
Highlights

Fuzzy Rough Nearest Neighbour Methods for Detecting Emotions,

Hate Speech and Irony

Olha Kaminska, Chris Cornelis, Veronique Hoste

• We apply fuzzy rough nearest neighbour methods to classify textual

information based on characteristics such as emotions, hate speech and

irony.

• We show that by careful feature engineering and ensemble construction,

our methods can achieve similar accuracy as state-of-the-art methods

based on deep learning.

• We argue that our proposed approach provides a more interpretable

alternative for black box methods based on deep neural networks.

Fuzzy Rough Nearest Neighbour Methods for
Detecting Emotions, Hate Speech and Irony

Olha Kaminskaa, Chris Cornelisa, Veronique Hosteb

aComputational Web Intelligence, Department of Applied Mathematics, Computer
Science and Statistics, Ghent University, Ghent, Belgium

bLT3 Language and Translation Technology Team, Ghent University, Ghent, Belgium

Abstract

Due to the ever-expanding volumes of information available on social media,

the need for reliable and efficient automated text understanding mechanisms

becomes evident. Unfortunately, most current approaches rely on black-box

solutions rooted in deep learning technologies. In order to provide a more

transparent and interpretable framework for extracting intrinsic text charac-

teristics like emotions, hate speech and irony, we propose to integrate fuzzy

rough set techniques and text embeddings. We apply our methods to differ-

ent classification problems originating from Semantic Evaluation (SemEval)

competitions, and demonstrate that their accuracy is on par with leading

deep learning solutions.

Keywords: Natural Language Processing, emotion detection, fuzzy rough

sets, text embeddings

1. Introduction

The exponential growth of social media has created various novel ways of

communication. A significant part of online content is formed by textual in-

formation, which gives rise to diverse tasks within the data science branch of

Preprint submitted to Information Sciences February 7, 2023

Natural Language Processing (NLP). They include customer feedback anal-

ysis, sentiment interpretation, topic detection, as well as emotion detection,

which is one of the main topics considered in this paper, and which presents

itself in different shapes:

• Classification of customer comments, based on whether they express

an angry, happy, or disappointed emotion, see e.g. [1].

• Aspect-based sentiment or emotion analysis, see e.g. [2]. For example,

a customer could claim that “the battery of the phone works well",

which expresses a positive opinion (satisfaction) about the aspect of

“battery". At the same time, that same customer could also complain

that “the memory is too limited”, expressing a negative opinion about

the aspect of “memory” and showing disappointment.

• Emotion intensity classification, where ordinal labels represent different

levels of a given emotion. For example, in [3], the authors labelled a

dataset for sentiment with scores from 0 (very negative) to 1 (very

positive). They also labelled the same data for various emotions (fear,

anger, happiness, etc.), ranging from 0 (absence of the emotion) to 1

(extreme intensity of the emotion).

Apart from emotion detection, in this paper we also consider two other im-

portant subjective language classification tasks:

• Hate speech detection. The term “hate speech” is a broad concept

that includes all kinds of negative comments targeted to insult some-

one based on some aspect (gender, race, religion, political beliefs, etc.)

2

Most social networks provide automated hate speech detection and

cleaning tools, and research in this area is very active [4].

• Irony (or sarcasm) detection. Irony is often identified as a trope or fig-

urative language use where the actual meaning is different from what is

literally enunciated [5]. Unfortunately, detecting irony is complicated,

even from a human perspective, as it can be expressed in a variety of

ways, using metaphoric language or humour, and very often contextual

information or facial expression information is needed to distinguish be-

tween ironic and non-ironic utterances. It makes irony detection a very

challenging task, both to label such datasets and to train classification

models [6].

Cutting-edge solutions to the above problems are typically based on deep

learning (DL). For example, Bidirectional Encoder Representations from

Transformers (BERT) by Devlin et al. [7] is a state-of-the-art language model

used for various NLP tasks. While such solutions are generally able to reach

high prediction accuracy, a downside to their use is that they are black-box

solutions and hence suffer from a lack of explainability regarding the way

the predictions are obtained. Therefore, a growing need emerges for explain-

able models that can identify e.g. why a particular text was labelled with a

particular emotion intensity level and which patterns can be identified.

Inspired by the fuzzy nature of textual data, in this paper, we consider the

usage of the fuzzy-rough nearest neighbour (FRNN) based methods proposed

in [8]. Fuzzy rough set approaches have been used successfully in various

machine learning applications [9], including fuzzy decision trees [10], learning

from imbalanced data [11], feature and instance selection [12], etc.

3

An advantage of instance-based methods like those based on FRNN is

that they provide a more understandable architecture with interpretable re-

sults by virtue of the concept of graded similarity. Concretely, new text

fragments are paired with similar extracts from training data, providing im-

mediate and intuitive clues as to why a given decision was made. While

FRNN-based methods initially provide less accurate predictions than DL ap-

proaches, we show in this paper that with proper feature engineering and

ensemble construction, we can obtain results on the same level as state-of-

the-art deep learning approaches. In particular, we apply our methods to the

three classification tasks introduced above:

• For emotion intensity classification, we use the data provided by the

SemEval-2018 Task 1 “EI-oc: Affect in Tweets for English"1, where for

four emotions (anger, joy, sadness, and fear), the organizers provided a

collection of tweets with intensity labels (ranging from 0, which corre-

sponds to “no emotion can be inferred”, to 3, “a high amount of emotion

can be inferred").

• For hate speech detection, we consider two different datasets. The first

one was released in the context of SemEval 2019 Task 6: “OffensEval:

Identifying and Categorizing Offensive Language in Social Media"2. In

subtask A, “Offensive language identification”, the authors presented a

dataset of more than 13,000 English tweets labelled as offensive or not.

Offensive language was defined as language aimed to hurt someone’s

1https://competitions.codalab.org/competitions/17751
2https://competitions.codalab.org/competitions/20011

4

feelings, increase the level of anger and start arguing3. This definition

illustrates that the concepts of offensive language and hate speech are

very similar. The second dataset originates from SemEval 2019 Task 5,

“Shared Task on Multilingual Detection of Hate"4. We consider English

tweets from subtask A, “Hate Speech Detection against Immigrants

and Women", a binary classification task with 9,000 training and 1,000

development instances.

• For irony detection, we use the dataset from SemEval-2018 Task 3,

“Irony detection in English tweets"5 and solve subtask A, which is a

binary classification issue: is a given tweet ironic or not? The authors

gathered the dataset of nearly 4,000 English tweets using three hash-

tags: #irony, #sarcasm, and #not. After manually labeling the data,

the authors gathered a similar number of non-ironic tweets to obtain a

balanced dataset.

The remainder of this paper has the following structure: Section 2 recalls

current research efforts related to the SemEval tasks and to interpretability

for text analysis. In Section 3, we discuss the methodological choices we

took regarding data preprocessing; tweet embeddings, classifiers and evalu-

ation measures. In Section 4, we train our models, first detecting the best

individual setup for each embedding in Section 4.1, followed by the results for

ensembles in Section 4.2. In Section 5, we apply the best performing setups

to the test data, discuss the results and provide an error analysis. Finally, in

3https://aclawgroup.com.au/criminal-law/offences/offensive-language/
4https://competitions.codalab.org/competitions/19935
5https://competitions.codalab.org/competitions/17468

5

Section 6 we formulate the main conclusions of our study and discuss possible

directions for future work.

The code for this paper can be found in the GitHub repository6.

2. Related Work

2.1. SemEval competitions: tasks and winning solutions

As mentioned before, we apply our methods to three different classifica-

tion problems originating from the Semantic Evaluation (SemEval) compe-

tition.

