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Abstract. Objective. Determining elastic properties of materials from observations

of shear wave propagation is difficult in anisotropic materials because of the complex

relations among the propagation direction, shear wave polarizations, and material

symmetries. In this study, we derive expressions for the phase velocities of the SH and

SV propagation modes as a function of propagation direction in an incompressible,

hyperelastic material with uniaxial stretch. Approach. Wave motion is included in

the material model by adding incremental, small amplitude motion to the initial,

finite deformation. Equations of motion for the SH and SV propagation modes are

constructed using the Cauchy stress tensor derived from the strain energy function

of the material. Group velocities for the SH and SV propagation modes are derived

from the angle-dependent phase velocities. Main results. Sample results are presented

for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model

parameters previously determined in a phantom. Significance. Results for the Mooney-

Rivlin and Isihara models demonstrate shear splitting in which the SH and SV

propagation modes have unequal group velocities for propagation across the material

symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara

material models show cusp structures with triple-valued group velocities for the SV

mode at angles of roughly 15◦ to the material symmetry axis.

Keywords : elastography, shear wave, phase velocity, group velocity, hyperelastic

material, uniaxial stretch
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1. Introduction

In a recent study, Caenen et al (2020) reported observations of shear wave propagation

following an acoustic radiation force impulse (ARFI) excitation in a stretched, polyvinyl

alcohol (PVA) phantom using a unique experimental configuration in which the stretch

axis of the phantom was tilted with respect to the plane perpendicular to the excitation

axis, see figure 2 of Caenen et al (2020). The process of stretching the (initially isotropic)

PVA introduces a symmetry axis in the material, making it a transversely isotropic

(TI) material with rotational symmetry about the axis, and reflection symmetry across

any plane parallel to the axis. This material can support both SH and SV shear wave

propagation modes with propagation velocities that depend on the material stretch. The

tilted excitation configuration used by Caenen et al (2020) allowed both the SH and

SV propagation modes to be excited simultaneously, and thereby allowed observation

of features such as shear splitting that cannot be observed in the common, nontilted

experimental setup in which only the SH propagation mode is observed.

Caenen et al (2020) analyzed their measurements by performing mechanical testing

in a sample of the PVA phantom to measure the stress-strain relation of the material,

which was then used to determine model coefficients for three hyperelastic models, the

Arruda-Boyce (1993), Mooney-Rivlin (Mooney 1940, Rivlin and Saunders 1951), and

Isihara (1951) models. These model coefficients were used in finite element simulations

with both tilted and non-tilted excitation configurations to generate shear wave signals

for stretch values ranging from zero to 114% as realized in the experiment. Results of

the simulations agreed with the observed measurements and, in particular, showed the

presence of shear wave splitting with the tilted excitation configuration for larger values

of stretch, thereby confirming the observation of both SH and SV wave propagation in

the material.

The variation in wave speed in a hyperelastic material with static deformation is

known as the acoustoelastic effect. Previous studies of this effect have been performed

in compressed and stretched phantoms including the studies by Gennisson et al (2007),

Urban et al (2015), and Chatelin et al (2014). In particular, Gennisson et al (2007)

observed both the SH and SV polarization modes for shear wave propagation in

orthogonal directions relative to the material axis of a compressed PVA phantom,

see figure 1 of Gennisson et al (2007). Rosen and Jiang (2019) have analyzed this

experimental geometry in the context of hyperelastic material models to relate the

measured speeds to material properties. The investigations reported by Urban et al

(2015) and Chatelin et al (2014) observed shear wave propagation with an experimental

configuration where the SH wave mode was observed for a full range of propagation

directions in a plane oriented perpendicular to the excitation axis, see, for example,

figure 2 of Chatelin et al (2014). These measurements were analyzed by fitting an

elliptical shape to the measured speeds as a function of the propagation direction and

determining the shear moduli for propagation along and across the material symmetry

axis. In addition, Gennisson et al (2007) and Urban et al (2015) determined the
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nonlinear shear modulus of the material by analyzing the measured shear moduli as a

function of the material deformation using a third order expansion of the strain energy

(Hamilton et al 2004, Destrade et al 2010).

The measurements reported by Caenen et al (2020) extend these investigations by

introducing a tilted excitation axis to allow the simultaneous excitation and observation

of SH and SV propagation modes over a full range of propagation directions. However,

analysis of these measurements is more complicated because the experiments observe

the group propagation velocities which, in general, are equal to the corresponding

phase velocities only for propagation in orthogonal directions relative to the material

symmetry axis. More general expressions for the SH and SV group velocities require

angular-dependent expressions for the phase velocities vSH(θ) and vSV (θ) for arbitrary

propagation direction. The phase velocities vSH(θ) and vSV (θ) are also required in

Green’s tensor calculations of shear wave signals as described by Rouze et al (2020).

In this study, we derive analytic expressions for the phase velocities vSH(θ) and

vSV (θ) of small amplitude wave propagation as a function of propagation direction θ

relative to the symmetry axis of an incompressible, hyperelastic material with finite,

uniaxial stretch. This derivation follows the procedure described by Boulanger and

Hayes (1992, 2001) by modeling a material with finite stretch using the perspective

of nonlinear solid mechanics (Holzapfel 2000), and then adding incremental, small

amplitude wave motion. Corresponding group propagation velocities can be derived

from vSH(θ) and vSV (θ) for comparison with experimental measurements. Sample

results are presented for the phase and group velocities in the Arruda-Boyce, Mooney-

Rivlin, and Isihara material models using model coefficients determined by Caenen

et al (2020). These results demonstrate the complex structures in angular-dependent

observations of SH and SV wave propagation and suggest methods for measuring

material model parameters from these observations.

