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Abstract

In this paper, we complete the classification of the caps in PG(n, q) having the
property that on every tangent line L, there exists a unique point distinct from
the tangency point though which there is at least one secant line. The examples
include the Coxeter cap in PG(5, 3) related to the Mathieu group M12, a set of
three noncollinear points in PG(2, q) and some examples related to hyperovals of
projective planes.
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1 Introduction

In 1958, Coxeter [3] studied a set K of 12 points of the projective space PG(5, 3) that
satisfies some marvellous properties, among which we have:

(a) The stabilizer of K inside the group PGL(6, 3) is isomorphic to the Mathieu group
M12.

(b) Every five distinct points of K generate a hyperplane intersecting K in exactly six
points.

(c) The point-line geometry defined on K by the hyperplane intersections of size 6 is a
Steiner system of type S(5, 6, 12) (necessarily) isomorphic to the Witt design on 12
points.

(d) For every tangent line L, there exists a unique point on L \ K that is on a secant
line. Moreover, the secant line through that point is unique.

∗corresponding author
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We note that property (b) implies that K is a so-called cap, that is, a set of points of
a projective space intersecting each line in at most two points. Having a cap X in a
projective space, we then define external, tangent or secant lines as lines meeting X in
respectively 0, 1 or 2 points. If L is a tangent line, then the unique point in L ∩ X is
called the tangency point. Any set of points in PG(5, 3) projectively equivalent to the
above-mentioned set of 12 points is called a Coxeter cap.

Among the above-mentioned properties (a), (b), (c) and (d), the last one is the one
which is of interest in the present paper. We wish to classify all caps in finite projective
spaces that satisfy (d), with omission of the requirement that the secant line through the
point of L\K needs to be unique. We also succeed in this goal. The following is our main
result.

Theorem 1.1. Let K be a nonempty cap in the projective space PG(n, q), q ≥ 3, satisfying
the following property.

(∗) There is a tangent line and on every tangent line, there is a unique point different
from the tangency point through which there is at least one secant line.

Then one of the following cases occurs.

(1) n = 2 and K is a set of three noncollinear points;

(2) n = 3, q is even and K consists of a hyperoval in a plane of PG(3, q), plus one extra
point not in that plane;

(3) n = 4, q is even and K is the union of two hyperovals whose carrying planes meet
in a point belonging to both hyperovals.

(4) n = 5, q = 3 and K is a Coxeter cap in PG(5, 3).

The condition on the existence of tangent lines in Theorem 1.1 is in some sense not essen-
tial. If we would omit that requirement, then the extra examples that arise are nonempty
sets intersecting each line in either 0 or 2 points. All such sets are well known in finite
geometry (and we have therefore already excluded this case from Theorem 1.1). They are
either the singleton in PG(0, q), pairs of points in PG(1, q), hyperovals in PG(2, q) with q
even, or the complements of hyperplanes in PG(n, q) with n ≥ 3 and q = 2.

What happens if we omit the condition q ≥ 3 in Theorem 1.1? As we will see in
Section 3, all examples with q = 2 can be described in a uniform way. They are the sets
X of points of PG(n, 2) that satisfy the following properties:

(a) X is properly contained in the complement of a hyperplane;

(b) for every point x of PG(n, 2), there exists a subset Y ⊆ X with |Y | ∈ {1, 2, 3} such
that x ∈ 〈Y 〉.
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There are plenty of point sets satisfying (a) and (b), e.g. by starting from the complement
of a hyperplane of PG(n, 2) and removing any positive number of points such that (b) is
still satisfied. In view of this, it seems for q = 2 not possible to give a classification for
general values of n beyond the description that we have given in (a) and (b) above. We
have therefore also opted not to include the case q = 2 in Theorem 1.1. It also seems that
the classification for the case q = 2 is most naturally obtained in a more general setting,
and this is also the approach we will follow in Section 3.

An incomplete classification of the caps in PG(n, q) satisfying property (∗) of Theorem
1.1 was already obtained in [7]. These sets of points were studied in [7] because of their
connection with (linear representations of) near hexagons. The reason why we are now
able to complete the classification, more than 20 years after [7], is because of some recent
breakthrough results in the theory of near polygons, more precisely, the derivation of
a new divisibility condition [5] and a new inequality [6] that must be satisfied by the
parameters of near hexagons with an order. This inequality and divisibility condition
have been derived in [5, 6] by means of algebraic combinatorial arguments using certain
matrices associated with the geometry.

These new results allow to simplify several of the early results in the theory of near
polygons, to extend classification results for near hexagons to a more general setting, and
to show the nonexistence of a number of near hexagons whose existence had been open for
many years. In the present paper, we offer another application of these results to certain
caps in projective spaces, hereby completing a classification that was initiated 20 years
ago in [7].

In Section 2.2, we describe the connection between near polygons and the caps of
PG(n, q) that satisfy property (∗) of Theorem 1.1. The recent results in the theory of
near polygons that are essential for our treatment are the Propositions 2.1 and 2.2 of
Section 2.1. The completion of the classification will take place in Section 5. In order
to achieve this goal, we need to recall several properties of the caps that were already
obtained in [7]. These will be recalled in Sections 4, 5.2 and 5.3.

2 Preliminaries

2.1 Near polygons

A point-line geometry S = (P ,L, I) with nonempty point set P , line set L and incidence
relation I ⊆ P ×L is called a partial linear space if every two distinct points are incident
with at most one line. A point-line geometry is said to have order (s, t) if every line
is incident with exactly s + 1 points, and if every point is incident with precisely t + 1
lines. A point-line geometry is called thin if every line is incident with exactly two points.
Distances in a point-line geometry S are always measured in its collinearity graph. If
O1 and O2 are two objects of S, being points or nonempty sets of points, then d(O1, O2)
denotes the distance between O1 and O2. If O is an object and i ∈ N, then Γi(O) denotes
the set of points at distance i from O.

A partial linear space is called a generalized quadrangle (GQ) if there exist two lines
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that have no points in common, and if for every non-incident point-line pair (x, L), there
exists a unique point on L collinear with x. A partial linear space is called a degenerate
generalized quadrangle if there are at least two lines, any two lines have a point in common
and for every non-incident point-line pair (x, L), there exists a unique point on L collinear
with x. Degenerate generalized quadrangles are line pencils for which there exists a specific
point that is collinear with all other points and incident with all lines. A finite generalized
quadrangle Q of order (s, t) contains (s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines. The
diameter of Q is moreover equal to 2, and |Γ0(x)| = 1, |Γ1(x)| = s(t + 1), |Γ2(x)| = s2t
for any point x of Q. For more background information on generalized quadrangles, we
refer to [14].

