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Abstract

The rise of metagenomics offers a leap forward for understanding the genetic

diversity of microorganisms in many different complex environments by providing a

platform that can identify potentially unlimited numbers of known and novel

microorganisms. As such, it is impossible to imagine new major initiatives without

metagenomics. Nevertheless, it represents a relatively new discipline with various

levels of complexity and demands on bioinformatics. The underlying principles and

methods used in metagenomics are often seen as common knowledge and often not

detailed or fragmented. Therefore, we reviewed these to guide microbiologists in

taking the first steps into metagenomics. We specifically focus on a workflow aimed

at reconstructing individual genomes, that is, metagenome‐assembled genomes,

integrating DNA sequencing, assembly, binning, identification and annotation.
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1 | FROM DNA TO METAGENOME‐
ASSEMBLED GENOMES (MAGs)

The potential of metagenomics to explore and study new

environments will become fundamental in the coming decade.

Thanks to the ability to bypass the labor‐intensive isolation and

cultivation steps, this approach could theoretically be used to

detect and characterize a much wider range of prokaryotes.

However, metagenomics is a broad term that encompasses

different types of analyses, with various levels of complexity.

Furthermore, the underlying principles and techniques are often

seen as common knowledge and either not detailed or fragmented.

Therefore, we reviewed these to guide microbiologists in taking

the first steps into metagenomics. We specifically focus on a

workflow aimed at reconstructing individual genomes in a sample,

integrating DNA sequencing, assembly, binning, identification and

annotation (Figure 1).

2 | DNA SEQUENCING

A few steps precede the actual DNA sequencing, that is, sample

collection and storage, and DNA extraction and purification.

Although out of the scope, it is important to highlight the importance

of these steps (Pollock et al., 2018). In particular, care should be taken

to avoid contamination and biases due to DNA extraction and

degradation during processing and storage (Han et al., 2019; Nahar

et al., 2021; Sar et al., 2018). Comparative studies indicated that the

choice of DNA extraction method affects the outcome, with

mechanical and/or enzymatic pretreatments being often superior
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(Gryp et al., 2020; Henderson et al., 2013). Furthermore, with long‐

read sequencing emerging, extracting DNA of sufficient molecular

weight, purity and quantity becomes even more critical (Maghini

et al., 2021), and is not always unbiased for real samples (Bickhart

et al., 2022; Moss et al., 2020). Finally, in cases where the total

amount of DNA is low, an optional amplification step, such as

multiple displacement amplification or linear amplification, may be

performed as well (Bowers et al., 2015), which may lead to additional

biases. Indeed, in some aqueous environments, despite sampling

hundreds of liters of water, only picograms or nanograms can be

extracted, as opposed to the micrograms needed for amplification‐

free high‐quality metagenome sequencing.

Once DNA is extracted and purified, the next step is library

preparation. This process may be split up into a number of substeps

(Head et al., 2014). Some may be optional depending on the

sequencing approach. The first step is fragmentation (physical or

enzymatic fragmentation) and/or size selection (Figure 2), in which

DNA fragments of the desired read length are enriched. For

approaches that rely on Illumina paired‐end sequencers (see below),

this step is important since only the ends of each fragment are

sequenced. For long‐read sequencing, fragmentation can potentially

help to increase throughput by ensuring that more fragments can be

sequenced completely and size selection can be performed to get rid

of shorter fragments. The second step is essentially a finalization step

that needs to be performed after fragmentation, in which the

fragments are altered in a way to make them amenable to further

processing. Typically, the aim is to ensure that the resulting

fragments are stable double‐stranded DNA. At this point, fragments

may be labeled with “barcodes” for cases where multiple samples are

analyzed at once, which is followed by a final step where additional

molecules are bound that allow the various sequencing technologies

to function.

Metagenome sequencing requires extremely high throughput

to capture the full genomes of a large number of diverse bacteria

present in samples. As such, only second‐ and third‐generation

high‐throughput sequencing methods can be used. Currently,

F IGURE 1 Metagenome analysis scheme.
First, DNA in the test sample is extracted.
Then, reads are produced by sequencing,
exposing the DNA's sequence as a series of
fragments. After this, overlapping reads are
assembled, producing “contigs.” During these
two steps, the source of each sequence is
unknown; therefore, an additional separation
step called binning is necessary. Finally, each
sequence needs to be annotated, which is the
process of assigning meaningful names to
different subsequences.

F IGURE 2 A metagenomic community contains multiple strains with varying abundance and is also likely to contain viruses and eukaryotic
cells. The first step is to extract the genetic material (DNA or RNA) by removing other organic and inorganic molecules. Next, sequencing
techniques require the DNA to be fragmented down to a length that the machine can process. In addition, when multiple samples are sequenced
in the same run, a “barcode” sequence has to be added to each read to determine the sample from which it originated. These steps are common
to all sequencing approaches, whereas further steps are technology‐specific.

2 of 19 | GOUSSAROV ET AL.



three major families of sequencing platforms are suitable for this

purpose.

2.1 | Sequencing by synthesis

The best‐known are the Illumina (previously Solexa) sequencers,

including the MiSeq, HiSeq, NovaSeq and NextSeq series of

sequencers, which produce short reads (100−300 bases) with low

error rates (<1%). Although variants of the technique are used,

including single‐end and mate‐pair sequencing, paired‐end sequenc-

ing in which reads represent the ends of DNA fragments with a size

specified by the library preparation step is most common in

metagenomics applications (Figure 3). Although the read length of

Illumina machines depends on the number of cycles that are

performed, the length of DNA fragments is important as well. If the

fragments are sufficiently short, the ends will overlap, which provides

assemblers with an easy way to transform the reads into longer DNA

sequences. However, longer fragment lengths have the potential to

result in less fragmented genomes, and as such, insert size (between

sequencing adapters) should be chosen carefully (Cho et al., 2016).

An alternative to Illumina is BGI's DNBseq technology. The

latter operates on the same principle, except that “DNA nanoballs”

are used instead of lanes, which allow a more consistent signal for

each sequence at similar costs at the time it was first proposed

(Bonetta, 2010; Drmanac et al., 2010). According to H.‐M. Kim

et al. (2021), the current DNBseq‐G50 (BGIseq‐500) platform is

comparable to the Illumina HiSeq 2500 in both accuracy and

throughput. Although the HiSeq 2500 is not the most performant

Illumina sequencer, this shows that the technologies have

comparable output from the point of view of bioinformatics. As

the technology is much more recent than Illumina sequencing,

having been officially released only in 2017, it has yet to catch up

to Illumina's popularity, but its lower cost will likely ensure a rise in

popularity in the coming years.