For SemEval-2018 Task 1, Mohammad et al. [13] collected the data using

the Twitter API with a vocabulary of keyword hashtags related to different

emotions (for example, “annoyed”, “panic”, “happy”, etc.). As for any SemEval

competition, the organizers used a leaderboard. For the emotion intensity

task, the evaluation metric was Pearson Correlation Coefficient (PCC), eval-

uated on a set of unseen test tweets. The winning solutions described in

[13] are mainly based on DL methods. The first-placed team [14] proposed

an ensemble of Random Forest and XGBoost based on embedding vectors,

while the second-placed team [15] presented a solution with LSTM neural

networks and transfer learning techniques. The third-placed team [16] used

an ensemble of models with Gated-Recurrent-Units (GRU) and a CNN as an

attention mechanism.

Zampieri et al. [17] formulated the SemEval 2019 Task 6, using the Of-

fensive Language Identification Dataset (OLID) from [18]. In this paper, we

6https://github.com/olha-kaminska/frnn_emotion_detection/tree/

emotions_irony_hatespeech

6

focus on the binary classification task to decide whether a tweet is offensive or

not. The authors reported that 70% of winning solutions were based on DL

and that the three best ones for this subtask [19, 20, 21] propose fine-tuned

BERT-based solutions.

Task 5 from the same SemEval 2019 competition, proposed by Basile

et al. [22], considered a more specific type of hate speech, targeted mostly

against women and immigrants. In this paper, we consider the binary classifi-

cation subtask, for which the authors provided two baselines: one assigns the

most frequent training label to all test instances, and the second is based on

an SVM model with TF-IDF text representation. Indurthi et al. [23] obtained

the best result using an SVM model with Universal Sentence Encoder (USE)

embeddings. While the second team did not publish their solution, the third-

placed team [24] used a capsule network with training stacked Bidirectional

Gated Recurrent Units (BiGRUs) including fastText word embeddings.

Finally, for irony detection, Van Hee et al. [25] released a dataset of

tweets for irony detection in the framework of SemEval-2018 Task 3. They

also provided two baselines: one with random labels assigned and the second

based on an SVM model with TF-IDF features. The best solution for binary

irony classification [26] proposed densely connected LSTMs that use different

features, such as text embeddings, sentiment, and syntactic features, while

the runner-up [27] used recurrent neural networks (BiLSTM) on both word

and character levels, and the third place system [28] combined SVM and

logistic regression (LR) into an ensemble with averaged tweet embeddings as

features.

As can be concluded from this overview, the recent boost of transformers

7

in NLP significantly impacted the solutions for the considered tasks. The

majority of the systems use deep neural networks or BERT transformers. As

such, they remain black boxes that are unable to justify their predictions.

Our proposed approach, therefore, aims to provide more explanation for the

predicted labels. We do not avoid DL fully, since we still use text embedding

techniques that were pre-trained using neural networks or transformers, but

as classification methods, we consider more interpretable nearest neighbour-

based approaches.

Previously, in [29] we explored the efficiency of the weighted k Nearest

Neighbour (wkNN) classifier for the emotion detection task. In this paper,

we will replace wkNN by the fuzzy-rough nearest neighbour (FRNN) classi-

fier, which is a more flexible instance-based method that uses the neighbour

concept in a more intricate way.

2.2. Interpretability in text analysis

We can discern two main aspects in model interpretability for text analysis

[30]. The first one defines the “level” of explainability: local methods deliver

an explanation for a single prediction, and global ones provide an explanation

for the whole prediction model. In this paper, we will be concerned with local

predictions.

From another point of view, we can define two types of interpretability

approaches: post-hoc interpretation and self-explanatory models. As an ex-

ample of the former, we can consider Perturbed Masking [31] which uses

Masked Language Modeling (MLM) to calculate a particular word’s impact

on the prediction results for another word. Another example of a post-hoc

method is LIME (Local Interpretable Model-agnostic Explanations, [32]),

8

which explains the results of a classifier’s predictions by approximating the

learning process locally with an interpretable model.

Most current explainable models in NLP belong to the self-explanatory

category. For example, Variational Word Masks (VMASK) [33] make the

model focus on the most important words during the prediction-making pro-

cess. We can also use attention weights from the model to analyze its predic-

tions, as was done e.g. by [34], who propose a Hierarchical Attention Network

(HAN) for a document classification task. Their solution includes an atten-

tion mechanism with two levels (word and sentence level) and provides a

clear visualization for the human eye, where the most meaningful words and

parts of a sentence are highlighted.

In another study, Akula and Garibay [35] aimed to develop an inter-

pretable deep learning model for sarcasm detection for English social media

data. They used preprocessed data and BERT embeddings in a Neural Net-

work (NN) based solution, including a multi-head self-attention module and

GRU. The self-attention part was added for interpretability purposes, and

the authors illustrated that this module improved results. They built an at-

tention map that provides a picture of the per-word attention weights for the

sentences. So for sentences with sarcasm, this map showed words that have

more attention than others (for example, “just”, “again”, “totally”) in order to

give the researcher more insight about which words attribute a high sarcasm

level to the text.

Besides distinguishing between “local” vs. “global” and “post-hoc” vs.

“self-explanatory” explanations, Danilevsky et al. [30] also identified five main

explainability techniques :

9

1. Feature importance: an explanation is obtained by investigating the

importance scores of features that were used to generate predictions.

2. Surrogate models: predictions of the model are explained by learning

another, more explainable model.

3. Example-driven techniques: they explain the prediction for the input

instance by connecting it to other labelled instances.

4. Provenance-based: we are able to explain some of the prediction-making

process steps, which usually are represented by an intuitive approach,

so the result is obtained as a series of logical transformations.

5. Declarative induction: by means of human-level readable explanations,

for example, a set of rules.

Taking into account that we represent tweets as high-dimensional text em-

bedding vectors, feature importance-based methods are not the best choice,

since the individual components of an embedding vector are difficult to inter-

pret. By contrast, in our approach we provide explanations for the predicted

label of the test instance by looking at its neighbouring labelled instances;

thus, it can be categorized as a local, self-explaining example-driven method.

In Section 5.2, we will illustrate our method as part of the error analysis

process and show that it may provide a wider picture than an attention-

based map. Particularly, besides detecting the keywords that influenced the

prediction-making process, we can identify whole topics that relate to a given

tweet. We can also identify mistakes caused by similar tweet topics and detect

confusing tweets that affected our results. In this way, we can correct our

model to obtain better results in future experiments.

10

3. Methodology

In this section, we present the theoretical background of our experiments.

In Section 3.1 we describe the different text preprocessing steps we consid-

ered. Section 3.2 presents a description of text embedding methods and

explains how we applied them in our pipeline. In Sections 3.3 and 3.4, we

give an overview of the classification and regression methods that we con-

sidered during our experiments and the evaluation metrics to evaluate our

results.

3.1. Data cleaning

Besides pure text, every tweet usually also contains some of the following

information: name tags, hashtags, emojis, links, etc. Some of them can be

a source of helpful information, while others should be cleaned to improve

the quality of the text embedding process. Text embedding methods take

the text as input and provide a numerical vector (or a set of vectors) as

output. This vector represents the original text in a multi-dimensional space

in such a way that similar text fragments are encoded by close vectors. Text

embedding methods are described in detail in Section 3.2.

In general, we tried three different text preprocessing approaches for each

dataset and each embedding method to identify the best setups:

1. Using raw tweets without any preprocessing.

2. Using tweet cleaning: deleting numbers, special symbols, links, user

tags, and the "#" symbol with the "tweet-preprocessor" package, and

replacing emojis with their textual descriptions with the "emoji" pack-

age.

11

3. Similar as the previous step, but with additional stop-word removal

using the "NLTK" package.

Regarding emojis (which are present in less than 15% of tweets in the emotion

detection dataset), we decided to retain them because they may provide hints

about the writer’s emotional state (as was illustrated by [36]). We tried

direct and indirect approaches to adapt the emoji Unicode format for text

embedding. In the direct approach, we used an embedding method called

Emoji2Vec7, which represents a dictionary and transforms each emoji into a

vector. However, this solution is limited to a particular set of emojis and does

not consider the tweet’s context. In the indirect approach, we used the Emoji

package8 which transforms each emoji to its textual description, such that

it becomes part of the textual content of the tweet and is embedded with

it. We performed experiments for the emotion detection dataset with the

same classification setup, cross-validation, and evaluation measurement for

both emoji preprocessing methods. As the results showed that the indirect

approach provides higher evaluation scores, we kept this method for our

future experiments.