A partial linear space S is called a near polygon if S has finite diameter and if for
every point-line pair (x, L), there exists a unique point πL(x) on L that is nearest to
x. If d ∈ N is the diameter of S, then S is called a near 2d-gon. A near 0-gon has a
unique point and no lines, a near 1-gon is a line and the near quadrangles are the possibly
degenerate generalized quadrangles. The thin near polygons are precisely the bipartite
graphs of finite diameter. As a near polygon S is a partial linear space, we can and often
will identify a line L of S with the set of points incident with L. Near polygons were
introduced by Shult and Yanushka in [15].

Let S be a near polygon. A set X of points of S is called a subspace if every line that
has two of its points in X has all its points in X. For every nonempty subspace X, a
subgeometry SX of S can be defined whose points are the elements of X and whose lines
are the lines of S that have all their points in X. A set X of points of S is called convex if
for every two points x and y of X, all points on a shortest path between x and y are also
contained in X. If X is a nonempty convex subspace of S, then SX obviously is also a
near polygon. If X is a nonempty convex subspace of S for which SX is a (nondegenerate)
generalized quadrangle, then X is called a quad.

The following proposition was recently proved in [6, Theorem 1.3].

Proposition 2.1. Suppose S is a finite near hexagon of order (s, t), s ≥ 2. Let x and
y be two points of S at distance 3 from each other. Let N denote the number of shortest
paths connecting x and y, and put t2 := N

t+1
− 1. Then

t2(s
2 + s+ 1)− s3 ≤ t ≤ s3 + t2(s

2 − s+ 1).

In case every two points at distance 2 have exactly t2 + 1 common neighbours, the near
hexagon of order (s, t) is said to be regular with parameters (s, t, t2) and the upper bound
in Proposition 2.1 reduces to t ≤ s3+t2(s

2−s+1). This bound is known as the (Haemers-
)Mathon bound, see [2, 9, 11, 12]. In case every two points at distance 2 have a unique
common neighbour, the near hexagon of order (s, t) is said to be a generalized hexagon
of order (s, t) and the upper bound in Proposition 2.1 reduces to t ≤ s3. This bound is
known as the Haemers-Roos inequality, see [10].

We also mention here another restriction for near hexagons with an order recently proved
in Theorem 1(2) of [5].
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Proposition 2.2. Suppose S is a finite near hexagon of order (s, t) having v points. Then
the number

s5v

(s+ 1)2(s− 1)(s2 + 1) + st(s− 1)(s+ 1)2 + v

is integral.

The following proposition, taken from [6, Proposition 2.3], can readily be derived from [4,
Theorem 1.2].

Proposition 2.3. Let S be a finite near hexagon of order (s, t) having v points. Then
|Γ2(x)| = v

s+1
− 1 + st(s− 1) for every point x of S.

The following proposition is precisely Proposition 2.6 of [15].

Proposition 2.4. Suppose S is a near polygon having the property that every line is
incident with at least three points. Then one of the following cases occurs for a point-quad
pair (x,Q) of S:

(1) There exists a unique point πQ(x) ∈ Q nearest to x. In this case, d(x, y) =
d(x, πQ(x)) + d(πQ(x), y) for every point y ∈ Q.

(2) The points in Q nearest to x form an ovoid Ox of SQ.

By an ovoid of a generalized quadrangle Q, we mean a set of points having a unique point
in common with each line. With a fan of ovoids of Q, we mean a collection of ovoids of
Q partitioning its point set. With a rosette of ovoids of Q, we mean a collection of ovoids
of Q through a distinguished point x that partitions the set of points of Q at distance 2
from x. The point x is then called the center of the rosette. If Q is a finite generalized
quadrangle of order (s, t), then every ovoid of Q contains 1+st points, every fan of ovoids
contains s+ 1 elements and every rosette of ovoids contains s elements.

If case (1) occurs in Proposition 2.4, then the point x is called classical with respect
to Q. If case (2) occurs, then the point x is called ovoidal with respect to Q. Points at
distance at most 1 from Q are always classical with respect to Q. If S is a near 2d-gon,
then the maximal distance from a point of S to Q is at most d− 1 and points at distance
d− 1 from Q are necessarily ovoidal with respect to Q. So, we have the following.

Proposition 2.5. Suppose S is a near hexagon having the property that every line is
incident with at least three points. If (x,Q) is a point-quad pair, then x is classical with
respect to Q if d(x,Q) ≤ 1 and ovoidal with respect to Q if d(x,Q) = 2.

The following two propositions were proved in [2, Section(b)].

Proposition 2.6. Suppose S is a near polygon having at least three points on each line,
and let Q be a quad of S. Then the following hold:
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(1) If a line L contains points at distance i and i + 1 from Q for some i ∈ N, then L
has a unique point at distance i from Q.

(2) If a line L contains two distinct points x and y at distance i from Q where i ∈ N,
then x and y are both classical or both ovoidal with respect to Q.

Proposition 2.7. Suppose S is a near polygon having at least three points on each line.
Let Q be a quad of S and L a line at distance i from Q. Then precisely one of the following
cases occurs.

(1) All points of L lie at distance i from Q and are classical with respect to Q. Then
the points πQ(x), x ∈ L, are mutually distinct and form a line of SQ.

(2) All points of L lie at distance i from Q and are ovoidal with respect to Q. Then the
ovoids Ox, x ∈ L, form a fan of ovoids of SQ.

(3) L contains a unique point at distance i from Q and all points of L are classical with
respect to Q. Then all points πQ(x), x ∈ L, are equal.

(4) L contains a unique point at distance i from Q and all points of L are ovoidal with
respect to Q. Then all ovoids Ox, x ∈ L, coincide.

(5) L contains a unique point y at distance i from Q, y is classical with respect to Q and
every point of L\{y} is ovoidal with respect to Q. Then the ovoids Ox, x ∈ L\{y},
form a rosette of ovoids of SQ with center πQ(y).

2.2 Linear representations of near polygons

Let PG(n, q) be a projective space of dimension n ∈ N embedded as a hyperplane in a
projective space PG(n + 1, q). For every set K of points of PG(n, q), we can define the
following point-line geometry T ∗n(K):

• the points of T ∗n(K) are the points of PG(n+ 1, q) \ PG(n, q);

• the lines of T ∗n(K) are those lines of PG(n+ 1, q) not contained in PG(n, q) through
some point of K;

• incidence is containment.

Then T ∗n(K) is a partial linear space of order (q − 1, |K| − 1).
With every point p of PG(n, q), we associate in the following way an element iK(p) ∈

N ∪ {+∞} which is called the (generating) index of p (with respect to K), or also the
K-index:

• If p 6∈ 〈K〉, then iK(p) = +∞.

• If p ∈ 〈K〉, then iK(p) is the smallest number of points of K that generate a subspace
containing p.
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The following propositions and corollary are taken from Section 4 of [7].

Proposition 2.8. If x and y are two different points of T ∗n(K) and z is the intersection
point of the line xy with PG(n, q), then d(x, y) = iK(z), where d(·, ·) denotes the distance
function in (the collinearity graph of) T ∗n(K).