Other sequencing‐by‐synthesis methods, such as IonTorrent and

pyrosequencing (also commonly referred to as 454‐sequencing), exist

but have mostly been replaced by those mentioned above. This is

likely due to their issues with identifying homopolymeric repeats and

lower throughput (Balzer et al., 2010; Bragg et al., 2013; C. Luo,

Tsementzi, et al., 2012).

Next to the standard output, Illumina also developed synthetic

long‐read technology, called TruSeq synthetic long‐reads or TSLR

(McCoy et al., 2014). However, because that approach utilizes well

plates rather than microbeads, the number of barcodes that can be

used for that approach is more limited, making the recovery of

fragments more computationally challenging. Similarly, BGI has also

introduced “single‐tube long fragment read” (stLFR) sequencing,

which is an alternative to the standard library preparation methods

and can be used to effectively produce long reads from short reads at

a reduced cost (O. Wang et al., 2019). The general principle of the

approach is to add identical barcodes to reads produced from the

same long fragment, with each barcode being unique to a given

fragment.

2.2 | Pacific Biosciences “single‐molecule real‐time
sequencing”

The Pacific Biosciences (PacBio) sequencers, including the RS, RS II,

Sequel and Sequel II sequencers, use adapters to circularize DNA

fragments, which are then placed inside wells where a polymerase

copies the fragment using labeled nucleotides, producing a detect-

able fluorescent signal when they are bound to their complement by

the polymerase. As each well should only contain one fragment and

each nucleotide is labeled with a different fluorescent molecule, the

polymerization process produces a continuous signal that represents

the fragment being sequenced. Because the fragments are circular-

ized, short fragments may be read multiple times before the

polymerization process terminates, whereas long fragments may

F IGURE 3 Illumina sequencing. The adapters for Illumina sequencing have mismatch sequences to enable easier binding of DNA to the
substrate used for sequencing, to which only one strand is bound. The complementary sequence of the said strand is then produced through a
polymerase chain reaction. Next, the original strand is detached and washed away, and actual sequencing begins by successive cycles of binding
complementary nucleotides, recording fluorescent signals and washing the fluorescent dyes for the next cycle to be possible. The operation is
terminated after a fixed number of cycles.
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sometimes fail to be sequenced fully (Figure 4). As a result, two

strategies can be used with this technology.

In one approach, DNA is fragmented into shorter sequences of

a length varying between 1,000 and 15,000 bases. Because these

fragments are relatively short, the process described above can

read the same sequence multiple times, with each pass of the

polymerase producing a “subread” (Figure 4). This produces highly

accurate “circular consensus sequences” (CCSs), as each base is

sequenced multiple times. One of the early studies on this

approach concluded that 50% of the reads could be made to be

99.9% accurate with just four subreads (Travers et al., 2010),

although the final CCSs were mostly shorter than 2 kb (Hebert

et al., 2018; Travers et al., 2010). With improvements in chemistry

primarily increasing the longevity of the polymerase, longer CCS

reads of around 15 kb could be obtained while maintaining

accuracy (99.9% accuracy with 10 passes) and without the need

for a substantial increase in the quality of individual subreads

(Wenger et al., 2019).

In the other approach, fragmentation results in lengths of around

50 kb. This produces a much lower accuracy (an error rate of

10%−15%) when compared to CCS, but the reads are also longer and

can cover larger portions of the target genome. Since the number of

reads produced in a run is limited by the sequencer, this effectively

also increases throughput.

2.3 | Oxford Nanopore Technologies
“ONT sequencing”

The Oxford Nanopore Technologies (ONT) sequencers, like the

PacBio sequencers, operate in real time and are capable of

producing the longest reads out of the three technologies. These

instruments reconstruct DNA sequences based on current fluctu-

ations elicited by DNA molecules when they pass through

nanopores embedded in a membrane (Deamer et al., 2016; Jain

et al., 2016; Rang et al., 2018) (Figure 5). This approach relies on a

one‐dimensional signal and the interpretation of that signal is not

as straightforward as the detections of four separate wavelengths

associated with each type of nucleotide in fluorescence‐based

techniques. Moreover, due to the nanopore size, it is not directly

possible to measure individual bases, but rather the combined

effect of the bases that occupy the most narrow point of the

nanopore is what is measured, which depends on the type of

nanopore being utilized. As a result, this sequencing method

requires a more complex method to transform the raw sequencer

signal into usable reads when compared to other platforms.

Because ONT is the most recent of the three families of

sequencers presented here, with the first commercial model

formally released in 2015, it is difficult to gauge the accuracy of

this method, as some of the errors may be due to not fully mature

base‐calling software. Currently, the accuracy of base‐called reads

lies around 90% (Wick et al., 2019). However, this may depend on

the organism, as shown by Krishnakumar et al. (2018), where the

reads of three species had average identity scores of 81.3%,

86.2%, and 89.2%, respectively. It should be noted that these

numbers pertain to so‐called 1D reads, which are commonly used

due to their ease of implementation. By contrast, there also exist

1D2 and 2D reads, which are more accurate but tend to have lower

throughput and length (Weirather et al., 2017). Moreover, the

latest R10 chemistry promises to improve these figures to above

97%, and this trend is likely to continue in the future as ONT have

consistently been improving the performance of their sequencers

and preparation kits (Amarasinghe et al., 2020). Until such high‐

quality reads become available, the error rate of ONT sequencing

precludes them from being used without an assembly step, that is,

the useful output from ONT must necessarily be derived from

multiple distinct DNA molecules rather than being useful as

individual reads. In addition, having an assembly is required for

polishing tools such as medaka (Oxford Nanopore Technologies,

2018).

F IGURE 4 PacBio Sequencing adapters enable the circularization of DNA fragments. Next, a polymerase reads the circularized fragment
repeatedly, producing a continuous string of fluorescent signals containing the forward and reverse strands and adapter sequences. Adapter
removal splits the sequence into “sub‐reads” (in green), which can then be combined to create a high‐quality read by a process called circular
consensus.
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3 | ASSEMBLY

Although some reads can be used directly, this may not always be

sufficient, as they are either too short or too inaccurate for

applications such as closing genomes or detecting SNPs, respectively.

Therefore, the next important step in (meta‐)genome analysis is

assembly, in which reads are assembled into longer, contiguous

sequences (contigs). Ideally, contigs should correspond to individual

replicons, but this is rarely the case. It is also important to mention

that in metagenomics the sequenced DNA fragments originate from

different cells and include potential differences. As such, genomes

assembled from metagenomes (MAGs) produced with current

technology cannot be obtained directly after an assembly step, and

are derived from the pan‐genome of taxonomically related groups

within the target environment rather than individual genomes.