2. Derivation of the phase and group velocities

2.1. Finite, uniaxial stretch

Figure 1 shows the coordinate system used to describe wave propagation in an isotropic

hyperelastic material with finite, uniaxial stretch. As sketched in figures 1(a) and 1(b),

the stretch causes a point P at reference position X = (X,Y, Z)T = (X1, X2, X3)
T in the

undeformed material to move to position x = (x, y, z)T = (x1, x2, x3)
T in the deformed

material. This stretch introduces a symmetry axis Â, and the material is transversely

isotropic (TI) with rotational symmetry about Â, and reflection symmetry across any

plane containing Â. For an incompressible material with stretch λ in the ẑ direction,

the reference and deformed positions are related as

x =
X√
λ
, y =

Y√
λ
, and z = λZ. (1)

The deformation gradient tensor F with components FiA = ∂xi/∂XA and the left
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Figure 1. Coordinate system used for the analysis of wave propagation in a stretched,

hyperelastic material. Figure 1(a) shows an isotropic, hyperelastic material in the

undeformed (reference) state with stretch λ = 1 and a point P at the coordinates

(X,Y, Z). Figure 1(b) shows the material after a uniaxial stretch in the z direction with

λ = 1.8 so that point P is located at the coordinates (x, y, z) given by (1). Figure 1(c)

shows the coordinates used to analyze wave propagation in the stretched material. The

material symmetry axis Â is aligned with the z axis, and shear wave propagation is

observed in the x − z plane with a propagation direction n̂ at an angle θ relative to

the z axis. Polarization vectors for the P, SH, and SV propagation modes are defined

relative to the Â− n̂ plane with the SH polarization vector oriented perpendicular to

the plane, SV polarization vector in the Â− n̂ plane and perpendicular to n̂, and the

P polarization vector oriented in the n̂ direction. For this analysis, wave motion in the

P propagation mode is ignored because the material is assumed to be incompressible.

The ζ, ξ, η coordinate system is aligned with the polarization vectors.

Cauchy-Green deformation tensor B = FFT are given by

F =

 1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ

 and B =

 1/λ 0 0

0 1/λ 0

0 0 λ2

 . (2)

Tensor invariants I1, I2, and I3 of B are given by

I1 = trB = λ2 +
2

λ
, I2 =

1

2

[
(trB)2 − tr

(
B2
)]

= 2λ+
1

λ2
, and I3 = detB = 1 (3)

where I3 = 1 because the material is incompressible.

2.2. Shear wave propagation superimposed on the static deformation

Following Boulanger and Hayes (1992, 2001), we model wave motion in the stretched

material by adding wave displacements to the initial deformation (1). Figure 1(c) shows

the coordinate system used to describe plane wave motion with propagation direction n̂

in the x− z plane at an angle θ relative to the ẑ = Â axis. Wave motion is described in

terms of the P, SH, and SV propagation modes identified by their polarization relative

to the propagation direction n̂ and material symmetry axis Â (Tsvankin 2012, Carcione

2015, Rouze et al 2013). The P propagation mode has longitudinal polarization and

corresponds to the acoustic wave. The SH and SV propagation modes correspond to

shear wave motion with transverse polarization perpendicular to the to the Â− n̂ plane
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for the SH mode, and transverse polarization in the Â− n̂ plane for the SV mode. Then,

the propagation direction and polarization vectors are given by

n̂ = P̂ P = η̂ =

 sin θ

0

cos θ

 , P̂ SH = ξ̂ =

 0

1

0

 , and P̂ SV = ζ̂ =

 cos θ

0

− sin θ

 (4)

where ζ̂, ξ̂, and η̂ are unit vectors for the ζ, ξ, η coordinate system aligned with the

polarization axes. For the incompressible material considered here, the speed of the

acoustic (P-mode) wave diverges, and only the SH and SV propagation modes are

considered henceforth.

We use a tilde notation to describe the combination of wave motion superimposed

on the stretched material. The total material deformation is given by

x̃ = x+ P̂ SHf(A
SH
, η, t) + P̂ SV g(A

SV
, η, t) (5)

where x is the deformation (1) without wave motion, and the two additional terms

describe plane wave motion with polarizations P̂ SH and P̂ SV for the SH and SV

propagation modes, respectively. Wave motion in the P propagation mode is not

included in this expression because the material is assumed to be incompressible. The

wavefunctions f(A
SH
, η, t) and g(A

SV
, η, t) can be written in terms of the coordinate

η = n̂ · x⃗ along the propagation direction as

f(A
SH
, η, t) = A

SH
eik(η−vSHt) and g(A

SV
, η, t) = A

SV
eik(η−vSVt) (6)

where A
SH

and A
SV

are the amplitudes, and vSH and vSV are the phase velocities of the

SH and SV propagation modes, respectively.