Proposition 2.9. T ∗n(K) is a near polygon if and only if K 6= ∅ and for every line L of
PG(n, q) containing a point u ∈ K, there exists a unique point in L \ {u} with smallest
K-index.

As a consequence of Propositions 2.8 and 2.9, we have

Corollary 2.10. If T ∗n(K) is a near polygon, then K is a cap and 〈K〉 = PG(n, q).

Proposition 2.11. T ∗n(K) is a near hexagon if and only if the following conditions are
satisfied:

(1) K is a cap of PG(n, q).

(2) There is a tangent line in PG(n, q) and on every such tangent line, there is a unique
point different from the tangency point through which there is at least one secant line.

2.3 Some examples of linear representations

Let F12
3 denote the 12-dimensional vector space over the finite field F3 = {0, 1,−1} of

order 3 whose vectors are row matrices of length 12 with entries in F3. The six rows of
the matrix

M :=


1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 −1 −1 1
0 0 1 0 0 0 1 1 0 1 −1 −1
0 0 0 1 0 0 1 −1 1 0 1 −1
0 0 0 0 1 0 1 −1 −1 1 0 1
0 0 0 0 0 1 1 1 −1 −1 1 0


generate a 6-dimensional subspace C of F12

3 which is called the extended ternary Golay
code. By deleting one coordinate position, one gets a code (a subspace of F11

3 ) which was
discovered by Golay [8].

Let ēi with i ∈ {1, 2, . . . , 12} denote the row vector all of whose entries are 0 except
for the ith one which is equal to 1. Let E1 be the partial linear space whose points are all
the cosets of C and whose lines are all the triples of the form {v̄+C, v̄+ ēi+C, v̄− ēi+C}
with v̄ ∈ F12

3 and i ∈ {1, 2, . . . , 12}, with incidence being containment. The following
proposition is due to Shult and Yanushka, see [15, pp. 30–33].

Proposition 2.12. E1 is a regular near hexagon with parameters (s, t, t2) = (2, 11, 1).

After fixing some reference system, the 12 columns of the matrix M define a set K∗ of 12
points of the projective space PG(5, 3). We regard this projective space as a hyperplane
of the projective space PG(6, 3). Proposition 2.13 below was proved in Section 6.5 of [4].

7



Proposition 2.13. (1) The maximal K∗-index of a point of PG(5, 3) is equal to 3.

(2) If L is a line of PG(5, 3) through a point x of K∗, then L \ {x} contains a unique
point with smallest K∗-index.

(3) T ∗5 (K∗) is a regular near hexagon with parameters (s, t, t2) = (2, 11, 1).

The geometries E1 and T ∗n(K∗) are thus two regular near hexagons with parameters
(s, t, t2) = (2, 11, 1). It can be shown that both geometries are isomorphic. In fact, by
Brouwer [1], we know that there exists up to isomorphism a unique regular near hexagon
with these parameters.

A hyperoval of the projective plane PG(2, q) is a set of q + 2 points meeting each line in
either 0 or 2 points. Hyperovals can only exist if q is even. If C is an irreducible conic
in a Desarguesian projective plane PG(2, q) with q = 2h even, then all tangent lines to
C meet in a common point, which is called the nucleus of C. The conic C together with
its nucleus is then an example of a hyperoval. The following proposition taken from [14,
3.1.3] follows from Propositions 2.8 and 2.9. Indeed, these propositions imply that T ∗2 (O)
is a near polygon with diameter 2 that cannot be a degenerate generalized quadrangle as
the geometry has an order.

Proposition 2.14. Suppose O is a hyperoval of a projective plane PG(2, q), q even, which
is embedded as a hyperplane in the projective space PG(3, q). Then T ∗2 (O) is a generalized
quadrangle of order (q − 1, q + 1).

The projective plane PG(2, 4) has up to isomorphism a unique hyperoval, namely an
irreducible conic union its nucleus. The following result was proved by Payne [13, VI.1].

Proposition 2.15. Let O be a hyperoval of the projective plane PG(2, 4) which is embed-
ded as a hyperplane in the projective space PG(3, 4). Then every ovoid of the generalized
quadrangle T ∗2 (O) is of the form π \ PG(2, 4) where π is a plane of PG(3, 4) intersecting
PG(2, 4) in a line disjoint from O. As a consequence, any two distinct ovoids of T ∗2 (O)
meet in either 0 or 4 points, and T ∗2 (O) has no rosettes of ovoids.

3 The case q = 2

In this section, we classify nonempty sets K of points of PG(n, 2) that satisfy the following
property:

(∗) For every line L of PG(n, 2) containing a point u of K, there exists a unique point
of L \ {u} with smallest K-index.

By Proposition 2.9, this is equivalent with demanding that T ∗n(K) is a near polygon. We
hereby suppose that T ∗n(K) lives in a projective space PG(n+1, 2) that contains PG(n, 2)
as a hyperplane.
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Proposition 3.1. Let α be a hyperplane of PG(n, 2) and K a set of points of PG(n, 2) \
α generating PG(n, 2). Then T ∗n(K) is a thin near polygon, or equivalently K satisfies
property (∗).

Proof. The fact that 〈K〉 = PG(n, 2) implies by Proposition 2.8 that T ∗n(K) has finite
diameter. So, it suffices to prove that the collinearity graph of T ∗n(K) is bipartite. In
PG(n + 1, 2), there are three hyperplanes through α, namely PG(n, 2) and two others,
say Π1 and Π2. Every line of PG(n + 1, 2) containing a point of K and not contained
in PG(n, 2) contains a unique point of Π1 and a unique point of Π2. So, the collinearity
graph of T ∗n(K) is bipartite with bipartite parts Π1 \ α and Π2 \ α.

We now show that also the converse of Proposition 3.1 is true.

Proposition 3.2. Let K be a nonempty set of points of PG(n, 2) satisfying property
(∗) (or equivalently, such that T ∗n(K) is a near polygon). Then 〈K〉 = PG(n, 2) and
K ⊆ PG(n, 2) \ α for some hyperplane α of PG(n, 2).

Proof. By Corollary 2.10, 〈K〉 = PG(n, 2) and so there exists a set U = {p1, p2, . . . , pn+1}
of n + 1 points of K generating PG(n, 2). We can choose a reference system in PG(n, 2)
in such a way that the point pi with i ∈ {1, 2, . . . , n + 1} coincides with the point
(0, . . . , 0, 1, 0, . . . , 0) all whose coordinates are equal to 0, except for the ith one which
is equal to 1. Partition the point set of PG(n, 2) in two parts X0 and X1 such that X0

consists of all points with even weight and X1 consists of all points with odd weight (with
respect to the chosen reference system). Then X0 is a hyperplane of PG(n, 2). We also
partition the point set of PG(n, 2) in two sets X ′0 and X ′1 such that X ′0 consists of all
points with even K-index and X ′1 consists of all points with odd K-index.