Another specific feature of tweets is the use of hashtags, which are present

in roughly 40% of the tweets. Hashtags are an instance of textual information,

but they usually contain more important keywords than the main part of the

tweet. Often, hashtags are used to collect data (e.g. [13] used a list of

hashtags to parse tweets and to gather emotion datasets). Initially, we tried

to delete "#" symbols before hashtags and keep them as part of the text.

7https://github.com/uclnlp/emoji2vec
8https://pypi.org/project/emoji/

12

However, since hashtags could be part of a tweet message ("I feel so #angry,

can’t believe that really happened to me!") or be listed at the end of the tweet

("Well, I guess my day is ruined... #sad #angst #sadness"), we also tried

to take this into account by transforming these latter hashtags into separate

sentences ("Well, I guess my day is ruined... Sad. Angst. Sadness."). Since

this did not affect our results much, we kept the initial approach - deleting

the "#" symbol and maintaining hashtags as they are.

Regarding the rest of the non-textual parts of tweets, such as numbers,

punctuation, special symbols (like "/n"), links, and user tags, we tried to

delete (clean) or keep them to improve our results. Cleaning can be done with

custom functions using the "regex" package9 or using existing packages for

tweet parsing, like "tweet-preprocessor"10. After experiments on the emotion

detection dataset, we concluded that the most effective approach is to delete

all these tweet parts, except for punctuation which could be useful during

the data embedding step to save the tweet’s context.

A final possibility to clean tweets consists in deleting stop words from the

main text of the tweet. Stop words are frequently used words that don’t have

any important meaning ("the", "a", "any", etc.). A list of such words for

the English language is provided in the "NLTK" package11. As we will show

in the experimental part, this solution proves useful for some embedding

techniques but is mostly inferior if the embedding algorithm considers the

context of the text.

9https://docs.python.org/3/library/re.html
10https://pypi.org/project/tweet-preprocessor/
11https://www.nltk.org/

13

3.2. Tweet embedding

To use tweets in classification methods, we shall represent them as vec-

tors in an N -dimensional space, so tweets that have a similar meaning will

be represented by neighbouring vectors. This is achieved by embedding al-

gorithms: they transform the text into a numerical shape while maintaining

their similarities. Tweet embeddings operate on different text levels - at the

level of individual symbols, words, collocations, sentences, paragraphs, or the

whole text. Also, the method itself can take various shapes, ranging from

simple dictionaries to context-based language models. In this paper, we will

consider different types of text embedding techniques.

The first and earliest type of DL-based embedding method is Word2Vec,

first presented in [37] and [38]. Word2Vec has two architecture options:

Continuous Bag of Words (CBOW) and Skip-gram. The CBOW model uses

context representations to predict a missing word, whereas the Skip-gram

model uses a representation of the word to predict the context. After model

training, specific weights for every word are extracted as embedding vectors.

As such, the Word2Vec model used in this paper represents each word as a

300-dimensional vector. This dimensionality was used as the standard one

for the Word2Vec model presented in the Gensim package12. It provides a

Word2Vec model pre-trained on a Google News dataset that contains near to

100 billion words. Word2Vec has the form of a dictionary of almost 3 million

words and phrases, and cannot be fine-tuned.

After the Word2Vec papers were published, many similar approaches ap-

12https://radimrehurek.com/gensim/models/word2vec.html

14

peared, for example the Doc2Vec13 packages that work similarly to Word2Vec,

but for whole paragraphs of a text rather than for individual words. We tried

the latter approach as well, but got very unsatisfying results for our data.

Therefore, we will only use the Gensim pre-trained Word2Vec model. To

obtain a vector for a whole tweet, we take the mean of all its words’ vectors.

Embedding methods can also take into account sentiment hidden in a

sentence. For example, the DeepMoji model presented in [39] is an LSTM-

based model trained on over one million tweets containing one out of 64

different emojis with the purpose of recognizing emotions in text. DeepMoji,

unlike Word2Vec, provides a vector representation for the full tweet. For our

experiments, we used the PyTorch implementation of the DeepMoji model

provided by Huggingface14.

We also used more advanced recent methods, for example, the Universal

Sentence Encoder (USE) developed by TensorFlow15 and described in [40].

This model was pre-trained on various datasets for different tasks, from text

classification to sentence similarity. USE works at the level of paragraphs and

provides a 512-dimensional (standard size of the pre-trained USE embedding)

vector representation for the full tweet. USE has two available architectures,

one is based on a Deep Averaging Network (DAN), and the second uses

a transformer encoder. After experiments on the emotion detection dataset

with the same classification method, text preprocessing steps and evaluation,

13https://radimrehurek.com/gensim/models/doc2vec.html
14https://github.com/huggingface/torchMoji
15https://www.tensorflow.org/hub/tutorials/semantic_similarity_with\

_tf_hub_universal_encoder

15

we chose the second option as it gave better results.

The earlier mentioned transformer encoders represent the current state-

of-the-art approach in the NLP area. The very first such model was BERT

by [7]. It was developed by the Google AI Language Team with the idea

of pre-training deep bidirectional representations based on unlabelled text.

BERT was pre-trained on datasets for two tasks: language modeling and

next sentence prediction. However, this model can be easily fine-tuned for

different tasks with extra output layers without architecture modifications.

We used the PyTorch BERT realisation16 to extract 768-dimensional vectors

for each tweet’s token (part of the word) and again used the mean to obtain

the whole tweet’s vector. The size of 768 dimensions is standard for the

base-BERT model; however, it increases for larger models.

We also considered other models based on BERT, for example, Sentence-

BERT (SBERT) by Reimers and Gurevych [41] which is a variation of the

original BERT, tuned for sentence-level vector extraction. SBERT was trained

on a collection of sentence pairs and it can process two tweets simultaneously

because it uses twin network structures, providing a 768-dimensional vector

for the whole tweet. Another model is the Twitter-roBERTa-based model by

Barbieri et al. [42]. The authors presented seven models for different tasks,

including emotion detection, hate speech, and irony classification. These

models are fine-tuned on similar SemEval data versions of the Robustly Op-

timized BERT Pre-training Approach (roBERTa), analogous to the BERT

model but with some minor changes of the training procedure and architec-

16https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/

examples/extract_features.py

16

ture.

Besides the previously described methods, we also investigated several

other embedding approaches that did not perform well and therefore were

not included in our main experiments. Mainly, we tried FastText pre-trained

word vectors by Mikolov et al. [43] which is a more advanced Word2Vec so-

lution based on CBOW, spaCy embedding models17 by Honnibal and Mon-

tani [44] which are based on CNN models and available for English in two

sizes: small and large (we considered both models for our experiments), and

BERTweet by Nguyen et al. [45], which is a BERT-based model with a

RoBERTa pre-training procedure executed on 850 million English tweets.

Finally, we also investigated the idea to use emotion lexicons to improve

the quality of the obtained embedding vectors and add more emotion-related

information. An emotion lexicon is a vocabulary of words, where each word is

assigned an emotional intensity score. In [29], we tried five different lexicons

along with different ways of combining them with word embedding vectors,

but none of them improved the obtained results. For this reason, emotion

lexicons are not considered in the current paper.

3.3. Classification methods

This section presents the fuzzy rough set-based methods we investigated

for our experiments and their ensembles.