There are currently two dominant approaches to performing

assembly. The first, and older, approach is called overlap, layout,

consensus (OLC), whereas the newer approach is de Bruijn graph‐

based (DBG) (Flicek & Birney, 2009; Z. Li et al., 2012; Miller et al.,

2010; Schatz et al., 2010). OLC consists, as its name suggests, of

three steps. During the first step, all reads are compared to each

other to identify a possible overlap. This produces a graph with many

redundant paths. The next step (layout) simplifies this graph to

remove the redundant paths, so that the reads may be ordered in

relation to each other. The final step consists of defining the

consensus sequence from the reads that cover it. The main

disadvantage of this method is speed, as both the overlap and

consensus steps require computationally expensive alignment.

DBG functions in a different manner, as it was proposed to

bypass the overlapping step, which rendered OLC unusable for the

kind of data produced by second‐generation sequencers such as

those in the Illumina family of sequencers. Rather than building a

graph based on overlaps, DBG uses overlapping oligonucleotides of

fixed size (often called k‐mers) as the basis for building a graph,

thereby avoiding explicit alignment. This graph can then be traversed

to uncover the original sequence. Although it removed the need to

explicitly align sequences, the DBG approach is more sensitive to

sequencing errors and has trouble resolving repetitive regions.

However, neither of these drawbacks is particularly relevant for

Illumina short reads, which have high accuracy, and whose length is

also insufficient to resolve long repeats.

As third‐generation sequencing (including ONT and PacBio) is

becoming more common, and available computational resources are

increasing, OLC assemblers are once again gaining importance thanks

to their ability to resolve repeats. However, because of this recent

paradigm change, the state‐of‐the‐art in assembly software is

evolving rapidly. New more performant tools that can handle multiple

types of reads, either separately or together as “hybrid” assemblers,

are being published frequently.

3.1 | OLC assemblers

“Overlap−layout−consensus” (OLC) assemblers, which are concep-

tually more straightforward than the DBG assemblers, are separated

into three steps (Figure 6), each with a specific purpose (Paszkiewicz

& Studholme, 2010). At its core, the OLC approach relies on finding

which reads align with each other, and how. Overlapping reads can

then be combined into longer sequences, and by repeating this

process, eventually, reconstruct the genome from which the reads

originated. One thing to note here is that OLC assemblers are distinct

from greedy extension assemblers (Miller et al., 2010), which perform

this step by using only one read.

In the first—overlapping—step, matching fragments are identi-

fied. There are ways to determine whether two reads have the

potential to contain alignments rapidly, including for example

A

F IGURE 5 ONT sequencing adapters are added with a “motor” enzyme (blue), which serves to control the speed at which DNA passes
through pores, either on both ends of the DNA fragments in the case of one‐dimensional reads or combined with a hairpin adapter in the case of
two‐dimensional reads. The motor enzyme attaches porins (purple) embedded in a thin membrane, then progressively pushes ssDNA through it.
As it does, the ionic current passing between the sides of the membrane changes depending on the nature of the nucleotides that occupy the
most narrow region of the porin.
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whether or not they contain identical subsequences (Pop, 2009). This

can help to reduce the computational time necessary to align every

single read against every other read, and is in part why OLC

assemblers perform so well with long reads, as the cost of a single

alignment is reduced considerably and the number of alignments is

comparatively low. Conversely, the overlapping step is particularly

costly for short high‐throughput reads, as the cost of each alignment

is not that much larger than checking whether reads have the

potential to align, whereas the number of such alignments can be

very large. The results of the overlapping step can be summarized as

a graph that contains the relative position of each read to the reads

that share an alignment with it. The next—layout—step consists of the

construction and analysis of this graph (Miller et al., 2010). Finally,

not all reads will be concordant due to sequencing errors, and an

additional—consensus—step is necessary to resolve such issues. This

step can also be computationally costly, as it requires accurate

multiple sequence alignments (MSA).

Unlike DBG assemblers, OLC assemblers are not constrained by

a fixed k‐mer length, and can therefore be more flexible and accurate,

especially for long reads, because they use the full length of the

supplied reads rather than splittng them further. The main

disadvantage of OLC assemblers is their speed. Although heuristic

methods have been developed, which can drastically reduce the

computational costs of alignment (see below), these remain slower

than the DBG approach.

In the early 2000s, a number of OLC assemblers were developed,

which have for the most part become irrelevant due to lacking the

optimizations necessary to make these assemblers usable in a

modern context. Notable among these was the Celera assembler

(Myers et al., 2000), which was used as the basis for the CABOG

assembler (Miller et al., 2008) and later for CANU (Koren et al., 2017;

Nurk et al., 2020). Having such a long development history (by the

standards of modern assemblers), CANU is complex yet still relatively

fast by comparison to its predecessor. Other OLC assemblers, such as

Shasta (Shafin et al., 2020), RedBean/WTDBG2 (Ruan & Li, 2020) and

MetaFlye (Kolmogorov et al., 2020), are faster than CANU, but also

less accurate for metagenome analysis (Wick & Holt, 2019).

3.2 | DBG assemblers

The main idea behind DBG assemblers is to leverage efficient data

structures to bypass any form of explicit read alignment step. DBGs

are a particular type of directed string graph where each node

represents an ordered set of characters with a fixed length k. As a

directed graph, the edges of a DBG are connections from one node to

another, rather than connections between nodes. In particular, the

edges of a DBG must originate from a node whose last k−1

characters match the first k−1 characters of the destination node.

Unlike the OLC approach, which relies on computing overlaps

between reads, DBG approaches first split reads into k‐mers, typically

between 15 and 128 bases in length. This produces a linear graph for

each read. These read graphs can then be combined into a global

graph, which can be traversed to uncover the original sequence. This

removes the need for explicit alignment, massively reducing

computational time. Once a graph is built, assembly is achieved by

following a path through the graph until a stop condition is reached.

Figure 7 shows an example of a simple DBG with k = 5. It also

illustrates the inability of DBGs to resolve repeats, one of their main

drawbacks. In this example, there are two loops that produce valid

outputs, namely “ACGTACGTATATAT” and “GTACGTACGTACGT

ATATATA.”

In a real use case, k should be as big as possible to resolve such

repeats. However, a large k brings its problems. One problem is that k

must be smaller than the overlap between reads for the graph to be

continuous, but this is only an issue when coverage is very low and k

is a large fraction of the read length. The second problem is memory.

Because the nodes of the DBG overlap, a genome's graph consisting

F IGURE 6 The Overlap−Layout−Consensus scheme follows a
three‐step approach, whereby the sequenced reads are first parsed
for potential overlapping sequences, after which the layout step
determines their relative position, and the consensus steps determine
the final sequence.

F IGURE 7 A de Bruijn graph in the context of genomics is a
representation of sequences as a graph of short(er) oligonucleotides,
which only differ by one position. Here, a “true” sequence produces
two reads (red and blue), with five nucleotides of overlap (pink). Each
read produces its subgraph, and both subgraphs can be connected by
their shared oligonucleotides.
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exclusively of unique nodes would require at least k times the actual

length of the genome in computer memory.