We prove that if p is a point of PG(n, 2), then either p ∈ X0 ∩ X ′0 or p ∈ X1 ∩ X ′1.
We prove this by induction on the weight w of p. If w = 1, then p ∈ U also has index
1 as U ⊆ K, implying that p ∈ X1 ∩ X ′1. If w = 2, then p has index 2 since K is a cap
(by Corollary 2.10) and U ⊆ K. Suppose therefore that w ≥ 3, and let u be a point of
U such that the unique third point x on the line up has weight w − 1. Take ε ∈ {0, 1}
having the same parity as w. Then p ∈ Xε and x ∈ X1−ε. By the induction hypothesis,
we know that x ∈ X1−ε ∩X ′1−ε. By applying Property (∗) to the line ux, we also see that
p and x belong to distinct sets in the collection X ′0, X

′
1. So, p belongs to X ′ε and we have

p ∈ Xε ∩X ′ε as we needed to prove.
As p ∈ X0 ∩X ′0 or p ∈ X1 ∩X ′1 for every point p of PG(n, 2), we have X0 = X ′0 and

X1 = X ′1. As all points of K have index 1, they have odd weight and so belong to X1.
So, K is contained in PG(n, 2) \ α, where α is the hyperplane X0 of PG(n, 2).

4 Basic properties of the caps

Our goal here is thus to classify all setsK in a finite Desarguesian projective space PG(n, q)
with n ≥ 2 for which the following two properties are satisfied:
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(NH1) K is a cap;

(NH2) there is at least one tangent line, and on every tangent line, there is a unique point
different from the tangency point through which there is at least one secant line.

By Proposition 2.11, this is equivalent with demanding that T ∗n(K) is a near hexagon. We
hereby suppose that T ∗n(K) lives in a projective space PG(n+ 1, q) that contains PG(n, q)
as a hyperplane.

By Section 3 (see also the discussion in Section 1), we precisely know how the sets K
look like in the case that q = 2. In fact, there are then an infinite number of examples
and no bound on the dimension n of PG(n, q). In the sequel, we will therefore assume
that q ≥ 3. The following lemmas are taken from [7].

Lemma 4.1. Every plane of PG(n, q) intersects K in either 0, 1, 2, 3 or q + 2 points. If
there exists a plane α such that |α ∩ K| = q + 2, then q is even and α ∩ K is a hyperoval
of α.

A plane of PG(n, q) is called thick whenever it intersects K in exactly q + 2 points.

Lemma 4.2. (1) If β is a 3-dimensional subspace of PG(n, q) through a thick plane,
then |β ∩ K| ∈ {q + 2, q + 3}.

(2) Two thick planes cannot meet in a line.

(3) Two thick planes cannot meet in a point not belonging to K.

(4) If two thick planes α1 and α2 intersect in a point of K, then the points of K in the
4-dimensional subspace through α1 and α2 are all contained in α1 ∪ α2.

(4) If two thick planes α1 and α2 are disjoint, then the points of K in the 5-dimensional
subspace through α1 and α2 are all contained in α1 ∪ α2.

If Q is a quad of T ∗n(K), then we denote by SQ the subgeometry of T ∗n(K) defined on Q
by those lines of T ∗n(K) that have all their points in Q. Recall that SQ is a generalized
quadrangle.

Lemma 4.3. (1) Let L be a secant line of PG(n, q) that is not contained in a thick
plane. If α is a plane of PG(n + 1, q) intersecting PG(n, q) in L, then Q := α \ L
is a quad of T ∗n(K) for which SQ is a (q × q)-grid.

(2) Let α be a thick plane of PG(n, q) and β a 3-dimensional subspace through α not
contained in PG(n, q). Then Q := β\α is a quad of T ∗n(K) for which SQ ∼= T ∗2 (α∩K).

Lemma 4.4. Two points x and y of T ∗n(K) at mutual distance 2 have either 2 or q + 2
common neighbours and are contained in a unique quad which is either a (q × q)-grid or
isomorphic to T ∗2 (O) for some hyperoval O of PG(2, q). The latter case can only occur if
q is even. All quads of T ∗n(K) are as obtained in Lemma 4.3. If there are no thick planes,
then all quads are grids and the near hexagon T ∗n(K) is regular.
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Lemma 4.5. If k = |K| and N is the total number of thick planes of PG(n, q), then

1

2
Nq(q2 − 1) +

qn − 1

q − 1
− (k − 1) =

1

2
(q − 1)(k − 1)(k − 2).

Proof. This was proved in Lemma 6.6 of [7] by a combinatorial reasoning in PG(n, q),
not invoking the associated near hexagon T ∗n(K). We now show that the equality is also
equivalent with the equality of Proposition 2.3 applied to the near hexagon T ∗n(K). We
know that T ∗n(K) is a near hexagon of order (s, t) = (q− 1, k− 1) having v = qn+1 points.
By Proposition 2.3, we then know that

|Γ2(x)| = qn − 1 + (q − 1)(q − 2)(k − 1)

for every point x of T ∗n(K). By Proposition 2.8, we also know that

|Γ2(x)| = (q − 1)M,

where M is the total number of points of PG(n, q) that have index 2 with respect to K.
Hence,

M =
qn − 1

q − 1
+ (q − 2)(k − 1).

The number of pairs ({x, y}, z), where x and y are two distinct points of K and z ∈
xy \{x, y} is equal to

(
k
2

)
(q−1) = 1

2
k(k−1)(q−1). We now count this number in another

way. If ({x, y}, z) is such a pair, then z necessarily has index 2. By Lemmas 4.1 and
4.2(1), we then know that there are either 1 or q+2

2
secant lines through z, and that in

the latter case there exists a unique thick plane containing these q+2
2

secant lines. The

number of points with index 2 that are contained in q+2
2

secant lines is therefore equal to
N((q2 + q + 1) − (q + 2)) = N(q2 − 1) and the number of points with index 2 that are
contained in a unique secant line is equal to M −N(q2 − 1). So, the number of suitable
pairs is also equal to

N(q2 − 1) · q + 2

2
+ (M −N(q2 − 1)) · 1 = M +N

(q2 − 1)q

2
.

So, we have

1

2
k(k − 1)(q − 1) = M +N

(q2 − 1)q

2
=
qn − 1

q − 1
+ (q − 2)(k − 1) +N

(q2 − 1)q

2
.

The latter equality is equivalent to the one mentioned in the lemma.

The following can be derived from Lemma 4.5, see [7, Corollary 6.7].

Lemma 4.6. The following congruences regarding the number k = |K| hold:

(1) k ≡ n+ 1 (mod q − 1);
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(2) k ≡ 2 (mod q) or k ≡ 3 (mod q);

(3) (q + 1) | (k − 1)(k − 3) if n is even and (q + 1) | (k − 2)2 if n is odd.