Including wave motion, components of the total deformation gradient tensor F̃ can

be calculated as F̃ iA = ∂x̃i/∂XA. To simplify this calculation, we introduce a tensor M

with components Mij = ∂x̃i/∂xj that characterizes the incremental deformation of the

superimposed wave motion. Then, components F̃ iA are given by

F̃ iA =
∂x̃i

∂XA

=
∂x̃i

∂xj

∂xj

∂XA

= MijFjA (7)

and F̃ is given by the product F̃ = MF. Components Mij of M can be calculated from

(5) and (6) using the relation η = n̂ · x⃗ = n̂kxk,

Mij =
∂x̃i

∂xj

= δij + P̂ SH
i

∂f

∂η
n̂j + P̂ SV

i

∂g

∂η
n̂j (8)

Then, using the notation fη = ∂f/∂η, gη = ∂g/∂η, s = sin θ, and c = cos θ, the

incremental deformation tensor M can be written as

M =


1 + gηsc 0 gηc

2

fηs 1 fηc

−gηs
2 0 1− gηsc

 . (9)
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The total deformation tensor B̃ = F̃F̃T = MBMT is given by

B̃ =



(1 + gηsc)
2 /λ

+ λ2g2ηc
4

fηs (1 + gηsc) /λ

+ λ2fηgηc
3

−gηs
2 (1 + gηsc) /λ

+ λ2gηc
2 (1− gηsc)

fηs (1 + gηsc) /λ

+ λ2fηgηc
3

(
f 2
η s

2 + 1
)
/λ

+ λ2f 2
η c

2

−fηgηs
3/λ

+ λ2fηc (1− gηsc)

−gηs
2 (1 + gηsc) /λ

+ λ2gηc
2 (1− gηsc)

−fηgηs
3/λ

+ λ2fηc (1− gηsc)

g2ηs
4/λ

+ λ2 (1− gηsc)
2


. (10)

In addition, M−1 is given by

M−1 =


1− gηsc 0 −gηc

2

−fηs 1 −fηc

gηs
2 0 1 + gηsc

 (11)

and B̃−1 =
(
MBMT

)−1
=
(
MT

)−1
B−1M−1 is given by

B̃−1 =



λ (1− gηsc)
2

+ λf 2
η s

2 + g2ηs
4/λ2 −λfηs

λ
[(
g2ηc

2 + f 2
η

)
sc− gηc

2
]

+ gηs
2 (1 + gηsc) /λ

2

−λfηs λ −λfηc

λ
[(
g2ηc

2 + f 2
η

)
sc− gηc

2
]

+ gηs
2 (1 + gηsc) /λ

2 −λfηc
λ
(
g2ηc

2 + f 2
η

)
c2

+ (1 + gηsc)
2 /λ2


. (12)

Invariants Ĩ1, Ĩ2, and Ĩ3 of B̃ can be calculated using (10) and (12). For Ĩ1,

Ĩ1 = tr B̃ = λ2 +
2

λ
− 2gη

(
λ2 − 1

λ

)
sc+

(
f 2
η + g2η

)(
λ2c2 +

1

λ
s2
)
. (13)

Invariant Ĩ3 is given by

Ĩ3 = det B̃ = det
(
MBMT

)
= (detM) (detB)

(
detMT

)
= 1. (14)

As expected, the result Ĩ3 = 1 indicates that the material with added wave motion is

incompressible because only shear (isovolumetric) wave motion is included in (5). Then,

using (14), invariant Ĩ2 is given by Holzapfel (2000),

Ĩ2 = det B̃ tr B̃−1 = 2λ+
1

λ2
− 2gη

(
λ− 1

λ2

)
sc+ λf 2

η + g2η

(
λc2 +

1

λ2
s2
)
. (15)

2.3. Cauchy stress tensor and the equations of motion

Isotropic, hyperelastic materials can be characterized by a strain energy function W

which is a function of the invariants I1, I2, and I3 of B (Holzapfel 2000). For the

incompressible material considered here, I3 = 1. In addition, from (14), Ĩ3 = 1, and

the strain energy W̃ for the stretched material with superimposed wave motion can be

written as a function of the invariants Ĩ1 and Ĩ2 as W̃ = W
(
Ĩ1, Ĩ2

)
. The Cauchy stress

tensor σ̃ is determined from the strain energy W̃ by the relation (Holzapfel 2000)

σ̃ = −p1+ 2
∂W̃

∂Ĩ1
B̃− 2

∂W̃

∂Ĩ2
B̃−1 (16)
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where p is a Lagrange multiplier in the form of a hydrostatic pressure that is required

to enforce the incompressibility of the material.

The equation of motion for a point at position x̃ can be written using the divergence

of σ̃ calculated with respect to the x1, x2, x3 coordinates,

ρ
∂2x̃i

∂t2
=

∂σ̃ij

∂xj

. (17)

However, because B̃ and B̃−1 are functions of the position η = n̂·x⃗ along the propagation

direction, it is easier to evaluate the divergence of σ̃ using the ζ, ξ, η coordinate system

shown in figure 1(c) that is aligned with the propagation and polarization directions.

Then, using (5), the η̃, ξ̃, ζ̃ coordinates of a point in the deformed material, including

wave motion, are given by

η̃ = η, ξ̃ = ξ + f(η, t), and ζ̃ = ζ + g(η, t) (18)

where the equality η = η̃ holds because the material is incompressible and longitudinal

wave motion is ignored.