Two techniques that handle DBGs stand out in particular: hash

tables (Ye et al., 2012) and Bloom filters (Bloom, 1970; Pell et al.,

2012). With hash tables, each element (in this case, a k‐mer) is

assigned a numeric value that solely depends on its content. By doing

this, searching for relatively large elements in a database becomes

considerably faster. This is necessary for connecting the subgraphs

generated from each read to each other, which is done by checking

whether a given node has already been recorded in the hash table for

the whole graph. Hash tables can also be used to reduce memory

requirements if handled cleverly. Another, more drastic approach to

reducing memory requirements is a Bloom filter. A Bloom filter is

similar to a hash table in that it relies on hashes, but unlike hash

tables, Bloom filters can only be used to indicate whether an element

might be present or is absent. A Bloom filter stores its data in a

predefined set of bits. When adding elements to a Bloom filter,

multiple hashes of that element are produced, which correspond to

the indices of the bits of the Bloom filter that should be set. Checking

whether an element has been added to the filter, consists of checking

whether all the associated bits have been set. Because each element

sets multiple bits, it is possible for all the bits associated with an

element that have not been added to the filter to have been set by

accident. However, this issue can be minimized through proper

parametrization and the resulting structure can still be very compact.

Currently, the most commonly used DBG assembler for bacterial

genomes is SPAdes (Segerman, 2020). This assembler started as a very

specific assembler targeting single‐cell analysis (Bankevich et al., 2012),

but throughout numerous updates, it has become a memory‐efficient

and highly accurate tool. The latest version at the time of writing, 3.14,

has separate approaches to handle single‐cell, isolate and metagenome

data, as well as different technologies including short Illumina, Ion

Torrent, ONT and PacBio reads. The key to the success of SPAdes

likely lies in its origin as a single‐cell assembler. At the time when the

software was developed, single‐cell sequencing required an extensive

amplification step, typically multiple displacement amplification, which

introduced unevenness in coverage as well as an increased rate of

chimeras. SPAdes was therefore designed following the principle that

it should be able to handle such inconsistencies. Moreover, unlike

other DBG assemblers at the time, SPAdes used multiple k‐mer lengths

to build a consensus graph. This was shown to be a superior approach

for metagenomics (Vollmers et al., 2017). Another recent assembler

operating on multiple k‐mers is MEGAHIT (D. Li et al., 2016). Unlike

SPAdes, MEGAHIT was designed at its core as a metagenome

assembler, with a focus on computational efficiency by making use

of succinct DBGs (D. Li et al., 2015). This increased performance over

SPAdes and other assemblers significantly when it was first released in

2015. Nowadays, these advantages are still applicable, but they are not

as important. Moreover, the performance of MEGAHIT is generally

worse than SPAdes and as such, it should probably be seen as a

backup in case the available memory or time is insufficient to use

SPAdes (Forouzan et al., 2018; van der Walt et al., 2017; Z. Wang

et al., 2020).

DBG assemblers are not limited to SPAdes and MEGAHIT.

Probably the earliest DBG was EULER (Pevzner et al., 2001), which

has also been updated to handle short‐read sequencing data

(Chaisson & Pevzner, 2008), but is not used nowadays. Other notable

assemblers include IDBA‐UD (Peng et al., 2012), (Meta)Velvet(‐DL)

(Liang & Sakakibara, 2021; Namiki et al., 2012; Zerbino & Birney,

2008), Ray (Meta) (Boisvert et al., 2010, 2012), MaSuRCA (Zimin

et al., 2013), ABySS (Jackman et al., 2017), and SOAPdenovo2

(R. Luo, Liu, et al., 2012). For the latter three, while not explicitly

designed for metagenome assembly, there may be use cases

(Forouzan et al., 2018). However, they have not been updated in a

while and their usage is typically not as straightforward, especially

when it comes to selecting parameters.

3.3 | Hybrid assemblers

Hybrid assembly is a term commonly used to describe a case where

reads from multiple sequencing platforms are used in conjunction

with each other to construct a more accurate assembly. In theory,

such an approach can help to bridge the inherent drawbacks of the

individual sequencers and negate some of the systematic biases.

Although this terminology applies to any combination of sequencers,

it refers primarily to a combination of second‐generation sequencing

reads, such as those produced by Illumina sequencers, and long reads,

such as those produced by ONT sequencers or PacBio sequencers. In

the case of Illumina reads with ONT reads, the long reads have a high

error rate, which the short reads can compensate for. Conversely, the

short reads on their own are insufficient to resolve long repeats such

as gene duplications, whereas long reads can. By combining both

sequencing methods, one could get in theory the best of both worlds.

One additional factor in this particular case is throughput, which

results in long reads having lower coverage than the short reads for

the same sample. Hybrid assembly with short and long reads can

generally be done in one of three ways. The first approach consists of

correcting long reads with short reads (read polishing), then

assembling these long reads. The second approach consists of

creating a preliminary assembly graph using only the short reads, then

using long reads as a guide to traverse said graph, which is the

strategy used by most assemblers, including HybridSPAdes (Antipov

et al., 2016), OPERA‐MS (Bertrand et al., 2019), Unicycler (Wick

et al., 2017) and HASLR (Haghshenas et al., 2020). Finally, the third

strategy consists in assembling long reads and correcting the result

using short reads. For this approach, we are not aware of individual

software that can perform this task. Instead, one would rely on a long

read assembler (Section 3.1) followed by a dedicated polishing tool

such as pilon (Walker et al., 2014) or racon (Vaser et al., 2017), or use

a combination of a read alignment tool such as Minimap2 and a

sequence consensus tool such as BCFtools mpileup (Danecek

et al., 2021).

In our experience, results are mixed, as current software has

trouble incorporating all the input data into a cohesive whole, but as

highlighted by Van Damme et al. (2021) when proposing their
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metagenomics pipeline called MUFFIN, a thorough review of hybrid

assemblers is still pending. Moreover, publications presenting new

assemblers typically show them performing very well in a limited

context and with a selected number of reference genomes. They are

typically tested using samples containing less than a hundred real

genomes (Rinke et al., 2016; Sevim et al., 2019), a few hundred

simulated genomes (Quince et al., 2017; Sczyrba et al., 2017) or real

samples for which the ground truth is not available (e.g., Z. Wang

et al., 2020; Wick et al., 2021). However, real‐world metagenomes

are expected to be much more diverse and are estimated to contain

hundreds (Power et al., 2014) to tens of thousands (Aguinaga et al.,

2018) of strains per sample depending on the nature of the

environment.