3.3.1. Similarity relation

Prior to the description of classification methods, it is important to dis-

cuss the similarity metric that we used to measure how similar the considered

17https://spacy.io/models

17

vectors (in other words, tweet embeddings) are. Huang [46] compared dif-

ferent metrics for similar NLP tasks: Euclidean distance, Jaccard coefficient,

Pearson Correlation Coefficient, averaged Kullback-Leibler divergence, and

cosine similarity. Based on their findings, we chose the latter for our experi-

ments:

cos(A,B) =
A ·B

||A|| × ||B||
(1)

In Eq.(1), A and B correspond to elements from the same vector space

(tweets embeddings), A·B denotes their scalar product, and ||x|| is the vector

norm of x.

To fit NN-based methods, we need a similarity relation that provides

values between 0 (vectors are totally different) and 1 (vectors are identical).

In contrast, the cosine distance’s outputs are between -1 (perfectly dissimilar

vectors) and 1 (perfectly similar vectors). Hence, we apply the following

transformation:

cos_similarity(A,B) =
1 + cos(A,B)

2
. (2)

Finally, we note that we also examined Hausdorff distance for comparing

tweets, considering that tweets can be seen as sets of individual words. How-

ever, this approach did not provide satisfactory results, so we dismissed it.

3.3.2. FRNN-OWA method

In our work, we consider methods based on fuzzy rough set theory, mainly

the fuzzy-rough nearest neighbour (FRNN) classification model that was pro-

posed in [8].

FRNN is an instance-based algorithm that performs classification using

lower (L) and upper (U) approximations from fuzzy rough set theory. [8]

18

showed that the method outperformed classical NN approaches and that it

is competitive with the leading classification algorithms. To make the solu-

tion more robust and noise-tolerant, [47] proposed an FRNN extension with

ordered weighted average (OWA) operators. The authors used OWA oper-

ators to determine membership to the lower and upper approximation by

means of an aggregation process. In [48], the authors presented an approxi-

mate FRNN-OWA solution, which modifies the approximations’ calculation

process. They managed to keep the accuracy of the original approach while

improving the execution speed. They also developed a Python package18 for

these methods in [49], which will be used in our experiments.

We will denote the OWA aggregation of value set V (v(i) is the ith largest

element in V) with weight vector −→
W = ⟨w1, w2, ..., w|V |⟩, where (∀i)(wi ∈

[0, 1]) and
∑|V |

i=1wi = 1, with:

OWA−→
W

(V) =

|V |∑
i=1

(wiv(i)) (3)

We experimented with several types of OWA operators and concluded

that the additive weight type ([47]) clearly performed best for our data. Ad-

ditive weights are linearly increasing for lower approximation (Formula (4),

where p (p > 1) denotes the vector’s length) and decreasing for upper ap-

proximation (Formula (5)).

−→
W

add

L = ⟨ 2

p(p+ 1)
,

4

p(p+ 1)
, ...,

2(p− 1)

p(p+ 1)
,

2

p+ 1
⟩ (4)

18https://github.com/oulenz/fuzzy-rough-learn

19

−→
W

add

U = ⟨ 2

p+ 1
,
2(p− 1)

p(p+ 1)
, ...,

4

p(p+ 1)
,

2

p(p+ 1)
⟩ (5)

Next, during the classification of a test vector y, the FRNN-OWA method

calculates the membership degree of y to the lower (Formula (6)) and upper

(Formula (7)) approximation of each decision class C.

C(y) = OWA−→
W L

{1−R(x, y) | x ∈ X \ C}) (6)

C(y) = OWA−→
W U

{R(x, y) | x ∈ C}) (7)

Then, the method assigns y to the class C that has the highest sum

C(y)+C(y). For efficiency purposes, calculations are limited by a parameter

k (amount of nearest neighbours of test instance y used to construct the

approximations). In Eq. (6), k refers to the number of neighbours of y from

classes other than C and in Eq. (7) to the number of neighbours of y from C.

There are no general rules on how to set k, hence, we will tune this parameter

for each dataset in our experiments.

Finally, FRNN-OWA also provides a natural way to derive confidence

scores for its predictions. In particular, for each class C and test instance y,

the confidence score can be calculated as

Conf(C, y) =
C(y) + C(y)∑

C′∈C
C ′(y) + C ′(y)

(8)

3.3.3. Method based on FRNN-OWA regression

As an alternative solution to FRNN-OWA for the emotion detection issue,

which can be considered as an ordinal classification task, we also tried FRNN

regression ([8], Algorithm 4).

20

For the test instance y, this algorithm predicts a value based on the classes

of the k nearest neighbours of instance y, similarly to kNN regression. The

main feature of FRNN regression is that it calculates the output for y as a

weighted mean, where the weights are represented with the upper and lower

approximation membership degrees of the k neighbours’ output values. In

our experiments, we fine-tuned the parameter k for each emotion dataset.

The FRNN regression algorithm returns a float number for each test

instance. To adjust this algorithm for our classification task, we use standard

rounding for each output value to obtain a class prediction.

3.3.4. Ensembles

Apart from performing our experiments for standalone classification meth-

ods, we will also consider their combination in an ensemble, where each model

will be based on a separate embedding method. To this aim, we tune param-

eters for each combination of a dataset and an embedding method to identify

optimal setups. To obtain the final output, a voting function is needed. Af-

ter experiments with various options (median, majority, maximum, etc.), the

best-performing voting function turned out to be a weighted average, where

the weights are derived from the confidence scores that each FRNN-OWA

classifier generates19.

An analysis of the confidence scores we obtained in our experiments

pointed out that they are often close to each other and generally lie within the

range [0.4, 0.6]. We hypothesize that this may be due to the high dimension-

19For FRNN regression, which does not generate any confidence scores, we used the

classical average as voting function.

21

ality of tweet embeddings, causing the upper approximation memberships

to be close to 1 and the lower ones to 0. To mend this issue, we propose

rescaling the original confidence scores in order to amplify their differences.

In practice, we proceed as follows. Denote by Confi(Cj, y) the confidence

score of the i-th member of the ensemble for test instance y to belong to class

Cj, calculated as in Eq. (8). We subtract 0.5 from Confi(Cj, y) and divide

the result by a small value α (0 < α < 1). Next, we compute the sum of the

scores for each class. Since the obtained values may be negative, we use the

softmax transformation to turn them into values between 0 and 1. The steps

of this rescaling process are summarized as follows:

wi =
exp(

∑
j(Confi(Cj, y)− 0.5)/α)∑

k exp(
∑

j(Confk(Cj, y)− 0.5)/α)
, (9)

The full architecture of our solution is shown in Fig. 1, where n is the

number of embedding methods, ki is the number of neighbours (parameter k)

for the i-th ensemble model, and wi is the weight for the i-th model’s output

in the voting function.

Figure 1: Scheme of our solution with an ensemble of FRNN-OWA classifiers.

22

3.4. Evaluation methods

To measure and compare the obtained prediction results, we use three

different metrics. Two of them were proposed by the organizers of the re-

spective SemEval competitions, whereas the last is added to obtain a more

complete picture of our methods’ performance.

PCC (10) was used in the SemEval competition on emotion detection.

Let y be the vector of predicted values and x that of correct values, with xi

and yi as the ith elements of x and y, and denote their means by x̄ and ȳ.

The PCC is given by:

PCC =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
. (10)

PCC scores vary between -1 (a total negative linear correlation) and 1 (a total

positive linear correlation), where 0 corresponds to no linear correlation. As

a consequence, during model comparison, we will seek the model with the

highest PCC.

An additional metric that we consider for the emotion detection task is

mean absolute error (MAE) (11). This choice of metric is inspired by the fact

that we are dealing with an ordinal classification task. The MAE formula is:

MAE =

∑
i |yi − x̄i|

n
, (11)

where n is the size of vectors x and y. Better predictions correspond to lower

MAE values.

A final metric is the F1-score (12) that was used for the offensive lan-

guage, hate speech, and irony detection SemEval competitions. Particularly,

a macro-averaged F1-score is used, where all classes have equal weights. The

23

formula for the F1-score is:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
, (12)

where Precision is the fraction of correctly predicted instances out of all

predicted labels, and Recall is the fraction of correctly predicted labels out

of all ground-truth labels. For the F1-score, we are looking for the highest

score to choose the best model.