Remark. In [7], it was claimed that k is congruent to either 1 or 3 modulo q + 1 if n
is even, but this seems to be wrongly derived from the fact that (q + 1) | (k − 1)(k − 3).
E.g., q = 32 and k = 12 would form a counter example.

5 Classification of the caps

5.1 Preliminaries

As explained in the beginning of Section 4, we may suppose that q ≥ 3.

Lemma 5.1. If there are thick planes, then n ≥ 3, q ≥ 4 is even and k = |K| ≥ q + n.

Proof. Let α be a thick plane. As α ∩ K is a hyperoval, we have q ≥ 4 is even.
If n = 2, then T ∗n(K) is a generalized quadrangle by Proposition 2.14, which is not the

case here. So, n ≥ 3.
From Corollary 2.10, we know that 〈K〉 = PG(n, q). As |α ∩ K| = q + 2, this implies

that |K| ≥ q + n.

We put r := k − q − 2. The following is a consequence of Lemma 5.1.

Corollary 5.2. If there are thick planes, then r = |K \ α| ≥ n− 2.

5.2 The case where there are no thick planes

The case where there are no thick planes was treated in [7]. The following result was
obtained there.

Proposition 5.3. Suppose q ≥ 3 and K is a cap of PG(n, q) satisfying property (∗) of
Theorem 1.1 such that there are no thick planes. Then one of the following cases occurs:

(1) n = 2 and K is a set of three noncollinear points;

(2) n = 5, q = 3 and K is a Coxeter cap in PG(5, 3).

If case (1) of Proposition 5.3 occurs, then the associated near hexagon T ∗2 (K) is a so-called
Hamming near hexagon with q points per line. If case (2) of Proposition 5.3 occurs, then
T ∗5 (K) ∼= E1. We refer to [7] for more details.

The main tools in the proof of Proposition 5.3 in [7] are Lemma 4.5 and the Haemers-
Mathon bound for the associated regular near hexagon T ∗n(K). This Haemers-Mathon
bound was used in [7] to prove that n ≤ 7.
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5.3 The case where n ∈ {3, 4, 5} and there exist thick planes

The case where n ∈ {3, 4, 5} and there exist thick planes was treated in [7]. The following
result was obtained there.

Proposition 5.4. Suppose n ∈ {3, 4, 5} and K is a set of points of PG(n, q) satisfying
property (∗) of Theorem 1.1 for which there exists at least one thick plane (and so q is
even). Then one of the following cases occurs:

(1) n = 3 and K consists of the hyperoval α ∩ K in the unique thick plane α and one
point not in α;

(2) n = 4 and K is the union of two hyperovals whose carrying (thick) planes α and α′

meet in a point belonging to both hyperovals.

If case (1) of Proposition 5.4 occurs, then the associated near hexagon T ∗3 (K) is the direct
product of a line of size q with the generalized quadrangle T ∗2 (α ∩ K). If case (2) of
Proposition 5.4 occurs, then T ∗4 (K) is a so-called glued near hexagon of type T ∗2 (α∩K)⊗
T ∗2 (α′ ∩ K). We refer to [7] for more details.

The proof of Proposition 5.4 in [7] was mainly geometric of nature. Also the case
n = 6 was “excluded” in [7], but that proof seems not to be valid as it relies on the fact
that k is congruent to 1 or 3 modulo q + 1, which is not necessarily true (see the final
remark of Section 4). In Section 5.7, we therefore give a new proof for the nonexistence
of this case.

5.4 Derivation of the upper bound n ≤ 8

In [7], we used the Haemers-Mathon bound to derive an upper bound for n in case T ∗n(K)
is a regular near hexagon. In the general case, T ∗n(K) is not necessarily a regular near
hexagon. However, we can still use the generalized version of the Haemers-Mathon bound
(Proposition 2.1) to obtain a slightly worse upper bound for n.

Lemma 5.5. We have n ≤ 8.

Proof. From Lemma 4.5, we know that

qn − 1

q − 1
≤ 1

2
(q − 1)(k − 1)(k − 2) + (k − 1) =

1

2
st(t− 1) + t.

By Lemma 4.4, we know that every two points at distance 2 have either 2 or q+ 2 = s+ 3
common neighbours. If x and y are two points of T ∗n(K) at distance 3 from each other,
and x, u, v, y is a shortest path between x and y, then xu is one of the t+ 1 lines through
x, u is the unique point of xu at distance 2 from y and v is one of the neighbours of u and
y. So, the number of shortest paths between x and y is bounded above by (t+ 1)(s+ 3).
From Proposition 2.1, we then know that

t ≤ s3 + (s+ 2)(s2 − s+ 1) = 2s3 + s2 − s+ 2.
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Hence,

(s+ 1)n − 1

s
=
qn − 1

q − 1
≤ 1

2
s(2s3 + s2 − s+ 2)(2s3 + s2 − s+ 1) + 2s3 + s2 − s+ 2

= 2s7 + 2s6 − 3

2
s5 + 2s4 + 4s3 − 1

2
s2 + 2.

If n ≥ 9, then

s8 + 9s7 + 36s6 + 84s5 + 126s4 + 126s3 + 84s2 + 36s+ 9 =
(s+ 1)9 − 1

s

≤ (s+ 1)n − 1

s
≤ 2s7 + 2s6 − 3

2
s5 + 2s4 + 4s3 − 1

2
s2 + 2,

an obvious contradiction. Hence, n ≤ 8.

5.5 A divisibility condition and some consequences

The near hexagon T ∗n(K) has order (s, t) = (q − 1, k − 1) and contains qn+1 points. The
divisibility condition mentioned in Proposition 2.2 yields

(q − 1)5qn+1

q2(q − 2)(q2 − 2q + 2) + (q − 1)(q − 2)q2t+ qn+1
∈ N,

(q − 1)5qn−1

(q − 2)(q2 − 2q + 2) + 1 + (q − 1)(q − 2)t+ qn−1 − 1
∈ N,

(q − 1)4qn−1

q2 − 3q + 3 + (q − 2)t+ qn−2 + qn−3 + · · ·+ 1
∈ N. (1)

We denote the denominator in the last fraction by D.

Lemma 5.6. For n ∈ {6, 7, 8}, we have k ≡ 3 (mod q).

Proof. Suppose that this is not the case. Then k ≡ 2 (mod q) by Lemma 4.6(2), or
equivalently t ≡ 1 (mod q). By Lemma 5.1 and Proposition 5.3, we know that q ≥ 4 is
even. We have gcd(q,D) = gcd(q, 4− 2t) = gcd(q, 2) = 2. As q ≥ 4 is a power of 2, D is
even and D

2
is odd. This implies by (1) that D is a divisor of 2(q− 1)4. For n ≥ 7, this is

impossible as we then have

D > q5 + q4 + q3 + 2q2 − 2q + 4 > 2q4 − 8q3 + 12q2 − 8q + 2 = 2(q − 1)4.