3.4 | Other assemblers

Providing an exhaustive list of assemblers is out of our scope (for a

review see Yang et al., 2021). We rather present the modern open‐

source landscape for assemblers and their underlying principles, and

do not include many older assemblers, closed‐source tools or

assemblers that are exceedingly specialized. In addition, although

some of the tools mentioned so far have been presented as

assemblers, a large fraction of their efficacy comes from the various

pre‐ and postprocessing steps that these tools perform. It used to be

that read correction, assembly, scaffolding and polishing each had

their dedicated software, and different tools had different priorities

that could lead to suboptimal performance in some configurations. By

contrast, newer assemblers, such as metaSPAdes and CANU, are

designed to handle uncorrected reads as their base input, and using

third‐party read correction tools is not advised (Koren et al., 2017;

Nurk et al., 2017).

4 | BINNING

While information about specific genes, such as antibiotic resistance

genes, within metagenomic data may be extracted from assemblies

without addition preprocessing, it is often interesting to group the

genomic fragments according to taxonomic relatedness, ideally down

to individual species or strains. When performed without a reference,

this process is called binning and mediates reconstructing individual

genomes from metagenomes, that is, MAGs. It is clear that not each

bin contains the necessary information to be considered a MAG.

Therefore, the minimum information about a MAG (MIMAG)

standard was introduced to ensure quality (Bowers et al., 2017).

The latter states that an archaeal or bacterial high‐quality MAG must

be >90% complete, contain <5% contamination, and include the 23S,

16S and 5S rRNA genes, and at least 18 tRNA genes (Bowers et al.,

2017). However, verifying if previously unsequenced genomes meet

these requirements is itself prone to error. The reference‐based

alternative to binning, that is, classification, is more closely related to

identification and annotation and will be covered in the next section.

Binning is commonly performed after assembly and before

annotation. At this point in the analysis, genomes are likely to be

fragmented into nonoverlapping sequences called contigs. Therefore,

binning is a rather complex problem, which relies almost exclusively

on heuristics, since it has to use meta‐data and meta‐knowledge to

group contigs. Indeed, if such a grouping would be possible without

meta‐data and meta‐knowledge, this step would not have to be

separate from assembly. Moreover, since the aim of metagenomics is

often to detect novel organisms, this process cannot rely on

references. Furthermore, even when studying relatively well‐known

environments, aligning to a reference is often impossible due to the

lack of a sufficiently close one and the high computational cost of

searching large databases. Both result in the need to perform de novo

binning.

Contig coverage and composition are typically used to guide the

process, and the detection of universally conserved genes can also be

used to either serve as starting points (Wu et al., 2016) or validate the

results (Parks et al., 2015; Simão et al., 2015). However, this

methodology is still rather error‐prone (Goussarov et al., 2022).

An alternative to binning after assembly is binning at read level.

According to Kyrgyzov et al. (2020), the main advantage of binning at

read level is that this process would not be affected by biases and

errors introduced during the assembly process toward the more

abundant species. Thus, read‐based binning, if successful, could help

analyze low‐abundance species. However, two disadvantages to this

approach encourage the “assembly‐first” paradigm. The first is

computation cost, as sequencing data can typically be between 30

and 200 times larger than the assemblies obtained from it. The

second is the sequence length. Intuitively, longer sequences are more

likely to contain stretches that can uniquely link them to a given

genome, whereas shorter sequences such as Illumina reads have the

potential to have matches in multiple genomes.

4.1 | Information used to perform binning

To separate genomes within a bacterial community from each other

(assuming that they are fragmented), it is necessary to find a signal

that is similar within closely related DNA sequences, but dissimilar to

less‐related genomes. In bacterial genomes, such a signal is found in

oligonucleotide frequencies, with each species having a specific set of

over‐ and underrepresented oligonucleotides. This has already been

observed three decades ago (Burge et al., 1992) and different

methods have leveraged different approaches to make use of

oligonucleotide composition to group contigs into bins. A notable

example of this approach was proposed by Teeling, Meyerdierks,

et al. (2004), which strengthened the notion that tetranucleotide

frequencies contain a useful signal for grouping genomic fragments.

Later, a similar principle was used in CompostBin (Chatterji et al.,

2008), where principal component analysis was performed on the

reads based on their tetranucleotide frequencies.

Unfortunately, an intragenomic variance of oligonucleotide

frequencies is quite high when looking at fragments with a length
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below 10,000, which are quite common when dealing with assem-

blies of complex metagenomes (Forouzan et al., 2018; Kang et al.,

2019; Papudeshi et al., 2017). Better performing approaches were

needed and these typically involve Markov models or variants

thereof. The general idea behind this is to view DNA as a sequence

of nucleotides that can be inferred from the previous oligonucleotide

according to a probabilistic model (Figure 8). Because Markov models

are a natural choice for creating stochastic representations of

genomes, they have been used in various tools, including binning

tools such as SCIMM (Kelley & Salzberg, 2010) and LikelyBin (Kislyuk

et al., 2009).

In addition to oligonucleotide composition, bins can also be

separated by looking at universally conserved genes. These include

the ribosomal RNA (rRNA) genes, and others, such as recA,

collectively referred to as universally conserved marker genes

(UCMGs) whose total number is 107 according to Ankenbrand and

Keller (2016). MaxBin (Wu et al., 2014) is an example of a binning

tool that utilizes UMCGs as part of its procedure, where these genes

are used to initialize clusters that are then expanded using the

oligonucleotide composition of contigs.

Another intuitive method to separate genomes within an

assembly is to rely on coverage, which is computed by counting

the total number of bases from the reads that can be aligned to the

final assembly. Assuming that the relative abundances of each

species within a metagenome are different from each other, the

relative abundance of reads should follow a similar trend. This

principle was first used in AbundanceBin (Wu & Ye, 2011) and later

implemented in a variety of tools that also relied on composition,

including CONCOCT (Alneberg et al., 2014), MetaBAT (Kang et al.,

2015) and COCACOLA (Lu et al., 2017), to name a few. However,

abundance on its own is insufficient to perform accurate binning.

Indeed, sequencing depth is typically heterogeneous even within

individual strains and different strains can have similar abundances.

Therefore, each of the software mentioned above integrates

coverage information in different ways.

Composition, universally conserved genes and coverage can be

derived from any assembly without additional external information.

However, a plethora of statistical and machine‐learning approaches

can be used to augment and exploit these data. As an example,

BMC3C uses automatic gene detection that enables codon usage

analysis (Yu et al., 2018).

From the previous paragraphs, it should be clear that there

are a variety of methods for separating contigs into bins. As each

method has its inherent advantages and drawbacks, rather than

selecting one binning tool exclusively, some developers have

opted to derive a consensus binning from multiple binning tools.