4. Experiments

In this section, we present the results of the methods described in Section

3 on the training portion of the datasets mentioned in Section 2.1. In the

first step (Section 4.1), we detect the best setup for each dataset and each

embedding method, and in the second (Section 4.2), we tune ensembles of

models to obtain the most efficient approach per dataset. In Section 5, we

provide the results of the best setups on the test data to see how well they

generalize to new data.

4.1. Detecting the best setup for embedding methods

For each dataset, we apply the six embedding methods described in Sec-

tion 3.2. To detect the best setup for each method, we tuned the parameter

k (number of neighbours) and prior text cleaning options.

First, we select the best text preprocessing approach for each combination

of a dataset and an embedding method. For this purpose, we perform 5-fold

cross-validation on the training data with the same list of k values (deter-

mined based on the size of each data set) for each preprocessing option: raw

24

tweets, cleaned tweets, and cleaned tweets without stop words. For the emo-

tion datasets (anger, joy, sadness, and fear) we use PCC, and for the other

datasets (hate speech, offensive language, and irony) we use the F1-score.

Table 1: Optimal FRNN-OWA classification setup (preprocessing, number of neighbours

k) and corresponding PCC score per embedding for the emotion datasets

Setup Anger Joy Sadness Fear

roBERTa-based
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning No No No No
k value 19 9 23 9
PCC 0.6779 0.6956 0.7062 0.6031

DeepMoji
Tweet cleaning No No No No
Stop-word cleaning No No No No
k value 23 19 23 21
PCC 0.5853 0.6520 0.6380 0.5745

BERT
Tweet cleaning No No No No
Stop-word cleaning No No No No
k value 19 17 23 7
PCC 0.4492 0.5374 0.4391 0.4500

SBERT
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning No No No No
k value 19 15 23 11
PCC 0.5016 0.5660 0.5655 0.5192

USE
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning No No No No
k value 23 23 23 21
PCC 0.5054 0.5693 0.5961 0.5764

Word2Vec
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning Yes Yes Yes Yes
k value 21 23 23 7
PCC 0.5009 0.5099 0.5048 0.4496

25

Table 1 shows the results on the four emotions datasets for the FRNN-

OWA classification method. From this table, we can immediately observe

that the roBERTa-based embedding method provides superior results to the

others on all datasets. This observation comes as no particular surprise since

roBERTa was fine-tuned on data similar to the SemEval competition data

and its performance is in line with earlier results for related classification

tasks [42]. On the other hand, the lowest scores are obtained for Word2Vec

and BERT. Their relatively poor performance may be explained by the fact

that they were trained on a too generic corpus. Also, we note that the PCC

scores for Fear are often the lowest among the emotions, which may be due

to the fact that this dataset is the most unbalanced dataset. On the other

hand, the most balanced dataset (Joy) generally receives the best prediction

results.

Note that some embeddings do not require any preprocessing at all, like

DeepMoji and BERT. Probably this is due to the fact that these embeddings

take into account the context of words. For the other methods, tweet cleaning

generally performed better, while only Word2Vec benefits from stop word

removal. The optimal value of k varies between methods and datasets; we

note that for Fear, lower values of k are generally better, which may again

be linked to the imbalance of this dataset.

The results for FRNN regression are shown in Table 2. First, we may no-

tice that for most embeddings, the results still slightly improve those of their

classification counterparts. A notable exception is the Word2Vec method,

which is the only one to perform worse on all four emotions. Concerning

the differences between embeddings, we observe similar trends as for FRNN-

26

Table 2: Optimal FRNN regression setup (preprocessing, number of neighbours k) and

corresponding PCC score per embedding for the emotion datasets

Setup Anger Joy Sadness Fear

roBERTa-based
Tweet cleaning Yes Yes No Yes
Stop-word cleaning No No No No
k value 23 15 19 7
PCC 0.6930 0.7146 0.7188 0.6169

DeepMoji
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning No No No No
k value 27 23 23 17
PCC 0.6316 0.6448 0.6772 0.6271

BERT
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning No No No No
k value 13 19 19 5
PCC 0.4618 0.5469 0.4760 0.4338

SBERT
Tweet cleaning Yes No Yes Yes
Stop-word cleaning Yes No No No
k value 11 17 7 19
PCC 0.5298 0.5587 0.5527 0.4976

USE
Tweet cleaning No Yes No Yes
Stop-word cleaning No No No No
k value 29 13 29 11
PCC 0.5494 0.5913 0.6419 0.5798

Word2Vec
Tweet cleaning Yes Yes Yes Yes
Stop-word cleaning Yes No Yes Yes
k value 21 9 29 5
PCC 0.4273 0.4582 0.4806 0.4295

OWA classification: the best results are obtained for roBERTa, except for

Fear, on which DeepMoji performs slightly better. BERT and Word2Vec

are underperforming by comparison. The optimal preprocessing options also

27

vary a bit, with tweet cleaning now proving beneficial in the majority of

cases.

Finally, we repeated the above experimental analysis also for the Hate

Speech, Offensive language and Irony datasets with the FRNN-OWA method.

Our findings, summarized in Table 3, reveal for all of them, that the roBERTa-

based embedding by far outperforms the remaining embedding methods. The

results also indicate that in this case preprocessing is not helpful.

4.2. Ensembles

In the next step, we consider an ensemble of six FRNN-OWA classifiers,

corresponding to the six tweet embeddings methods outlined before. Table 4

shows the results, using first the standard mean as voting function (in other

words, attributing equal importance to each classifier) and then the weighted

average involving rescaled confidence scores as defined in Eq. (9). For the

latter approach, the α parameter was tuned by a grid search and its optimal

values for each data set are also included in the table.

From Table 4, we can see that overall the weighted average voting function

is a better option than the standard mean, improving the results of the latter

except for Fear, for which it obtains a slightly lower PCC score. We also

notice that for all emotion datasets the ensemble outperforms the use of a

single classifier. For the Hate Speech, Offensive language and Irony datasets,

however, it is clear that using the standalone roBERTa-based embedding

(see Table 3) is still better than any of the ensemble strategies, so we will

not consider the latter further on.

Given the large performance gap between different individual embeddings

in Tables 1 and 2, we also consider ensembles constructed with a subset of

28

Table 3: Optimal FRNN-OWA classification setup (preprocessing, number of neighbours

k) and corresponding F1 score for all embedding for the Hate Speech, Offensive and Irony

datasets

Setup Hate Speech Offens Irony

roBERTa-based
Tweet cleaning No No No
Stop-word cleaning No No No
k value 25 45 27
F1 score 0.8765 0.8377 0.9365

DeepMoji
Tweet cleaning No No No
Stop-word cleaning No No No
k value 19 39 15
F1 score 0.6223 0.6567 0.6774

BERT
Tweet cleaning Yes No No
Stop-word cleaning No No No
k value 15 47 23
F1 score 0.7172 0.6847 0.6563

SBERT
Tweet cleaning No No No
Stop-word cleaning No No No
k value 15 47 29
F1 score 0.7063 0.7063 0.6504

USE
Tweet cleaning Yes No No
Stop-word cleaning No No No
k value 13 35 25
F1 score 0.7037 0.6898 0.6650

Word2Vec
Tweet cleaning Yes Yes Yes
Stop-word cleaning Yes Yes Yes
k value 13 39 27
F1 score 0.6700 0.6622 0.5966

29

Table 4: Results for an ensemble of six FRNN-OWA methods with different embeddings,

using two different voting functions.

Setup Anger Joy Sadness Fear Hate Speech Offens Irony

PCC F1-score
Standard 0.6475 0.7126 0.7152 0.6448 0.7500 0.6796 0.7331
mean
Conf. scores 0.6960 0.7512 0.7455 0.6430 0.8116 0.7119 0.8350
tuned α α = 0.029 α = 0.032 α = 0.032 α = 0.046 α = 0.1 α = 0.8 α = 0.5

embeddings, using a grid search to identify the optimal setup. The results

of this analysis are shown in Table 5.