Indeed, the second inequality is equivalent with q5 − q4 + 9q3 − 10q2 + 6q + 2 = q4(q −
1) + q2(9q − 10) + 6q + 2 > 0, which is always true. Suppose therefore that n = 6. Then

D = q4 + q3 + 2q2 − 2q + 4 + (q − 2)t > (q − 1)4.
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As this a divisor of 2(q − 1)4, we should have

q4 + q3 + 2q2 − 2q + 4 + (q − 2)t = 2(q − 1)4 = 2q4 − 8q3 + 12q2 − 8q + 2,

i.e.
(q − 2)t = q4 − 9q3 + 10q2 − 6q − 2.

The right hand side is negative if q = 4. So, q ≥ 8 and

t = q3 − 7q2 − 4q − 14− 30

q − 2
.

As q ≥ 8 is a power of 2 and q − 2 | 30, we have q ∈ {8, 32}. If q = 8, then t = 13. If
q = 32, then t = 25457. In each of these cases, we see that t is not congruent to 1 modulo
q.

Lemma 5.7. Let n ∈ {6, 7, 8}. Then there exists a β ∈ Z such that k = qn − 2q + 3 +
βq(q − 1).

Proof. By Lemma 5.6, we know that k ≡ 3 (mod q), and by Lemma 4.6(1), we know that
k ≡ n+ 1 (mod q− 1). The claim then follows from the Chinese remainder theorem, and
the facts that qn− 2q + 3 ≡ 3 (mod q) and qn− 2q + 3 ≡ n+ 1 (mod q − 1).

5.6 Inequalities involving the number r and some consequences

The inequality (3) in the following lemma was already proved in Lemma 7.8 of [7]. How-
ever, we later also need the other inequality (2) whose proof requires that we repeat part
of the original arguments. We therefore give a proof of both inequalities:

Lemma 5.8. If there are thick planes, then

(q − 1)r2 + (2q2 − q + 1)r − 2q2
qn−2 − 1

q − 1
≥ 0, (2)

(q − 1)r2 + (q2 + q + 1)r − q2(q + 2)
qn−2 − 1

q − 1
≤ 0. (3)

Proof. Let β be a 3-dimensional subspace of PG(n+ 1, q) intersecting PG(n, q) in a thick
plane α. By Lemma 4.3, Q := β \ α is a quad for which the induced subgeometry SQ
is isomorphic to the generalized quadrangle T ∗2 (α ∩ K). We denote by M the number of
edges in the collinearity graph of T ∗n(K) between points of Γ1(Q) and points of Γ2(Q).

By Lemma 4.2(1), there are r 3-dimensional subspaces in PG(n, q) through α contain-
ing exactly one point of K \α. If β1 is one of these subspaces, then by Proposition 2.8 all
q4− q3 points of 〈β, β1〉 \ (PG(n, q)∪ β) are points of Γ1(Q). By Lemma 4.2(1), there are

also ( q
n−2−1
q−1 −r) 3-dimensional subspaces of PG(n, q) through α disjoint from K\α. If β2 is

one of these subspaces, then by Proposition 2.8 all q4−q3 points of 〈β, β2〉\ (PG(n, q)∪β)
are contained in Γ2(Q).
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If x ∈ Γ2(Q) and y ∈ Γ1(Q)∩Γ1(x), then πQ(y) is a point of the ovoid Ox = Γ2(x)∩Q
of SQ. As SQ is a generalized quadrangle of order (q − 1, q + 1), we have |Ox| = 1 + (q −
1)(q + 1) = q2. Note also that if z ∈ Ox, then |Γ1(x) ∩ Γ1(z)| ∈ {2, q + 2} by Lemma 4.4.
So, we have(qn−2 − 1

q − 1
− r
)
· (q4 − q3) · q2 · 2 ≤M ≤

(qn−2 − 1

q − 1
− r
)
· (q4 − q3) · q2 · (q + 2). (4)

By the above, we know that there are |Q| · s(t + 1 − (q + 2)) = (q4 − q3)r points in
Γ1(Q). Let y be one of these points. Every line L through y that lies entirely in Γ1(Q) is
contained in a (necessarily unique) quad through yπQ(y) meeting Q in a line, namely the
unique quad through y and πQ(z), where z is some point of L\{y}. Note that every quad
through yπQ(y) that intersects Q in a line through πQ(y) contains by Lemma 4.4 either 1
or q+1 lines through y that are contained in Γ1(Q). So, the total number of lines through
y contained in Γ1(Q) lies in the interval [q+ 2, (q+ 2)(q+ 1)]. There is also a unique line
through y meeting Q, namely yπQ(y). So, the total number of lines through y meeting
Γ2(Q) lies in the interval [t − (q + 2)(q + 1), t − (q + 2)] = [r − (q + 1)2, r − 1]. Notice
also that each line through y meeting Γ2(Q) contains precisely q − 1 points of Γ2(Q) by
Proposition 2.6. The number M of edges between Γ1(Q) and Γ2(Q) therefore also satisfies
the following inequalities:

(q4 − q3)r(r − (q + 1)2)(q − 1) ≤M ≤ (q4 − q3)r(r − 1)(q − 1). (5)

The lower bound for M obtained in (4) is at most the upper bound for M obtained in
(5). The resulting inequality is equivalent with inequality (2). Similarly, the lower bound
for M obtained in (5) is at most the upper bound for M obtained in (4). The resulting
inequality is equivalent with inequality (3).

The following lemma was proved in Corollary 7.7 of [7]. We now provide a (partially)
alternative argument based on the inequality (3).

Lemma 5.9. If n ≥ 6, then there are thick planes and q ≥ 8 is even.

Proof. By Lemma 5.1 and Proposition 5.3, there are thick planes and q ≥ 4 is even.
Suppose by way of contradiction that q < 8. Then n ≥ 6 and q = 4. If β is a 3-
dimensional subspace of PG(n + 1, q) intersecting PG(n, q) in a thick plane α, then by
Lemma 4.3 Q := β \ α is a quad on which the induced subgeometry SQ is isomorphic to
the generalized quadrangle T ∗2 (α∩K) mentioned in Proposition 2.15. As this generalized
quadrangle has no rosettes of ovoids, we know from Propositions 2.5 and 2.7 that T ∗n(K)
has no points at distance 2 from Q (otherwise there exists a line meeting Γ1(Q) and
Γ2(Q)). As we have seen in the proof of Lemma 5.8, this implies that every 3-dimensional

subspace of PG(n, q) through α contains a unique point of K \ α. So, r = qn−2−1
q−1 . Then

inequality (3) in Lemma 5.8 implies that

0 ≥ qn−2 − 1

q − 1
(qn−2 − q3 − q2 + q),

which is impossible as n− 2 ≥ 4.
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5.7 The case n = 6 cannot occur

By Lemma 5.7, we have k = 4q+ 3 +βq(q−1), i.e. r = 3q+ 1 +βq(q−1) for some β ∈ Z.
By Lemma 5.9, we know that there are thick planes and q ≥ 8 is even.