The latter refers to “bin refinement” and is used for instance in

MetaWrap (Uritskiy et al., 2018) and DASTool (Sieber et al.,

2018). However, none of these methods are particularly

reliable for highly complex mocks, with bin refinement tools

performing notably better than individual binning tools (Yue

et al., 2020).

4.2 | Binning using data from molecular techniques

Next to using signals within contigs, molecular techniques can also be

applied to mediate binning. Currently, one of the leading approaches

is exploiting 3D contact frequencies quantified by chromosome

conformation capture experiments (3C, Hi‐C) (Lieberman‐Aiden et al.,

2009). The approach is designed to cross‐link DNA fragments in close

physical proximity to each other before sequencing, that is, links DNA

from the same cell in metagenomics samples. By aligning the cross‐

linked fragments to the assembly, it is possible to group contigs that

originate from a given taxon more accurately (Beitel et al., 2014;

Burton et al., 2014). Unfortunately, Hi‐C data have inaccuracies that

require in‐depth analysis to be resolved, primarily due to spurious

contacts between unrelated regions and biases in the number of

cross‐links. State‐of‐the‐art tools that can effectively avoid issues

arising from these inaccuracies include MetaTOR (Baudry et al.,

2019), bin3C (DeMaere & Darling, 2019) and HiCBin (Du & Sun,

2022). Only MetaTOR includes the alignment step, which must

otherwise be performed manually.

4.3 | Bin validation

As binning is a rather inaccurate process, that is, bins often do not

translate to MAGs, the result of the binning process should be

checked. The best way to accomplish this is via reference‐based

approaches, which may not always be available for the prokaryotes

contained in a metagenome of interest. An alternative is to rely on

UCMGs, which is most commonly done with CheckM (Parks et al.,

2015) and sometimes BUSCO (Manni et al., 2021). A recent

alternative to these approaches exists in the form of GUNC (Orakov

et al., 2021), which is a gene‐centric approach using all genes in a

genome. In addition, we have recently developed MAGISTA, which is

based on machine learning and integrates data from multiple sources

to address the deficiencies of the other approaches (Goussarov

et al., 2022).

F IGURE 8 A simple Markov model is the set of transition
probabilities in a text. In this case, assuming that a subsequence ends
with AAAA, there is an 18% chance that the next nucleotide is
guanine according to the Markov model, which describes the genome
from which it was produced.
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5 | MEANINGFUL LABELING OF
SEQUENCES

After assembly, the logical next step is to name sequences, a process

that is called differently depending on the nature of what is being

named and how. Broadly speaking, it can be separated into two

classes: identification—the process of assigning a taxonomic name for

a group of sequences, and annotation—the process of locating and

naming genetic elements (primarily genes). In the case of metagen-

omes, identification may also be performed on individual contigs or

reads. This process, called classification, can be performed in

combination with or as an alternative to binning, depending on the

extent to which the target environment has been characterized.

5.1 | Identification

Identification is in most cases rather straightforward—as it consists of

aligning the contigs to known reference genomes to find the best

match. Despite significantly improved alignment algorithms through

the use of indexing and heuristics, this step remains computationally

expensive if a rigorous approach involving local alignment is used

(Zielezinski et al., 2017). This becomes especially problematic as the

number of references grows. Although there are currently only

around 20,000 prokaryotic type strains with a sequenced genome,

this number can be expected to increase considerably in the coming

years (Lennon & Locey, 2020). As such, a prescreening step will likely

become necessary if identification is to be achieved in a reasonable

time frame. The keys to accomplishing this are to avoid the

computationally expensive alignment step and to create reduced

representations of databases. Two general ideas can be used to

accomplish this. The first approach relies on reducing the size needed

to store individual genomes by using oligonucleotide frequencies

(Goussarov et al., 2020; Teeling, Waldmann, et al., 2004) or by

leveraging variants of MinHash (Ondov et al., 2016; Pierce et al.,

2019). The alternative is to create a carefully curated database that

can be searched efficiently. This is the approach taken in Kraken

(Wood et al., 2019), where the database consists of a minimally

redundant subset of genomes arranged according to a phylogenetic

hierarchy. By using exact string matching (see Section 6), it is possible

to rapidly search such a database and perform identification.

5.2 | Classification

Classification of sequences is similar to identification but

inherently less accurate as it relies on highly incomplete data.

As with identification, MinHash‐based methods (Ondov et al.,

2019) and alignment‐based methods (Wood et al., 2019) are both

applicable. Frequency‐based approaches are less suited as they

are significantly affected by transposable elements, which

typically do not share the oligonucleotide usage biases that are

otherwise well conserved within individual genomes. As with

binning, classification can be performed on both the read‐ and

assembly level.

Working at the read level enables the user to estimate the

relative abundance of different taxa, but is computationally expen-

sive, sometimes prohibitively. This problem can be addressed by

methods based on specific marker genes, such as MetaPhlAn2/3

(Beghini et al., 2021; Segata et al., 2012) or mOTUs2 (Milanese et al.,

2019), which favor taxa detection over complete classification.

Conversely, methods based on more extensive databases, such as

Kraken 2 (Wood et al., 2019), Centrifuge (D. Kim et al., 2016) or

CLARK (Ounit et al., 2015), are slower or require significantly more

memory. The other problem with read‐based approaches is that

reads can be too short to contain complete genes, which themselves

are useful for classification. An example of how to solve this issue is

GRASP2 (Zhong et al., 2019), which introduces a limited gene‐centric

assembly step before alignment.

Contig classification is significantly less computationally demand-

ing than read classification and may be necessary if individual reads

have high error rates. It is still possible to use BLAST for this

application on modern systems. More recent methods are being

developed actively, including tools such as CAT (von Meijenfeldt

et al., 2019) and CHEER (Shang & Sun, 2021), both of which aim to

improve the accuracy of previously undiscovered genomes by

bypassing the limitations of typical database‐centric approaches.

For this task, contigs can also more readily be used to extract amino

acid sequences, which can be used by tools such as DIAMOND

(Buchfink et al., 2015) and Kaiju (Menzel et al., 2016), although these

tools are also applicable at the read level.

5.3 | Annotation

Commonly used software for gene detection and annotation are

Prodigal (Hyatt et al., 2010) and Prokka (Seemann, 2014), respec-

tively. Prodigal is popular thanks to its ability to detect previously

unknown genes all the while limiting the number of false‐positive

detections (Hyatt et al., 2010). It achieves this by using a “trial and

error” approach in which all potential genes are first detected and

scored to create a model, whose parameters are then fine‐tuned over

multiple iterations. Prodigal takes into account GC codon biases, start

codon biases, Shine−Dalgarno sequences and hexamer composition.