The equation of motion for the SH wavefunction f(A
SH
, η, t) can be derived by

evaluating (17) for the ξ̃ coordinate,

ρ
∂2ξ̃

∂t2
=

∂σ̃ξζ

∂ζ
+

∂σ̃ξξ

∂ξ
+

∂σ̃ξη

∂η
. (19)

In this expression, ∂σ̃ξζ/∂ζ = ∂σ̃ξξ/∂ξ = 0 because σ̃ is only a function of the coordinate

η through the dependence on the wavefunctions f(A
SH
, η, t) and g(A

SV
, η, t) in (6),

(10), and (12). Also, the only time dependence in ξ̃ is through its dependence on the

wavefunction f(A
SH
, η, t) in (18). Then, using (16), the equation of motion for the SH

wavefunction f(A
SH
, η, t) is given by

ρ
∂2f

∂t2
=

∂σ̃ξη

∂η
=

∂

∂η

(
ξ̂ · σ̃ η̂

)
=

∂

∂η

(
2
∂W̃

∂Ĩ1
ξ̂ · B̃ η̂ − 2

∂W̃

∂Ĩ2
ξ̂ · B̃−1 η̂

)
(20)

where the term involving the pressure p vanishes because ξ̂ · 1 η̂ = 0. Similarly, the

equation of motion for the SV wavefunction g(A
SV
, η, t) is given by

ρ
∂2g

∂t2
=

∂σ̃ζη

∂η
=

∂

∂η

(
ζ̂ · σ̃ η̂

)
=

∂

∂η

(
2
∂W̃

∂Ĩ1
ζ̂ · B̃ η̂ − 2

∂W̃

∂Ĩ2
ζ̂ · B̃−1 η̂

)
. (21)

In (20) and (21), components ξ̂ · B̃ η̂ , ζ̂ · B̃ η̂ , ξ̂ · B̃−1 η̂ , and ζ̂ · B̃−1 η̂ can be evaluated

using (4), (10), and (12),

ξ̂ · B̃ η̂ = fη

(
λ2c2 +

1

λ
s2
)
, ζ̂ · B̃ η̂ = −

(
λ2 − 1

λ

)
sc+ gη

(
λ2c2 +

1

λ
s2
)
,

ξ̂ · B̃−1 η̂ = −fηλ, and ζ̂ · B̃−1 η̂ =

(
λ− 1

λ2

)
sc− gη

(
λc2 +

1

λ2
s2
)
. (22)
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2.4. Small amplitude wave motion

The equations of motion (20) and (21) are complicated functions of the wave amplitudes

A
SH

and A
SV

through the dependence of B̃ and B̃−1 on the wavefunctions f(A
SH
, η, t)

and g(A
SV
, η, t) in (10) and (12). The equations of motion are first order in A

SH
and A

SV

only for special-case material models such as the Mooney-Rivlin material considered by

Boulanger and Hayes (1992, 2001). For more general cases, we consider small amplitude

waves and derive equations of motion by expanding the right hand sides of (20) and

(21) in a Taylor series in A
SH

and A
SV

and keeping only terms of O(A
SH
) and O(A

SV
).

First, consider the expressions ∂W̃/∂Ĩ1 and ∂W̃/∂Ĩ2 in (20) and (21). Using the

subscript 0 to indicate terms evaluated with A
SH

= 0 and A
SV

= 0, the partial derivative

∂W̃/∂Ĩ1 is given by

∂W̃

∂Ĩ1
=

(
∂W̃

∂Ĩ1

)
0

+

(
∂2W̃

∂Ĩ21

∂Ĩ1
∂f

∂f

∂A
SH

+
∂2W̃

∂Ĩ1∂Ĩ2

∂Ĩ2
∂f

∂f

∂A
SH

)
0

A
SH

+

(
∂2W̃

∂Ĩ21

∂Ĩ1
∂g

∂g

∂A
SV

+
∂2W̃

∂Ĩ1∂Ĩ2

∂Ĩ2
∂g

∂g

∂A
SV

)
0

A
SV

+ · · · . (23)

In this expression, partial derivatives such as
(
∂W̃/∂Ĩ1

)
0
are evaluated using the strain

energy W (I1, I2) without the added wave motion, for example,
(
∂W̃/∂Ĩ1

)
0
= ∂W/∂I1.

Also, partial derivatives like
(
∂Ĩ1/∂f

)
0
can be evaluated using (13) and (15) so that

(23) is given by

∂W̃

∂Ĩ1
=

∂W

∂I1
+

[
−2

∂2W

∂I21

(
λ2 − 1

λ

)
− 2

∂2W

∂I1∂I2

(
λ− 1

λ2

)]
gηsc+ · · · . (24)

Similarly, ∂W̃/∂Ĩ2 is given by

∂W̃

∂Ĩ2
=

∂W

∂I2
+

[
−2

∂2W

∂I1∂I2

(
λ2 − 1

λ

)
− 2

∂2W

∂I22

(
λ− 1

λ2

)]
gηsc+ · · · . (25)

Finally, the equation of motion for the SH wavefunction f(A
SH
, η, t) can be found

by combining (20), (24), (25), and (22). Keeping only terms of O(A
SH
) and O(A

SV
) and

recalling the notation s = sin θ and c = cos θ gives

ρ
∂2f

∂t2
= ρv2SH

∂2f

∂η2
(26)

where the angle-dependent SH phase velocity vSH(θ) is given by

ρv2SH(θ) =

(
2λ2∂W

∂I1
+ 2λ

∂W

∂I2

)
cos2 θ +

(
2

λ

∂W

∂I1
+ 2λ

∂W

∂I2

)
sin2 θ. (27)

Expression (27) can be written as

ρv2SH(θ) = µ∥ cos
2 θ + µ⊥ sin2 θ (28)

where µ∥ and µ⊥ are shear moduli that characterize wave propagation for the SH mode

in directions parallel and perpendicular to the material symmetry axis,

µ∥ = 2λ2∂W

∂I1
+ 2λ

∂W

∂I2
and µ⊥ =

2

λ

∂W

∂I1
+ 2λ

∂W

∂I2
. (29)
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We note that (28) has the same form as for wave propagation in a linear, elastic material

with an intrinsic TI structure such as given by equation (16) of Rouze et al (2013).