Lemma 5.10. We have q + 1 | (β − 1)(β − 2).

Proof. By Lemma 4.6(3), we have q+1 | (k−1)(k−3), i.e. (q+1) | ((4q+2)+βq(q−1))(4q+
βq(q− 1)). This divisibility condition is equivalent with (q+ 1) | (−2 + 2β)(−4 + 2β), i.e.
with (q + 1) | (β − 1)(β − 2) as q + 1 is odd.

Lemma 5.11. We have β ≥ 3.

Proof. As r ≥ n− 2 = 4 by Corollary 5.2, we have 0 ≤ r − 4 = (q − 1)(3 + βq), implying
that β ≥ 0 as q ≥ 8. As q + 1 ≥ 9 is not a divisor of 2, we have β 6= 0 by Lemma 5.10.

Suppose β = 1. Then r = q2 + 2q + 1. We then have

(q − 1)(q2 + 2q + 1)2 + (2q2 − q + 1)(q2 + 2q + 1)− 2q2(q3 + q2 + q + 1)

= −q5 + 3q4 + 3q3 − 3q2 − 2q = −q3((q − 4)(q + 1) + 1)− 3q2 − 2q < 0,

in contradiction with inequality (2) in Lemma 5.8.
Suppose β = 2. Then r = 2q2 + q + 1 and t = 2q2 + 2q + 2. The divisibility condition

(1) from Section 5.5 becomes

(q − 1)4q5

q2 − 3q + 3 + 2(q − 2)(q2 + q + 1) + q4 + q3 + q2 + q + 1
∈ N,

i.e.
(q − 1)3q4

(q + 2)2
∈ N.

The remainder of the division of (x−1)3x4 ∈ Z[x] by x+2 ∈ Z[x] is equal to (−3)3(−2)4 =
−432. The only power q of 2 that is bigger than 4 for which q + 2 divides (q − 1)3q4,
or equivalently 432, is equal to 16. But if q = 16, then (q + 2)2 is not a divisor of
(q − 1)3q4.

By inequality (3), we have r ≤ r∗ where

r∗ :=
−q2 − q − 1 +

√
4q7 + 8q6 + q4 − 2q3 − 5q2 + 2q + 1

2(q − 1)
.

If we put η := 4q7 + 8q6 + q4 − 2q3 − 5q2 + 2q + 1, then from r ≤ r∗, we deduce that

√
η ≥ 2(q − 1)(3q + 1) + β · 2q(q − 1)2 + q2 + q + 1 = 7q2 − 3q − 1 + β · 2q(q − 1)2.

Putting q = u2, we thus find

4u14 + 8u12 + u8 − 2u6 − 5u4 + 2u2 + 1 ≥ (7u4 − 3u2 − 1 + β · 2u2(u2 − 1)2)2.
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As

(7u4− 3u2− 1 + (u+ 1)2u2(u2− 1)2)2 = 4u14 + 8u13− 12u12− 4u11 + 36u10− 20u9− 11u8

+16u7 − 6u6 + 4u5 − 5u4 − 4u3 + 2u2 + 1 > 4u14 + 8u12 + u8 − 2u6 − 5u4 + 2u2 + 1

for u ≥
√

8, we have β < u+ 1. Taking into account that β ≥ 3, we thus have

0 < (β − 1)(β − 2) < u(u− 1) = q −√q < q,

in contradiction with the fact that q + 1 is a divisor of (β − 1)(β − 2).

5.8 The case n = 7 cannot occur

By Lemma 5.7, we have k = 5q+ 3 +βq(q−1) and r = 4q+ 1 +βq(q−1) for some β ∈ Z.
By Lemma 5.9, we know that there are thick planes and q ≥ 8 is even.

Lemma 5.12. We have q + 1 | (β − 2)2.

Proof. By Lemma 4.6(3), we have q+ 1 | (k− 2)2, i.e. (q+ 1) | (5q+ 1 +βq(q− 1))2. This
divisibility condition is equivalent with (q + 1) | 4(β − 2)2, i.e. with (q + 1) | (β − 2)2 as
q + 1 is odd.

As t = 5q + 2 + βq(q − 1), the divisibility condition (1) from Section 5.5 implies that

(q − 1)3q5

q3 + 2q2 + 3q + 10 + β(q − 2)
∈ N.

Lemma 5.13. We have β ≥ 2.

Proof. As r ≥ n− 2 = 5 by Corollary 5.2, we have 0 ≤ r − 5 = (q − 1)(4 + βq), implying
that β ≥ 0 as q ≥ 8. As q + 1 ≥ 9 is a divisor of (β − 2)2, we also have β 6∈ {0, 1}.

By inequality (3), we have r ≤ r∗ where

r∗ :=
−q2 − q − 1 +

√
4q8 + 8q7 + q4 − 2q3 − 5q2 + 2q + 1

2(q − 1)
.

If we put η := 4q8 + 8q7 + q4 − 2q3 − 5q2 + 2q + 1, then from r ≤ r∗, we deduce that

√
η ≥ 2(q − 1)(4q + 1) + β · 2q(q − 1)2 + q2 + q + 1 = 9q2 − 5q − 1 + β · 2q(q − 1)2.

As

(9q2− 5q− 1 + (q+ 4)2q(q− 1)2)2 = 4q8 + 16q7− 4q6− 28q5 + 45q4− 38q3 + 19q2− 6q+ 1

> 4q8 + 8q7 + q4 − 2q3 − 5q2 + 2q + 1
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for q ≥ 8, we have β ≤ q + 3.

Suppose now that q = 8. We then know that

11239424

674 + 6β
∈ N

where 2 ≤ β ≤ q+3 = 11. This only turns out to be the case for β = 2. But then r = 145
and one can verify that the inequality (2) in Lemma 5.8 is not satisfied. So, q ≥ 16.

As q ≥ 16, we have

(q−1)3q5 = q8−3q7+3q6−q5 < q8−2q7−3q6−14q5−24q4 = (q3+2q2+5q+6)(q5−4q4),

(q−1)3q5 = q8−3q7+3q6−q5 > q8−3q7−14q6−20q5−24q4 = (q3+3q2+4q+4)(q5−6q4).

Under the assumptions that 2 ≤ β ≤ q + 3 and q ≥ 16, we thus have

(q − 1)3q5

q3 + 2q2 + 3q + 10 + β(q − 2)
≤ (q − 1)3q5

q3 + 2q2 + 5q + 6
< q5 − 4q4

and
(q − 1)3q5

q3 + 2q2 + 3q + 10 + β(q − 2)
≥ (q − 1)3q5

q3 + 3q2 + 4q + 4
> q5 − 6q4.

The highest power of 2 dividing (q−1)3q5
q3+2q2+3q+10+β(q−2) is therefore at most q4. So, the highest

power of 2 dividing q3 + 2q2 + 3q + 10 + β(q − 2) is at least q, implying that 10− 2β is a
multiple of q.