It also performs analysis on potentially overlapping genes, selecting

the best scoring ones to build the model. Prodigal was also partly

based on expert curation with regard to the data set that was used to

optimize its heuristic parameters and precautions were taken during

its design to avoid “overfitting” (this term is only partially appropriate

in this case). While this approach is suited for single genomes, it was

subsequently adapted to work on metagenomes as well. As a result,

Prodigal remained the dominant gene detection tool and has been

used in a wide variety of cases, from characterizing novel environ-

ments (Tully et al., 2018) to tool validation (Nurk et al., 2017) and

incorporation into new pipelines (Lin & Liao, 2016). One drawback of

Prodigal is that it focuses on coding sequences, as illustrated by its
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reliance on codons. Therefore, genes that are not translated, such as

the particularly relevant 16S ribosomal RNA gene, require other

tools.

Although Prodigal is excellent at detecting genes, and more

importantly, avoiding spurious detections that could occur if the

genes were detected through alignment to reference data sets, it

does not provide any useful information regarding their function. This

is done by searching a gene database, such as KEGG (Kyoto

Encyclopedia of Genes and Genomes) (Kanehisa et al., 2021), COG

(Clusters of Orthologous Genes) (Galperin et al., 2021), eggNOG

(Evolutionary Genealogy of Genes Non‐supervised Orthologous

Groups) (Huerta‐Cepas et al., 2019) or GO (Gene Ontology) (The

Gene Ontology Consortium, 2017) with an alignment tool. Even in

cases where the exact sequence is not found due to errors or

mutations compared to the closest reference, alignment algorithms

are designed to identify homologous genes. Each database has

typically its search engine and pipelines such as Integrated Microbial

Genomes & Microbiomes (IMG/M) (Chen et al., 2021) and MG‐RAST

(Keegan et al., 2016) integrate them into their workflow. The Prokka

tool does also integrate both steps (Seemann, 2014).

6 | ALIGNMENT

Many (sub)steps in the described metagenomics workflow rely on

alignment, that is, the process of finding similar subsequences within

sets of sequences and identifying the differences. Therefore, for the

sake of completeness, alignment concepts were included in this

overview.

Conceptually, alignment can be seen as a number of string

matching operations, which can be exact or approximate. Exact string

matching is useful for locating short sequences and its results can be

used as a starting point for approximate string matching of larger

strings. Exact string matching is generally not relevant for longer

sequences, either due to the presence of sequencing or assembly

errors or to a biological divergence between the query and reference

sequences. However, even with these changes, homologous

sequences can still be found using inexact string matching. For this

case, there are essentially two ways of aligning sequences to one

another: either to identify all the changes that need to occur to

convert one sequence into another (global alignment) or to find the

best matching regions of the two sequences (local alignment).

The distinction between global and local alignment is particu-

larly relevant in genomes, as both types of alignment are used, but

in different contexts. However, on the whole‐genome sequence

scale, alignment must also handle transpositions, where a long

sequence is located in one place in one genome and in another

place in the other, and inversions, where sequences are replaced

by their reversed complementary sequence. For this task, it is

necessary to first identify orthologous sequences, a process that is

severely complicated by the fact that there are usually differences

between these sequences and that the abundance of these

differences varies from pair to pair.

6.1 | Exact string matching

String matching is the process of finding a given set of ordered

characters (a string) of length m, such as an oligonucleotide, within a

larger set of characters of length n, such as a genome. The “naïve”

approach to finding similar strings is simply to check every possible

position within the larger set of characters, then verify if the

subsequent characters match the query. However, this approach is

extremely inefficient and more efficient approaches have been

developed, culminating in suffix trees stored as suffix arrays.

Conceptually, suffix trees are hierarchical structures containing

every single possible suffix within the large set of characters it

represents, including the full one (Figure 9). Such a data structure

allows checking whether or not any given subsequence is contained

within the full sequence in O(m) (Big O notation), rather than the O

(m × n) of the naïve method. Construction and required memory are

both O(n2) (Figure 9), which rapidly becomes impractical for biological

data. To resolve this issue, suffix arrays are used. Unlike explicit suffix

trees, suffix arrays can not only be used to obtain the first position of

any given query in O(m) time, they can also be constructed in O(n)

time and occupy O(n) memory (Skiena, 2020). By using suffix arrays, it

therefore becomes possible to rapidly and efficiently index genomes

of any size, and then perform multiple searches in minimal time.

However, the suffix array approach still requires O(n) time to be

built. While this is useful for performing multiple searches on the

same genome, when searching for a single sequence within a larger

sequence only once, an alternative approach exists that requires less

than O(n) time in a usual case and O(n/m) in the best case, called the

Boyer−Moore algorithm. In this approach, the query string is first

used to construct a table that contains the relative location of the

next identical character for each possible character. Once this array is

built, it becomes possible to skip portions of the text whose ending

does not match that of the query, since a mismatch can be used to

infer the closest possible position of a potential match, and avoid

comparing the query against all intermediate positions. Because this

algorithm indexes the query rather than the larger sequence, suffix

trees are generally more practical.

Unlike the ideal case of searching exact matches, for which

objective and fast methods have been presented above, alignment of

F IGURE 9 A suffix tree is a data structure containing all the
possible suffixes in a chain of characters. Namely, suffixes that share
the same prefix are considered to be part of the same branch,
diverging into separate branches when the prefixes no longer match.
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genetic sequences typically involves mismatches. This can be because

of inherent mismatches in sequences that occur when searching for

known genes in novel organisms, or when attempting to find overlaps

between reads of sequencing data that contain errors. In either case,

approximate string matching algorithms become necessary.

6.2 | Global alignment

Identifying differences between two sequences is a relatively

straightforward process that usually relies on edit distances, the

most well‐known of which is the Levenshtein distance, which assigns

an error cost for each insertion, deletion and substitution between

two strings of text, and reports the sum of produced mismatches

between two strings as the distance between them. Under specific

conditions, these edit distances can be calculated in O(s ×min(m,n))

computational time and space (Ukkonen, 1985), where s is a value

that must be set according to how similar the sequences (of length m

and n) are expected to be. This means that for sequences that are

expected to be similar, distance can be computed at a low

computational cost.

Because global alignment can be viewed as an optimization

problem, the result of such an operation is intrinsically linked to the

evaluation criteria that are sought to be optimized by the algorithm.

Because of this, it is important to remember the context in which

such alignments are performed. In the present work, two such

contexts are particularly relevant. The first relevant context is

assembly, since long‐read sequencers tend to produce more

insertions and/or deletions than their short‐read counterparts

(Sacristán‐Horcajada et al., 2021). Alignment is used in the OLC

approach that is most effective for such reads and global alignment is

relevant for the consensus step. The second relevant context is

comparing genes from different strains, where changes represent

mutations that occurred over long periods. In this case, insertions and

deletions of single nucleotides are a lot rarer than with sequencing

since they lead to frameshifting, which has the potential to render a

gene inoperative. As a result, the cost associated with each type of

mismatch may need to be adapted depending on the situation,

though default values are typically specified in published software

that is known to perform adequately for the task for which the

software was intended.