Similarly, the equation of motion for the SV wavefunction g(A
SV
, η, t) can be found

by combining (21), (24), (25), and (22) and keeping only terms of O(A
SH
) and O(A

SV
),

ρ
∂2g

∂t2
= ρv2SV

∂2g

∂η2
(30)

where the angle-dependent SV phase velocity vSV(θ) is given by

ρv2SV(θ) =

(
2λ2∂W

∂I1
+ 2λ

∂W

∂I2

)
cos2 θ +

(
2

λ

∂W

∂I1
+

2

λ2

∂W

∂I2

)
sin2 θ

+

[
4
∂2W

∂I21

(
λ2 − 1

λ

)2

+ 4
∂2W

∂I22

(
λ− 1

λ2

)2

+8
∂2W

∂I1∂I2

(
λ2 − 1

λ

)(
λ− 1

λ2

)]
sin2 θ cos2 θ. (31)

We note that this result is equivalent to the special-case result from Ogden (2007) for

the velocity of small amplitude plane waves as a function of propagation direction in an

incompressible, pre-stressed material. However, this equivalence may not be apparent

because of the different notations used. A demonstration of the equivalence of the result

from Ogden (2007) and the result (31) is given in supplemental data associated with

this paper.

For the special case of an unstretched, isotropic material with λ = 1, (27) and (31)

indicate that ρv2SH and ρv2SV are independent of the propagation angle θ and equal to

the shear modulus µ of the material,

µ = ρv2SH(λ = 1) = ρv2SV (λ = 1) = 2
∂W

∂I1

∣∣∣∣
λ=1

+ 2
∂W

∂I2

∣∣∣∣
λ=1

. (32)

Finally, we note that an important result from the derivation of the equations

of motion (26) and (30) from (20) and (21) is that the resulting equations reduce

to separate relations for the wavefunctions f(A
SH
, η, t) and g(A

SV
, η, t), and do not

include contributions from both wavefunctions. Thus, the SH and SV propagation

modes are independent, and an excitation of one propagation mode does not influence

wave propagation in the other mode.

2.5. Group velocity

Acoustic radiation force excitations are typically impulsive and spatially localized, and

generate displacement fields described by a superposition of plane waves with a range

of frequencies, phases, and propagation directions. As these waves evolve in time, the

waves interfere, and the observed propagation velocity is characterized by the group

velocity V⃗ . In terms of the phase velocity v and propagation wave vector k⃗ = kn̂, the

group velocity is given by Tsvankin (2012) as

V⃗ =
∂(kv)

∂kx
x̂+

∂(kv)

∂ky
ŷ +

∂(kv)

∂kz
ẑ. (33)
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For plane wave propagation in the x − z plane, the components of group velocity are

given in terms of the phase velocity and angle by Tsvankin (2012) as

Vx = v sin θ +
∂v

∂θ
cos θ, Vy = 0, and Vz = v cos θ − ∂v

∂θ
sin θ. (34)

Thus, the group propagation vector N̂ also lies in the x − z plane and can be written

as N̂ = (sin θg, 0, cos θg)
T where the group propagation angle θg is given by,

θg = tan−1

(
Vx

Vz

)
= θ + tan−1

(
1

v

∂v

∂θ

)
. (35)

For the SH propagation mode, the form of the phase velocity (28) allows the group

velocity to be expressed in the form of an ellipse (Wang et al 2013),

ρV 2
SH(θg) =

µ∥ µ⊥

µ∥ sin
2 θg + µ⊥ cos2 θg

. (36)

For the special case of an unstretched, isotropic material with λ = 1, the phase

velocities vSH and vSV are independent of the propagation angle θ and, from (35),

θg = θ. Then, from (34), the group velocities are equal to the phase velocities and can

be expressed in terms of the shear modulus of the material using (32),

µ = ρV 2
SH(λ = 1) = ρV 2

SV (λ = 1) = 2
∂W

∂I1

∣∣∣∣
λ=1

+ 2
∂W

∂I2

∣∣∣∣
λ=1

. (37)

2.6. Comparison of phase and group velocities along and across the symmetry axis

From (27) and (31), the derivative ∂v/∂θ is zero for propagation of both the SH and

SV wave modes in the directions along and across the material symmetry axis at angles

θ = 0◦ and θ = 90◦, respectively. Then, for these directions, the group propagation

angle θg from (35) is equal to the phase propagation angle θ, and from (34), the group

velocities are equal to the phase velocities,

VSH(θg = 0◦) = vSH(θ = 0◦), VSH(θg = 90◦) = vSH(θ = 90◦),

VSV (θg = 0◦) = vSV (θ = 0◦), and VSV (θg = 90◦) = vSV (θ = 90◦). (38)