As 2 ≤ β ≤ q+ 3, we have 4− 2q ≤ 10− 2β ≤ 6. In view of the fact that 10− 2β is a
multiple of q ≥ 16, we thus have 10− 2β ∈ {0,−q}, i.e. β ∈ {5, q

2
+ 5}.

We also need that q + 1 | (β − 2)2 by Lemma 5.12. For β = 5, this would mean
that q + 1 | 9, which is impossible as q ≥ 16. For β = q

2
+ 5, this would mean that

(q + 1) | (q + 6)2, or equivalently that (q + 1) | 25, which is again impossible. So, all
together we have shown that the case n = 7 cannot occur.

5.9 The case n = 8 cannot occur

By Lemma 5.7, we have k = 6q+ 3 +βq(q−1) and r = 5q+ 1 +βq(q−1) for some β ∈ Z.
By Lemma 5.9, we know that there are thick planes and q ≥ 8 is even.

Lemma 5.14. We have β = 6 + qγ for a certain γ ∈ Z.

Proof. From the divisibility condition (1) in Section 5.5, we know that

(q − 1)4q7

q2 − 3q + 3 + (q − 2)(6q + 2 + βq(q − 1)) + q6 + q5 + q4 + q3 + q2 + q + 1
∈ N,

(q − 1)4q7

(q − 1)q(q4 + 2q3 + 3q2 + 4q + 12) + βq(q − 1)(q − 2)
∈ N,
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(q − 1)3q6

q4 + 2q3 + 3q2 + 4q + 12 + β(q − 2)
∈ N.

Put D = q4 + 2q3 + 3q2 + 4q + 12 + β(q − 2). As gcd((q − 1)3, q6) = 1, we have D =
gcd(D, (q−1)3q6) = gcd(D, (q−1)3) ·gcd(D, q6). As D > q(q−1)3 and gcd(D, (q−1)3) ≤
(q − 1)3, we have gcd(D, q6) > q and hence gcd(D, q6) ≥ 2q as q is a power of 2. So,
2q | (q4 +2q3 +3q2 +4q+12+βq−2β), i.e. 2q | (12+βq−2β). As 4 | q, we have 2 | β and
so the fact that 2q divides 12 + βq − 2β implies that 2q divides 12− 2β, or equivalently
that q divides β − 6. We thus have that β = 6 + qγ for a certain γ ∈ Z.

We thus have r = 5q+1+(6+qγ)q(q−1) = 6q2−q+1+q2(q−1)γ and k = 6q2+3+q2(q−1)γ.

Lemma 5.15. We have (q + 1) | (γ − 3)(γ − 4).

Proof. By Lemma 4.6(3), we have (q+ 1) | (k− 1)(k− 3), i.e. (q+ 1) | (6q2 + 2 + γq2(q−
1))(6q2+γq2(q−1)). This divisibility condition is equivalent with (q+1) | (8−2γ)(6−2γ),
i.e. with (q + 1) | (γ − 3)(γ − 4) as q + 1 is odd.

Lemma 5.16. We have γ ≥ 5.

Proof. As r ≥ n − 2 = 6 by Corollary 5.2, we have 0 ≤ r − 6 = (q − 1)(6q + 5 + q2γ),
implying that γ ≥ 0 as q ≥ 8. As q+1 is not a divisor of 2, 6 and 12, we have γ 6∈ {0, 1, 2}
by Lemma 5.15.

Suppose γ = 3. Then t = 3q3 + 3q2 + 2. The divisibility condition (1) from Section
5.5 becomes

(q − 1)4q7

q2 − 3q + 3 + (q − 2)(3q3 + 3q2 + 2) + q6 + q5 + q4 + q3 + q2 + q + 1
∈ N,

i.e.
(q − 1)3q5

q3 + 2q2 + 6q + 4
∈ N.

As q ≥ 8 is a power of 2, gcd(q3 + 2q2 + 6q+ 4, q5) = 4, implying that q3 + 2q2 + 6q+ 4 is
a divisor of 4(q− 1)3. The highest power of 2 dividing q3 + 2q2 + 6q+ 4 and 4(q− 1)3 is in
both cases equal to 4. As 4(q3 + 2q2 + 6q+ 4) > 4(q− 1)3, we have that 4(q− 1)3 is equal
to either q3 + 2q2 + 6q+ 4 or 3(q3 + 2q2 + 6q+ 4). The former equation is equivalent with
3q3 − 14q2 + 6q − 8 = 0 while the latter equation is equivalent with q3 − 18q2 − 6q − 16.
In any case, there are no solutions for q.

Suppose γ = 4. Then t = 4q3 + 2q2 + 2. The divisibility condition (1) from Section
5.5 becomes

(q − 1)4q7

q2 − 3q + 3 + (q − 2)(4q3 + 2q2 + 2) + q6 + q5 + q4 + q3 + q2 + q + 1
∈ N,

i.e.
(q − 1)3q5

q3 + 2q2 + 7q + 2
∈ N.
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As q ≥ 8 is a power of 2, gcd(q3 + 2q2 + 7q + 2, q5) = 2 and so q3 + 2q2 + 7q + 2 is a
divisor of 2(q− 1)3, implying that q3 + 2q2 + 7q+ 2 = 2(q− 1)3, i.e. q3− 8q2− q− 4 = 0,
a contradiction.

By inequality (3), we have r ≤ r∗ where

r∗ :=
−q2 − q − 1 +

√
4q9 + 8q8 + q4 − 2q3 − 5q2 + 2q + 1

2(q − 1)
.

If we put η := 4q9 + 8q8 + q4 − 2q3 − 5q2 + 2q + 1, then from r ≤ r∗, we deduce that

√
η ≥ 2(q−1)(6q2−q+1)+2q2(q−1)2γ+q2 +q+1 = 12q3−13q2 +5q−1+2q2(q−1)2γ.

Putting q = u2, we thus find

4u18 + 8u16 + u8 − 2u6 − 5u4 + 2u2 + 1 ≥ (12u6 − 13u4 + 5u2 − 1 + 2u4(u2 − 1)2γ)2.

As

(12u6−13u4+5u2−1+2u4(u2−1)2(u+1))2 = 4u18+8u17−12u16+16u15+56u14−100u13

+4u12 + 140u11 − 152u10 − 88u9 + 197u8 + 28u7 + 126u6 − 4u5 + 47u4 − 10u2 + 1

> 4u18 + 8u16 + u8 − 2u6 − 5u4 + 2u2 + 1

for u ≥
√

8, we have γ < u+ 1. Taking into account that γ ≥ 5, we thus have

0 < (γ − 3)(γ − 4) < (u− 2)(u− 3) = (
√
q − 2)(

√
q − 3) < q,

in contradiction with the fact that q + 1 is a divisor of (γ − 3)(γ − 4).
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