffic acoustic scenes. 

Every second the acoustic event classifier estimates the probability for one of 527 labels to apply to 

the current sound. The sequence of probabilities indicates how strongly the meaning of the sound 

varies over time. The complexity of this sequence could be indicative for the appraisal of the sound 
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environment  [11,14]. Here, the semantic complexity is quantified using the recurrence plot and the 

indicators derived from this representation as presented in  [29]. For this analysis only the 10 on-

average most probable sounds are considered for every recording. Sounds that have a probability of 

occurrence of less than 5% at a given second are considered to be absent. 

 

4. RESULTS 

Table 1 compares the automatic acoustic scene classification with the visual classification of each of 

the recordings. The numbers indicate the co-occurrence of each combination of classifications. Most 

environments that look like parks also sound like parks although in 10 cases they sound like streets 

with a substantial amount of traffic. Hence, for a vast majority of the parks in the soundscapes of the 

world database, the soundscape matches expectations based on visual classification. For visually clas-

sified public squares, the situation is quite different. For most places, the sound environment is clas-

sified as street with traffic. In the training set, the public squares auditory scenes have been carefully 

selected to avoid traffic-noise dominated situations. For streets, the situation is again clear: when it 

looks like a street with traffic, it sounds like a street with traffic. 

Table 1: number of soundscapes in each combination of visual classification (manual) and automatic 

acoustic scene classification.  
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 automatic acoustic scene classification 

 park public square street / traffic tram metrostation 

park 34 3 10 3 1 

square 9 11 35 1 0 

street  0 1 17 0 1 

 

For 60 audiovisual recordings, an evaluation by 25 volunteers was performed previously  [28]. In a 

first question the environment experienced in virtual reality was rated on a five point scale ranging 

from very calming/tranquil (1) to very lively/active (5). Figure 2 shows the mean and standard devi-

ation of the response to this question for the automatically acoustic scene classifications that resulted 

in 19 park, 3 public square, and 25 street/traffic environments. As expected, acoustic scenes automat-

ically classified as parks are rated more calming and tranquil by people while acoustic scenes classi-

fied as public squares or street/traffic are rated more lively and active. A similar result is found for 

the answer on a question to what extend the sound has drawn attention of the evaluators of the audi-

ovisual environment experienced in virtual reality. The differences between classes are nevertheless 

somewhat smaller. 

 

 
Figure 2: response of human listener (mean and standard deviation) for soundscapes categorized as 

parks, public squares and streets with traffic by the automatic auditory scene classification; left: 
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evaluation on a calming-lively 5-point axis; right: how strongly does the sound environment  at-

tracts attention. 

 

The analysis of semantic complexity is based on two indicators extracted from the recurrence plot: 

the trapping time TT and the recurrence time of the second kind T2. Examples of soundscapes with 

very high T2 are R0118(Templo de Debod, Madrid), R0096 (Millennium Park – Crown Fountain, 

Chicago), R0084 (Fifth Avenue, New York), and R0007 (Chalet du Mont Royal, Montreal). Simply 

listening to these sounds online will already illustrate what this complexity indicator mean. Sound-

scapes where TT is particularly high can be found at R0126 (Užupis Art Incubator, Vilnius), R0119 

(Lukiškes Square, Vilnius), R0008 (McGill University campus, Montreal), and R133 (National Mu-

seum of Lithuania, Vilnius). The monotonicity of these soundscapes becomes particularly clear, but 

this is not necessarily correlated to a low noise level.  

When analyzing complexity for different acoustic scenes (Figure 3), it becomes clear that T2 seems 

to be lower and TT higher in acoustic scenes that are classified as parks. Acoustic scenes classified 

as public squares tend to have a more semantically complex sound environment.  

 

 
Figure 3:Indicators of complexity (trapping time TT and recurrence time of the second kind T2) of 

the sequence of sounds identified in each scene grouped by automatically classified acoustic scene; 

error bars indicated 95% confidence interval on the mean. 
 

4.    CONCLUSIONS 

It was shown that collaborative acoustic scene and event classification using artificial intelligence, 

even with models trained on other datasets, allows to label sounds in a collection of sound recordings 

from around the world, and at the same time can label the acoustic scene as a whole. Evidence of 

relevance of this labeling has been given using secondary analysis of the outcome. Firstly, the acous-

tic scene labels were compared to visual classification of the environment. The acoustic scene in 

places visually identified as parks seems to match this classification, while places visually identified 

as public squares are quite often acoustically labeled as streets with traffic. The latter comes as no 

surprise as many of the public squares are indeed very close to traffic routes. Secondly, the AI-based 

acoustic scene classification was compared to human labeling on a calm versus lively axis. Public 

square acoustic scenes are generally rated more lively whiles scenes classified as parks are rated on 

average less lively.  



 
To gain a better understanding on the reason for labeling sound environments lively or calming, a 

new concept has been introduced: semantic complexity. This concept measures the complexity of the 

temporal evolution of the different sounds that can be heard in a place. A constant hum even at rela-

tively high amplitude would be rated as non-complex, while an environment filled with voices, music, 

laughter; but also an environment filled with the sound of cars, busses, trucks and people become 

more complex. It can safely be assumed that the semantic complexity dimension aligns more with 

the arousal than with the valence axis in a circumplex model. Nevertheless, on average, the fluctuation 

of sounds in a park acoustic scene shows less complex behavior than the fluctuation of sound in a 

public square acoustic scene. Finally, it should be noted that the appraisal of complex sonic environ-

ments may depend on the abilities of the visitor to understand this environment, and thus on its age. 
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