In addition, we can compare the group velocities along and across the material

symmetry axis for the SH and SV propagation modes. For propagation along the axis

at θ = θg = 0◦, the phase and group velocities are equal and (27), (28), (29), (31), and

(38) give

ρv2SH(θ = 0◦) = ρv2SV (θ = 0◦) = ρV 2
SH(θg = 0◦) = ρV 2

SV (θg = 0◦) = µ∥. (39)

Similarly, for propagation across the symmetry axis at θ = 90◦, the phase velocities are

given by

ρv2SH(θ = 90◦) = µ⊥ and ρv2SV (θ = 90◦) = µ⊥ +

(
2

λ2
− 2λ

)
∂W

∂I2
. (40)

Then, with (38), the difference between the SH and SV group velocities is given by

ρV 2
SV (θg = 90◦)− ρV 2

SH(θg = 90◦) =

(
2

λ2
− 2λ

)
∂W

∂I2
. (41)
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Table 1. Material models, strain energy functions W (I1, I2), and model parameters

from Caenen et al (2020). The parameters have units of kPa except for λm which is

unitless.

Material model Strain energy W (I1, I2) Model parameters

Arruda-Boyce W = C1

∑5
i=1 αiλ

2−2i
m (I i1 − 3i) C1 = 8.01

α1=
1
2
, α2=

1
20
, α3=

11
1050

, α4=
19

7000
, α5=

519
673750

λm = 1.58

Mooney-Rivlin W = C10(I1 − 3) + C01(I2 − 3) C10 = 7.89

C01 = −0.538

Isihara W = C10(I1 − 3) + C20(I1 − 3)2 + C01(I2 − 3) C10 = 5.44

C01 = −0.523

C20 = 0.677

Thus, the SH and SV group velocities are different for propagation across the symmetry

axis if the material is dependent on the invariant I2 and λ ̸= 1, This phenomenon is

known as shear splitting and has been observed in both the experimental measurements

and finite element simulations by Caenen et al (2020) where the tilted experimental

configuration allowed excitation of both the SH and SV propagation modes.

3. Arruda-Boyce, Mooney-Rivlin, and Isihara material models

This section presents sample results for the phase and group velocities for the three

material models considered by Caenen et al (2020), specifically, the Arruda-Boyce

(1993), Mooney-Rivlin (Mooney 1940, Rivlin and Saunders 1951), and Isihara (1951)

models. Each model was assumed to be incompressible. Expressions for the strain

energy W (I1, I2) are given in table 1 along with the model coefficients determined by

Caenen et al (2020) using mechanical testing of a sample of the PVA material used in

their study.

Table 2 lists expressions for the phase velocities vSH(θ) and vSV (θ) calculated using

(27) and (31), and the shear modulus µ calculated using (32), for each of the material

models. In these expressions, the invariants I1 and I2 of the deformation tensor B are

written in terms of the stretch λ using (3).

Figure 2(a) shows polar plots of the phase velocities vSH(θ) (dashed black line)

and vSV (θ) (solid red line) calculated using the expressions in table 2 evaluated using

the model coefficients listed in table 1 for the specific stretch values of λ = 1.60 and

λ = 2.14. These values were chosen to illustrate the shear wave speeds corresponding to

the maximum stretch of λ = 2.14 achieved in the experimental measurements of Caenen

et al (2020), and a second stretch with λ = 1.6 roughly midway between the maximum

stretch and the case for an isotropic material with λ = 1.

Figure 2(b) shows polar plots of the group velocities for the SH and SV propagation
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Table 2. Phase velocitites vSH(θ) and vSV (θ) from (27) and (31), and shear modulus

µ from (32), for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models in

table 1.

Material model Phase velocities and shear modulus

Arruda-Boyce ρv2SH(θ)= 2C1

[∑N
i=1 iαiλ

2−2i
m

(
λ2 + 2

λ

)i−1
] (

λ2 cos2 θ + 1
λ
sin2 θ

)
ρv2SV (θ)= 2C1

[∑N
i=1 iαiλ

2−2i
m

(
λ2 + 2

λ

)i−1
] (

λ2 cos2 θ + 1
λ
sin2 θ

)
+4C1

[∑N
i=1 i(i−1)αiλ

2−2i
m

(
λ2 + 2

λ

)i−2
] (

λ2 − 1
λ

)2
sin2 θ cos2 θ

µ= 2C1

(∑N
i=1 iαiλ

2−2i
m 3i−1

)
Mooney-Rivlin ρv2SH(θ)= (2λ2C10 + 2λC01) cos

2 θ +
(
2
λ
C10 + 2λC01

)
sin2 θ

ρv2SV (θ)= (2λ2C10 + 2λC01) cos
2 θ +

(
2
λ
C10 +

2
λ2 C01

)
sin2 θ

µ= 2C10 + 2C01

Isihara ρv2SH(θ)=
[
2C10 + 4C20

(
λ2 + 2

λ
− 3
)] (

λ2 cos2 θ + 1
λ
sin2 θ

)
+ 2λC01

ρv2SV (θ)=
[
2C10 + 4C20

(
λ2 + 2

λ
− 3
)] (

λ2 cos2 θ + 1
λ
sin2 θ

)
+2C01

(
λ cos2 θ + 1

λ2 sin
2 θ
)
+ 8C20

(
λ2 − 1

λ

)2
sin2 θ cos2 θ

µ= 2C10 + 2C01

modes for the same materials and stretch values as for the phase velocities in figure 2(a).