An important extension or global alignment is MSA. Unlike pair‐

wise sequence alignment, for which an optimal alignment (given

specific evaluation criteria) can be computed within a reasonable time

frame of O(m × n) in the worst case, the computational cost of finding

an optimal solution to an MSA problem is factorial in the number of

sequences. This means that the only realistic options are to rely on

heuristics with no guarantees of producing an optimal solution. MSA

is necessary for establishing the consensus sequences, be it for

establishing the “true” sequence of the genome underlying a set of

sequencing reads, or to find the common ancestor of a set of

orthologous genes. For global alignment, MUSCLE (Edgar, 2004),

Clustal ω (Sievers & Higgins, 2014), and the NAST algorithm

implemented in the Mothur environment (Schloss et al., 2009) are

all software of some renown.

6.3 | Local alignment

Unlike global alignment, where the focus lies in uncovering the “least

expensive” set of changes necessary to convert one sequence to

another, local alignment focuses on locating the position of matching

(sub)sequences. The most common local alignment approach is the

seed and extend approach, which operates by identifying short

matching subsequences within the sequences to be compared and

then attempts to extend them until a significant enough number of

inconsistencies is detected or one of the two sequences ends. The

way these shorter sequences are identified varies from program to

program.

Some programs, such as the first incarnation of BLAST (Altschul

et al., 1990), rely on matching relatively short oligonucleotides of

length 8−12. Their primary advantage is that a pair of short

oligonucleotides obtained from two matching sequences is less likely

to contain mismatches by being shorter, even if the overarching

sequences have mismatches, enabling the use of exact string

matching approaches to find them. One way to use short

oligonucleotides is to build a table containing every location of each

possible oligonucleotide. By having such a table, it becomes possible

to look up the positions of any oligonucleotide without actually

performing a search, which drastically reduces the time required to

identify all potential matches.

Another approach is to rely on suffix trees rather than on

oligonucleotides of fixed length to identify the seeds. Suffix trees can

rapidly be compared to each other to identify so‐called maximal

unique matches or MUMs. This can be done by merging both trees all

the while keeping labels of the origin of each branch and simply

finding those branches of the merged tree that have exactly two child

branches of different origin (Delcher et al., 1999).

Once a seed has been established, the extension procedure can

begin. This step is typically based on heuristic rules encoded as some

sort of model graph based on the target sequence. One of the most

well‐known software applied for the alignment of both short and long

sequences is BLAST, which was first published in 1990 (Altschul

et al., 1990) and adapted to a variety of cases over the years (Altschul

et al., 1997; Kent, 2002; Zhang et al., 2000). As its name suggests,

BLAST performs “local” alignment, which means it attempts to find

conserved subsequences rather than attempting to align entire

sequences against each other. BLAST uses a variant of seed and

extend algorithm where short matching sequences are identified—

which is done efficiently by limiting the search to closely related

sequences of identical length, indexed using a fast data structure—

and then extended according to empirically defined alignment scoring

rules. The alignments that meet user‐specified criteria are then sorted

according to their score and reported.

Another tool to perform local alignment is HMMER (Eddy, 2011),

which uses profile hidden Markov models (HMMs). Compared to
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BLAST, HMMER is slower if simply used to align sequences.

However, because it relies on a model, this means that it can assign

different weights to different positions, depending on prior knowl-

edge regarding sequences. As a result, HMMER can be considerably

more useful than BLAST for studying sequence homology between

organisms and relating it to evolutionary distances.

This comparison illustrates the need for different tools depend-

ing on the reason why alignment is performed. Indeed, BLAST is more

useful than HMMER when attempting to discover which sequence is

being studied, whereas HMMER is useful for comparing sequences

from different organisms. While BLAST focuses on locating similar

sequences, there is also software that can be used to evaluate how

sequences are arranged. Foremost among these is Minimap2 (H. Li,

2018). This tool locates short (~20) sequences, called minimizers,

which are locally minimal in the alphabetic sense (e.g., “AA” < “AB”),

and matches their location between the target sequences. By using

minimizers rather than the full alignment, the whole process is greatly

accelerated and large‐scale modifications of DNA, such as reloca-

tions, transpositions, and large insertions and deletions (together

referred to as indels) become apparent.

Alignment is computationally expensive but can be accelerated

through proper indexing of sequences. Examples of indexing

techniques include suffix trees for exact matches of variable length,

implemented in MUMmer, and the Burrow−Wheeler transform

(BWT) implemented in Bowtie (Langmead et al., 2009) and BWA

(H. Li & Durbin, 2010). MUMmer (Kurtz et al., 2004) is an example of

alignment based on MUMs. Unlike BLAST, which relies on

oligonucleotides of a fixed length to create seeds, MUMs can be of

any length. Efficient localization of MUMs is achieved using suffix

trees, a data structure that stores all possible suffixes in a sequence,

with all suffixes sharing a prefix being located on the same branch.

This kind of data structure enables searching for exact matches in

linear time, but requires a large amount of memory and only produces

one match location for any sequence. However, both of these issues

were addressed in the latest version of MUMmer, which has

drastically reduced memory requirements for storing suffix trees

and has been extended to be able to report nonunique matches

(Marçais et al., 2018). Finally, if one wishes to compare multiple

bacterial strains visually at a low computational cost, a software of

interest is Mauve (Darling et al., 2010), which performs MSA on the

scale of whole genomes and has an intuitive user interface.

6.4 | Alignment in metagenomics

As stated previously, alignment is necessary at multiple stages in

metagenome analysis. Of these, perhaps the most critical is read

alignment. Reads can be aligned against a reference to identify extant

taxa, against a complete assembly to estimate abundance, against

individual bins to separate the sequencing data according to the

genome of origin, or against longer reads to reduce error rate (read

polishing), although the latter is not strictly unique to metagenomics.

Unlike alignment of assembled sequences against a reference,

nonspecialized tools have an insufficient performance to perform

read alignment. BWA and Bowtie2 have long been established as

standard tools for aligning reads against a known reference or an

assembly, but are intended for short highly accurate reads produced

by Illumina and older short‐read technologies. With the advent of

long error‐prone reads, newer approaches such as Minimap2 had to

be developed to perform the same operation on long reads.

Moreover, for metagenomics specifically, these tools are not

sufficient to extract meaningful information on their own, nor are

they intended to align reads against large databases. Because of this,

when aligning reads against a reference database, the tools

mentioned in Section 5.2 are necessary.
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