Table 5: Optimal FRNN-OWA classification and FRNN regression ensemble setup and

corresponding PCC score for the emotion datasets.

Dataset Setup PCC

FRNN-OWA
Anger roBERTa, DeepMoji, USE, Word2Vec, BERT 0.7241
Joy roBERTa, DeepMoji, USE, SBERT, BERT 0.7788
Sadness roBERTa, DeepMoji, USE, SBERT 0.7719
Fear roBERTa, DeepMoji, USE, Word2Vec, SBERT 0.6930
Hate speech roBERTa 0.8765
Offensive roBERTa 0.8377
Irony roBERTa 0.9365

FRNN Regression
Anger roBERTa 0.6930
Joy roBERTa 0.7146
Sadness roBERTa 0.7188
Fear roBERTa, DeepMoji, USE, sBERT 0.6565

30

We conclude that the best setups for the emotions datasets with FRNN-

OWA require four to five embeddings to provide the best results. Meanwhile,

for the other datasets (Hate Speech, Offensive language, and Irony) and

FRNN regression, the best results are obtained with the standalone roBERTa

embedding, except for FRNN regression on the Fear dataset.

5. Evaluation on the test data

In this section, we provide and discuss the results of the best settings

described in the previous section (cfr. Table 5) applied to the test datasets.

We also examine several samples of correct and wrong predictions in the error

analysis part.

5.1. Test results

Table 6 lists the results of our approaches for the emotion datasets. Apart

from the PCC used by the competition organizers, we also included the MAE.

We calculated the mean scores of all four datasets because the averaged score

is used in the original SemEval competition [13] to compare the solutions.

We also included the results of the competition’s top-3 solutions , which were

discussed in Section 2.1.

As we can see from Table 6, the FRNN-OWA method performs better for

the PCC metric and FRNN regression for MAE. It makes sense, taking into

account the idea behind the MAE metric. However, since the PCC is the

evaluation metric of this SemEval competition, the FRNN-OWA classifier

obtains a higher position on the leaderboard for the English EI-oc subtask20.

20https://competitions.codalab.org/competitions/17751\#results

31

The PCC and MAE scores are generally slightly worse for the test data

than for the training data, with the notable exception of Fear and MAE.

Furthermore, similar patterns may be observed as in the training stage: the

best performance is obtained for Joy and the worst one for Fear.

Table 6: Comparison of evaluation metrics for the best setup for the emotion test dataset

with FRNN-OWA and FRNN regression methods.

Dataset FRNN-OWA FRNN regression
Train Test Train Test

MAE
Anger 1.4447 1.0698 0.5615 0.6866
Joy 1.3420 1.5447 0.5755 0.5665
Sadness 1.2181 1.1179 0.5476 0.5712
Fear 0.6209 0.6622 0.4498 0.5801

Averaged 1.1564 1.0986 0.5336 0.6011

PCC
Anger 0.7241 0.6388 0.6930 0.6671
Joy 0.7788 0.7115 0.7146 0.6738
Sadness 0.7719 0.6967 0.7188 0.6865
Fear 0.6930 0.5705 0.6565 0.5724

Averaged 0.7419 0.6544 0.6957 0.6499

Leaderboard 2nd place 4rd place

TOP-3 places
test PCC scores

0.695, 0.653, 0.646
[14], [15], [16]

For the other datasets (Hate Speech, Offensive language, and Irony), we

listed the F1-scores obtained with the FRNN-OWA method in Table 7. For

32

Table 7: F1-scores for the best FRNN-OWA setup for the hate speech, offensive and irony

test datasets.

Setup HateSpeech Offens Irony

Train 0.8765 0.8377 0.9365
Test 0.5351 0.8109 0.6515

Leaderboard 5th place 4th place 3rd place

TOP-3 places
test F1-scores

0.651, 0.571, 0.546
[23], -, [24]

0.829, 0.815, 0.814
[19], [20], [21]

0.7054, 0.6719, 0.65
[26], [27], [28]

all these competitions, we obtained top-5 positions.21 Although the leader-

board is private for the Hate Speech and Offensive language competition, it

is available for the Irony competition.22 Hence, we added the results of the

top-3 teams (see Section 2.1) for each SemEval competition to Table 7. Sim-

ilarly to Table 6, the winners’ approaches are mainly based on deep learning

methods (BERT, BiGRUs, LSTM, BiLSTM).

We also can notice that for the Hate Speech and Irony datasets, the gap

between cross-validation and test scores is much bigger than for the Offen-

sive language detection task. After some additional experiments for those

datasets, we can assume that it was caused neither by the roBERTa embed-

ding method nor by the number of neighbours. We suggest that probably

the reason is that train and test data came from different distributions.

21Due to CodaLab restrictions it was not possible to submit our labels, so we calculated

our places on our own with the provided validation scripts.
22https://competitions.codalab.org/competitions/17468\#results

33

5.2. Error analysis

To examine the performance of our proposed approach in more detail,

we explore correct and wrong samples of test instances. This may also serve

to illustrate our solution’s explainability, where particular patterns could be

observed.

To detect neighbouring training tweets for the test instance, we calculated

the cosine similarly between the test tweet and all training tweets for each

embedding separately, since they provide different locations of instances in

the multi-dimensional space. We took into account all embedding approaches

used in models of the best ensemble and took the top k closest neighbours

for each. Below, when we present “training neighbours of the test instance”,

we mean those tweets in the intersection, or in most, of the selected top-k

neighbourhoods.

First of all, we computed the confusion matrices for all test datasets.

Results for the emotion datasets are presented in Table 8. We can see that

the true class is confused with one of the neighbouring classes in most of the

erroneous predictions. For example, in the Anger dataset, the real class ‘2’

is mainly predicted as ‘2’, with minor cases predicted as adjacent classes ‘1’

or ‘3’ and never as ‘0’.

Remarkably, opposite classes ‘0’ and ‘3’ are rarely confused. The only

exception to this pattern is the Fear dataset, where four test samples with

true class ‘3’ are labelled as ‘0’. We examined these four mislabelled samples

to understand the nature of the mistake. One of these test tweets, “things

that terrify me: remembering my bf follows me on twitter”, has the majority

of closest neighbours from training tweets with topics related to social media.

34

For example, neighbour “The way I’m always on twitter at work is a little

alarming :woman_facepalming:” has class ‘0’ (no fear was detected).

Another test example “@USER My dad ordered my tickets for the show

in Hamburg, his name is now printed on the tickets, is the same surname

enough? #panic” with class ‘3’ was classified with class ‘0’. Its neighbours

are about entertainment-related topics, like tickets: “@USER why does the

ticket website never work? Trying to buy Palace tickets and it’s impossible

and says there’s an error #awful” (class ’0’) or the name: “thank you for

your concern, computer, but my last name isn’t misspelled, it’s just weird”

(class ‘0’).

For comparison, we also take a closer look at one of the four correctly

predicted test samples with the highest level of Fear (class ‘3’): “ugh going

to college tm, so nervous. #college #life #collegelife #newyearnewme”. The

closest training neighbours for this sample are mainly related to school and

often consist of the word “nervous”, for example, “I have another test tonight

#nervous” with class ‘3’. For the other three correctly predicted cases with

class ‘3’, the situation is similar, where the majority of neighbours share the

same word “nervous” or “anxiety”.

As we can see from the presented samples, having a common topic is a

strong feature for neighbour detection. To get a broader picture, we explore

more datasets. As a sample of correctly predicted joyful tweets with class ‘3’,

we can consider the test instance “@USER Happy #blissful birthday”. The

majority of its neighbours are about birthdays as well, for example, “@USER

happy birthday :) have a blessed day, love from Toronto :) #bday” with class

‘3’. In this case, we can consider “birthday” not only as a common topic but

35

also as a strong keyword for neighbour detection.