As given in (36), the group velocity for the SH mode has an elliptical shape while the SV

shape is more complicated and depends on the specific material model. Also, as expected

from (39) and table 2, the group velocities for the SH and SV modes are the same for

propagation along the material symmetry axis at θg = 0◦. For propagation across

the axis at θg = 90◦, the group velocities are the same for the Arruda-Boyce material

model because the strain energy for this model is not dependent of the invariant I2 and

VSH(θg = 90◦) = VSV (θg = 90◦) from (41). However, shear splitting is observed for

the Mooney-Rivlin and Isihara models because the strain energies for these materials

depend on the invariant I2 so that VSH(θg = 90◦) ̸= VSV (θg = 90◦). Also, from (41),

VSV (θg = 90◦) > VSH(θg = 90◦) because the coefficient C01 from table 1 is negative

for both material models. These results are in agreement with the results shown in

figures 5− 9 of Caenen et al (2020).

As expected, the angular pattern of phase and group velocities in figures 2(a) and

2(b) becomes less elongated as the stretch decreases. In the limit of no stretch with

λ = 1, the material is isotropic and does not have a symmetry axis so that there is no

distinction between the SH and SV propagation modes. The phase and group velocities

are equal and do not depend on the propagation direction. Polar plots of these velocities

(not shown) are circular with values determined from (32) and (37) evaluated using the
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Figure 2. Polar plots of the phase velocity (a) and group velocity (b) for the SH

(black, dashed) and SV (red, solid) propagation modes with stretch values λ = 1.60

and λ = 2.14 for the Arruda-Boyce (left), Mooney-Rivlin (center) and Isihara (right)

models evaluated using the material parameters from Caenen et al (2020) listed in

table 1. Phase velocities are calculated using expressions (27) and (31) and are given

in table 2. Group velocities are calculated from the phase velocities using (34). The

bottom row (c) shows plots of the group propagation angle θg as a function of the

phase propagation angle θ calculated using (35). In some cases, the inverse relation

θ(θg) and resulting group velocities are triple valued, leading to the cusp structure seen

in the group velocity for the Arruda-Boyce and Isihara models.

specific expressions for the shear modulus µ given in table 2 with the material parameters

from table 1. Specifically, the phase and group velocities of the unstretched material

are 3.33 m/s for the Arruda-Boyce model, 3.83 m/s for the Mooney-Rivlin model, and

3.14 m/s for the Isihara model. Differences among these values occur because of the

differing degree to which each material model can describe the stress-strain relation

in the mechanical testing measurements, see figure 4 in Caenen et al (2020), and the

uncertainties of the parameters determined in these measurements, see table 1 of Caenen

et al (2020).

Figure 2(c) shows plots of the group propagation angle θg calculated using (35) as

a function of the phase propagation angle θ. For the Arruda-Boyce and Isihara material

models, the inverse relation θ(θg) is triple-valued at larger values of stretch and thereby

gives tripled valued group velocities as seen in the polar plots in figure 2(b).

4. Discussion

Phase and group velocities provide complementary information related to the analysis

of shear wave propagation in anisotropic materials. The phase velocity provides an
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analytical connection to the material model through the strain energy function, while in

contrast, the group velocity is measured from experimental observations of shear wave

propagation. A relation between these velocities is required to characterize the material

from experimental measurements. This relation is trivial for the case of an isotropic

material, but as shown in sections 2.5 and 2.6 for an anisotropic material, the phase

and group velocities are equal only for wave propagation along and across the material

symmetry axis. For other propagation directions, the group velocity can be derived

from the angle-dependent phase velocity assuming this functional relation is known.

The analytic expressions derived in this paper provide the needed relations vSH(θ) and

vSV (θ) for the SH and SV propagation modes, and thus, allow the calculation of the

group velocities VSH(θg) and VSV (θg) using (34) and (35).

For the SH propagation mode, the phase and group velocities can be expressed

in terms of the shear moduli µ∥ and µ⊥ for propagation along and across the material

symmetry axis using (28) and (36). These expressions are the same as for the case of a

linear, elastic material with intrinsic TI structure as given by Tsvankin (2012), Carcione

(2015), and Rouze et al (2013). In particular, the group velocity (36) has an elliptical

shape and has been observed in the angular dependent measurements by Urban et al

(2015) and Chatelin et al (2014) using the common experimental geometry with the

excitation axis oriented perpendicular to the tracking plane as shown, for example, in

figure 1(a) of Rouze et al (2020) or figure 2 from Chatelin et al (2014).

The phase velocity for the SV propagation mode is more complicated than for the

SH propagation mode due to the additional terms in the angular dependence of the SV

phase velocity in (31) compared to the SH phase velocity in (27). The SV group velocity

is also more complicated and, in general, a closed form expression cannot be given for

this velocity except for the case of propagation along and across the material symmetry

axis as in (38). In particular, for propagation across the symmetry axis, the SV group

velocity differs from the SH velocity and the material exhibits shear splitting with a

difference in velocity that depends on the form of the strain energy W in (41). Thus,

experimental observations of shear splitting allow additional, independent measurements

that can help determine model parameters in the strain energy function. In addition, as

shown in the plots for the Arruda-Boyce and Isihara material models in figure 2, the SV

group velocity can show complicated, cusp structures where the velocity is triple valued.