A similar situation we can see for the wrongly predicted test tweet “Good

Night everyone... #goodnight #sleep #nice #great #night #music #day”

with correct class ‘1’ that was predicted as ‘3’. Its neighbours are mainly

about good night/morning/afternoon wishes, with classes ‘3’ or ‘2’, such as

“Good night, Twitter world! Wish you all good sleep / productive jovial days!

:)” with class ‘3’.

Table 8: Confusion matrices for emotion test datasets.

True class Predicted class
0 1 2 3 0 1 2 3

Anger Joy

0 94 267 104 0 87 86 21 0
1 1 50 96 1 26 142 157 8
2 0 40 193 10 1 49 241 69
3 0 4 100 42 0 3 90 125

Sadness Fear

0 178 176 44 0 398 230 5 0
1 13 80 93 7 24 94 6 0
2 4 53 172 26 20 112 20 6
3 0 5 72 52 4 27 36 4

For the other three datasets (Hate Speech, Offensive language, and Irony),

the confusion matrices are shown in Table 9. The Offensive language dataset

is the only one where the number of correct predictions for both classes is

higher than the false positive and false negative predictions. Hence, we will

36

Table 9: Confusion matrices for Hate Speech, Offensive language, and Irony test datasets.

True classes Predicted classes
0 1 0 1 0 1

Hate Speech Offensive Irony

0 486 1254 574 46 455 18
1 62 1198 77 163 202 109

take a closer look at the other two datasets and provide some examples of

wrong predictions.

As for the Irony dataset, we can take a look at one sample with true class

‘1’ (irony present): “Christmas alone :smiling_face_with_smiling_eyes: how

nice #not”. Its neighbours are mainly about Christmas, gifts, or winter and

are not ironic (class ‘0’). A sample: “Yay for days off. #coffee #HarryPotter

#christmasbreak #morning LINK” with class ‘0’. Hence, we can see that the

classifier is misled by Christmas as a strong topic or even keyword. On the

other hand, the hashtag “#not”, which for humans is considered a strong

indicator of ironic speech, was probably not taken into account because of

its generic content.

Taking a look at the Hate Speech dataset, we can notice that many tweets

are similar and concern hate speech towards immigrants or women, as men-

tioned in the dataset’s description. For example, a correctly classified hateful

test tweet with class ‘1’ is the following: “WAKE UP AMERICA. We can-

not continue to allow illegal aliens to stay in County. They are a real and

present danger to LEGAL AMERICAN CITIZENS. #BuildThatWall #End-

37

CatchAndReleash #DefundSantuaryCities”. The majority of its neighbours

are hateful (class ‘1’) and share the hashtag “#BuildThatWall”, such as “Il-

legal Criminals EVERYWHERE #BuildThatWall !!”. This hashtag can also

be considered as a strong keyword, but in this case caused a misclassification.

Another possible reason for wrong classifications could be the use of sim-

ilar topics/words in a different context. For example, the test sample “The

Last Refuge has a fantastic collection of reports on a business model that

profits from illegal immigration. #UniParty #RobbingUsBlind #EndChain-

Migration #tcot #ccot #pjnet #qanon” has class ‘1’, but the majority of its

training neighbours have class ‘0’ and contain words like “migration” or “im-

migration”, which are used in an informative rather than hateful sense, such

as “The Truth about #Immigration LINK” with class ‘0’.

In conclusion, similar topics and common keywords are strong neighbour

detection features on which our approach is based. However, they may cause

errors when the same word is used in a different context.

6. Conclusion and future work

In this paper, we have evaluated the potential of interpretable machine

learning methods based on fuzzy rough sets for different subjective language

classification tasks and demonstrated that they are competitive with more

complex state-of-the-art neural network-based approaches. In particular, we

designed and optimized weighted ensembles of FRNN-OWA classification and

FRNN regression using feature vectors obtained from different word embed-

dings, which are mostly sentiment-oriented and applied at the sentence level.

Also, our error analysis reveals that our methods are capable of identifying

38

useful patterns that can explain their predictions.

As one of the main future challenges, we consider a more systematic

approach to solution explainability. Danilevsky et al. [30] provide several

hints on how to do this. Also, we can examine the application of fuzzy rule-

based methods [50] on top of the set of nearest neighbours using high-level

features since such methods may further enhance explainability.

Another important characteristic that influences the results is data im-

balance, as we observed, for example, for the Fear dataset. For further exper-

iments, we consider the usage of imbalanced machine learning classification

methods like those described in [11].

Acknowledgements

Olha Kaminska and Chris Cornelis would like to thank the Odysseus

project from Flanders Research Foundation (FWO), grant no. G0H9118N,

for funding their research.

References

[1] J. J. Zhu, Y.-C. Chang, C.-H. Ku, S. Y. Li, C.-J. Chen, Online critical

review classification in response strategy and service provider rating: Al-

gorithms from heuristic processing, sentiment analysis to deep learning,

Journal of Business Research 129 (2021) 860–877.

[2] A. Chinnalagu, A. K. Durairaj, Context-based sentiment analysis on

customer reviews using machine learning linear models, PeerJ Computer

Science 7 (2021) e813.

39

[3] R. K. Gupta, A. Vishwanath, Y. Yang, Covid-19 twitter dataset

with latent topics, sentiments and emotions attributes (2021-11-04).

doi:https://doi.org/10.3886/E120321V11.

[4] Z. Al-Makhadmeh, A. Tolba, Automatic hate speech detection using

killer natural language processing optimizing ensemble deep learning

approach, Computing 102 (2) (2020) 501–522.

[5] D. Chandler, R. Munday, A dictionary of media and communication,

OUP Oxford, 2011.

[6] B. Ghanem, J. Karoui, F. Benamara, P. Rosso, V. Moriceau, Irony

detection in a multilingual context, Advances in Information Retrieval

12036 (2020) 141–149.

[7] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training

of deep bidirectional transformers for language understanding, in: Pro-

ceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[8] R. Jensen, C. Cornelis, Fuzzy-rough nearest neighbour classification and

prediction, Theoretical Computer Science 412 (42) (2011) 5871–5884.

[9] S. Vluymans, L. D’eer, Y. Saeys, C. Cornelis, Applications of fuzzy

rough set theory in machine learning: a survey, Fundamenta Informati-

cae 142 (1-4) (2015) 53–86.

[10] J.-h. Zhai, Fuzzy decision tree based on fuzzy-rough technique, Soft

Computing 15 (6) (2011) 1087–1096.

40

[11] S. Vluymans, A. Fernández, Y. Saeys, C. Cornelis, F. Herrera, Dy-

namic affinity-based classification of multi-class imbalanced data with

one-versus-one decomposition: a fuzzy rough set approach, Knowledge

and Information Systems 56 (1) (2018) 55–84.

[12] H. Zhao, P. Wang, Q. Hu, P. Zhu, Fuzzy rough set based feature selection

for large-scale hierarchical classification, IEEE Transactions on Fuzzy

Systems 27 (10) (2019) 1891–1903.

[13] S. M. Mohammad, F. Bravo-Marquez, M. Salameh, S. Kiritchenko,

Semeval-2018 Task 1: Affect in tweets, in: Proceedings of International

Workshop on Semantic Evaluation (SemEval-2018).

[14] V. Duppada, R. Jain, S. Hiray, SeerNet at SemEval-2018 task 1: Domain

adaptation for affect in tweets, in: Proc. 12th International Workshop

on Semantic Evaluation, 2018, pp. 18–23.

[15] G. Gee, E. Wang, psyml at semeval-2018 task 1: Transfer learning for

sentiment and emotion analysis, in: Proc. 12th International Workshop

on Semantic Evaluation, 2018, pp. 369–376.

[16] A. Rozental, D. Fleischer, Amobee at SemEval-2018 task 1: GRU neural

network with a CNN attention mechanism for sentiment classification,

in: Proc. 12th International Workshop on Semantic Evaluation, 2018,

pp. 218–225.

[17] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, R. Kumar,

SemEval-2019 task 6: Identifying and categorizing offensive language

41

in social media (OffensEval), in: Proc. 13th International Workshop on

Semantic Evaluation, 2019, pp. 75–86.

[18] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, R. Ku-

mar, Predicting the type and target of offensive posts in social media,

in: Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019, pp. 1415–1420.

doi:10.18653/v1/N19-1144.

[19] P. Liu, W. Li, L. Zou, Nuli at SemEval-2019 task 6: Transfer learning for

offensive language detection using bidirectional transformers, in: Proc.

13th international workshop on semantic evaluation, 2019, pp. 87–91.

[20] A. Nikolov, V. Radivchev, Nikolov-radivchev at SemEval-2019 task 6:

Offensive tweet classification with BERT and ensembles, in: Proc. 13th

International Workshop on Semantic Evaluation, 2019, pp. 691–695.

[21] J. Zhu, Z. Tian, S. Kübler, UM-IU@LING at SemEval-2019 task 6:

Identifying offensive tweets using BERT and SVMs, in: Proc. 13th In-

ternational Workshop on Semantic Evaluation, 2019, pp. 788–795.

[22] V. Basile, C. Bosco, E. Fersini, N. Debora, V. Patti, F. M. R. Pardo,

P. Rosso, M. Sanguinetti, et al., Semeval-2019 task 5: Multilingual de-

tection of hate speech against immigrants and women in twitter, in:

13th International Workshop on Semantic Evaluation, 2019, pp. 54–63.

[23] V. Indurthi, B. Syed, M. Shrivastava, N. Chakravartula, M. Gupta,

42

V. Varma, FERMI at SemEval-2019 task 5: Using sentence embeddings

to identify hate speech against immigrants and women in Twitter.

[24] Y. Ding, X. Zhou, X. Zhang, YNU_DYX at SemEval-2019 task 5: A

stacked BiGRU model based on capsule network in detection of hate,

in: Proc. 13th International Workshop on Semantic Evaluation, 2019,

pp. 535–539.

[25] C. Van Hee, E. Lefever, V. Hoste, SemEval-2018 task 3: Irony detection

in English tweets, in: Proc. 12th International Workshop on Semantic

Evaluation, 2018, pp. 39–50.

[26] C. Wu, F. Wu, S. Wu, J. Liu, Z. Yuan, Y. Huang, THU_NGN at

SemEval-2018 task 3: Tweet irony detection with densely connected

LSTM and multi-task learning, in: Proc. 12th International Workshop

on Semantic Evaluation, 2018, pp. 51–56.

[27] C. Baziotis, A. Nikolaos, P. Papalampidi, A. Kolovou, G. Paraskevopou-

los, N. Ellinas, A. Potamianos, NTUA-SLP at SemEval-2018 task 3:

Tracking ironic tweets using ensembles of word and character level at-

tentive RNNs, in: Proc. 12th International Workshop on Semantic Eval-

uation, 2018, pp. 613–621.

[28] O. Rohanian, S. Taslimipoor, R. Evans, R. Mitkov, WLV at SemEval-

2018 task 3: Dissecting tweets in search of irony, in: Proc. 12th Inter-

national Workshop on Semantic Evaluation, 2018, pp. 553–559.

[29] O. Kaminska, C. Cornelis, V. Hoste, Nearest neighbour approaches for

emotion detection in tweets, in: Proc. 11th Workshop on Computational

43

Approaches to Subjectivity, Sentiment and Social Media Analysis, 2021,

pp. 203–212.

[30] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, P. Sen, A

survey of the state of explainable AI for natural language processing, in:

Proc. 1st Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics and the 10th International Joint Conference

on Natural Language Processing, 2020, pp. 447–459.

[31] Z. Wu, Y. Chen, B. Kao, Q. Liu, Perturbed masking: Parameter-

free probing for analyzing and interpreting bert, arXiv preprint

arXiv:2004.14786 (2020).

[32] M. T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” ex-

plaining the predictions of any classifier, in: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and

data mining, 2016, pp. 1135–1144.

[33] H. Chen, Y. Ji, Learning variational word masks to improve the in-

terpretability of neural text classifiers, arXiv preprint arXiv:2010.00667

(2020).

[34] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical at-

tention networks for document classification, in: Proceedings of the 2016

conference of the North American chapter of the association for compu-

tational linguistics: human language technologies, 2016, pp. 1480–1489.

[35] R. Akula, I. Garibay, Explainable detection of sarcasm in social me-

dia, in: Proceedings of the Eleventh Workshop on Computational Ap-

44

proaches to Subjectivity, Sentiment and Social Media Analysis, 2021,

pp. 34–39.

[36] S. Boy, D. Ruiter, D. Klakow, Emoji-based transfer learning for sen-

timent tasks, in: Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Student Re-

search Workshop, 2021, pp. 103–110.

[37] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word

representations in vector space, CoRR abs/1301.3781 (2013).

[38] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed rep-

resentations of words and phrases and their compositionality, in: Pro-

ceedings of the 26th International Conference on Neural Information

Processing Systems - Volume 2, NIPS’13, 2013, p. 3111–3119.

[39] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, S. Lehmann, Using millions

of emoji occurrences to learn any-domain representations for detecting

sentiment, emotion and sarcasm, Proc. 2017 Conference on Empirical

Methods in Natural Language Processing (2017).

[40] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Con-

stant, M. Guajardo-Cespedes, S. Yuan, C. Tar, B. Strope, R. Kurzweil,

Universal sentence encoder for English, in: Proceedings of the 2018 Con-

ference on Empirical Methods in Natural Language Processing: System

Demonstrations, 2018, pp. 169–174. doi:10.18653/v1/D18-2029.

URL https://www.aclweb.org/anthology/D18-2029

45

[41] N. Reimers, I. Gurevych, Sentence-BERT: Sentence embeddings using

Siamese BERT-networks, in: Proc. 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 2019,

pp. 3982–3992.

[42] F. Barbieri, J. Camacho-Collados, L. Espinosa Anke, L. Neves, Tweet-

Eval: Unified benchmark and comparative evaluation for tweet classifi-

cation, in: Findings of the Association for Computational Linguistics:

EMNLP 2020, 2020, pp. 1644–1650.

[43] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, Advances

in pre-training distributed word representations, in: Proc. International

Conference on Language Resources and Evaluation (LREC 2018), 2018.

[44] M. Honnibal, I. Montani, spaCy 2: Natural language understanding

with Bloom embeddings, convolutional neural networks and incremental

parsing (2017).

[45] D. Q. Nguyen, T. Vu, A. Tuan Nguyen, BERTweet: A pre-trained lan-

guage model for English tweets, in: Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demon-

strations, 2020, pp. 9–14. doi:10.18653/v1/2020.emnlp-demos.2.

[46] A. Huang, Similarity measures for text document clustering, in: Proc.

6th New Zealand computer science research student conference (NZC-

SRSC2008), Vol. 4, 2008, pp. 9–56.

46

[47] S. Vluymans, N. Mac Parthaláin, C. Cornelis, Y. Saeys, Weight se-

lection strategies for ordered weighted average based fuzzy rough sets,

Information Sciences 501 (2019) 155–171.

[48] O. U. Lenz, D. Peralta, C. Cornelis, Scalable approximate FRNN-OWA

classification, IEEE Transactions on Fuzzy Systems 28 (5) (2019) 929–

938.

[49] O. U. Lenz, D. Peralta, C. Cornelis, fuzzy-rough-learn 0.1: a Python

library for machine learning with fuzzy rough sets, in: IJCRS 2020:

Proc. International Joint Conference on Rough Sets, Vol. 12179 of Lec-

ture Notes in Artificial Intelligence, 2020, pp. 491–499.

[50] T. Chua, W. Tan, A new fuzzy rule-based initialization method for k-

nearest neighbor classifier, in: 2009 IEEE International Conference on

Fuzzy Systems, 2009, pp. 415–420. doi:10.1109/FUZZY.2009.5277215.

47