As seen in figure 2(c), this structure occurs when the coefficient of the sin2 θ cos2 θ term

in the expression for the SV phase velocity has sufficient amplitude that the group

propagation angle θg (35) has inflection points and the inverse relation θ(θg) is triple

valued. Thus, observation of the cusp structure in the angular dependence of the group

propagation velocity can help to determine the form of the strain energy W in the

material model from the coefficients of the sin2 θ cos2 θ terms in (31).

In addition, as indicated in (41), the presence of shear splitting will increase as the

stretch λ increases. Similarly, the cusp structure that appears due to the sin2 θ cos2 θ

term in (31) will also appear only at larger values of stretch due to the λ4, λ3, and

λ2 dependence in the ∂2W/∂I21 , ∂
2W/∂I2∂I2, and ∂2W/∂I22 terms, respetively. Thus,
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both of these effects may not be obvious in experiments performed with smaller material

deformations.

There are similarities and differences between the descriptions of shear wave

propagation in the stretched, hyperelastic material considered in this study, and a linear,

elastic material with an intrinsic, TI structure as considered in, for example, Tsvankin

(2012), Carcione (2015), and Rouze et al (2013). For both types of materials, the phase

velocities for the SH propagation mode can be expressed in terms of the shear moduli

µ∥ and µ⊥ as in (28), and the corresponding group velocities are elliptical with wave

speeds along and across the symmetry axis determined by µ∥ and µ⊥. However, for

the SV propagation mode, the expressions for the phase velocities in the two types of

materials are different. For a linear, elastic, incompressible material with intrinsic TI

structure, the phase velocity vSV is given by Rouze et al (2013),

ρv2SV = µ∥ + 4

(
E∥

E⊥
µ⊥ − µ∥

)
sin2 θ cos2 θ (42)

where E∥ and E⊥ are Young’s moduli that characterize the tensile stiffness along and

across the axis of the material. The differences between this expression and expression

(31) for a stretched, hyperelastic material lead to an important difference for the

group velocities that determine the shear splitting for propagation across the material

symmetry axis. Specifically, for the intrinsic, TI material, this difference is a fixed value

determined by the difference µ∥−µ⊥ of shear moduli while, in contrast, for a hyperelastic

material, this difference is an independent quantity determined by the stretch λ and the

term ∂W/∂I2 in (41).

A second difference for the group velocities of the SV propagation mode in the

intrinsic, TI material and the stretched, hyperelastic material appears in the location of

the cusp structures where the group velocities are triple valued. As shown in figure 1

of Rouze et al (2013), cusp structures in the intrinsic, TI material are centered around

the angles 45◦ and 135◦, or about the angles 0◦ and 90◦ depending on the sign of

the sin2 θ cos2 θ term in (42). However, for the Arruda-Boyce and Isihara materials

in figure 2, the location of these structures is determined by the coefficients of the

sin2 θ and sin2 θ cos2 θ terms in (31). One result of this difference is that Knight et al

(2021) observed SV wave propagation at angles near the material symmetry axis in

their in vivo measurements in muscle with a tilted excitation configuration. However,

Caenen et al (2020) did not observe clear SV wave propagation in this location in their

measurements with a 45◦ tilt angle. This difference can be explained by the location of

the cusp structure in the results for the group velocities in the Arruda-Boyce and Isihara

materials shown in figure 2 where the structure is observed at angles near 15◦, and thus,

was not included in the angular range interrogated in the experiment by Caenen et al

(2020).

Finally, it is also important to consider the relative amplitude of the shear wave

signals for both the SH and SV modes as a function of propagation direction. The

primary factor in the determination of the wave amplitude is the degree to which each

mode is excited. As shown, for example, in figure 1 of Rouze et al (2020), for the
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common experimental geometry in which the excitation axis is oriented perpendicular

to the observation plane, only the SH mode is excited, and SV waves will not be observed.

Similarly, for the measurements reported by Knight et al (2021) in muscle, a small tilt

angle of 11◦ was realized, and the amplitude of the SV mode was not sufficiently large

to be observed for propagation in a direction across the material symmetry axis.

5. Conclusion

This paper derives analytic expressions for angular-dependent phase velocities vSH(θ)

and vSV (θ) of the SH and SV shear wave propagation modes in an incompressible,

hyperelastic material with finite, uniaxial stretch. The phase velocities are determined

by constructing the equations of motion for plane wave propagation using the Cauchy

stress tensor derived from the strain energy of the material. Group propagation velocities

VSH(θg) and VSV (θg) such as those measured in experimental observations of shear wave

propagation are calculated as a function of propagation direction θg from the phase

velocities. Results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara

material modes using model coefficients determined by Caenen et al (2020). Results for

the Mooney-Rivlin and Isihara material models show shear splitting with VSV > VSH

at larger values of stretch for propagation across the material symmetry axis. Results

for the Arruda-Boyce and Isihara models show cusp structures with triple-valued group

velocities at larger values of material stretch for specific propagation directions. For

experimental configurations in which both SH and SV wave motions are observed, these

features provide additional data that can be used to improve the use of shear wave

analysis techniques for the characterization of elastic properties of materials.
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