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Key Message: TLS data can be converted to reliable woody AGB estimates, but estimation 26 

quality is influenced by growing environment, leaf condition, and variation in tree density 27 

affecting volume to mass conversion. 28 

 29 

Abstract 30 

Both rural and urban forests play an important role in terrestrial carbon cycling. Forest carbon 31 

stocks are typically estimated from models predicting the aboveground biomass (AGB) of trees. 32 

However, such models are often limited by insufficient data on tree mass, which generally 33 

requires felling and weighing parts of trees. In this study, thirty-one trees of deciduous and 34 

evergreen species were destructively sampled in rural and urban forest conditions. Prior to 35 

felling, terrestrial laser scanning (TLS) data was used to estimate tree biomass based on volume 36 

estimates from quantitative structure models, combined with tree basic density estimates from 37 

disks sampled from stems and branches after scanning and felling trees, but also in combination 38 

with published specific basic density values. Reference woody AGB, main stem, and branch 39 

biomass were computed from destructive sampling. Trees were scanned in leaf-off conditions 40 

except evergreen and some deciduous trees, to assess effects of a leaf-separation algorithm on 41 

TLS-based woody biomass estimates. We found strong agreement between TLS-based and 42 

reference woody AGB, main stem, and branch biomass values, using both measured and 43 

published basic densities to convert TLS-based volume to biomass, but use of published densities 44 

reduced accuracy. Correlation between TLS-based and reference branch biomass was stronger 45 
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for urban trees, while correlation with stem mass was stronger for rural trees. TLS-based biomass 46 

estimates from leaf-off and leaf-removed point clouds strongly agreed with reference biomass 47 

data, showing the utility of the leaf-removal algorithm for enhancing AGB estimation.  48 

 49 

Keywords: terrestrial laser scanning, quantitative structure models, aboveground biomass, urban 50 

and rural forests, wood density, leaf- wood classification 51 

 52 

Introduction  53 

The total aboveground biomass (AGB, kg, oven-dry basis) of trees, an important decision-54 

making element in forest management and policy (MacFarlane 2015), is defined as the total dry 55 

mass (i.e., at 0% moisture content) allocated to the live and dead tissues and organs of 56 

aboveground tree structure (Burt et al. 2021; Kükenbrink et al. 2021). Accurate estimation of 57 

forest AGB plays a vital role in understanding a wide range of ecological services in rural and 58 

urban forests (e.g., biodiversity, pollination, temperature regulation, water purification and 59 

infiltration; Baker et al. 2019; Casalegno et al. 2017; Nowak and Greenfield 2020; Phillips et al. 60 

2019), and is essential for studying terrestrial carbon dynamics at different spatial scales across 61 

biomes (Stovall et al. 2017). For example, the finding that Amazonian forests store large 62 

amounts of carbon in aboveground live vegetation (approximately 50-60 Pg) is based on 63 

estimation of aboveground biomass in Amazonian forests, where approximately 45-50% of live 64 

plant biomass is carbon content (Burt et al. 2021). Similarly, urban trees store large amounts of 65 

carbon in aboveground biomass that can be comparable to rural forest carbon stocks (McPherson 66 

1998), depending on levels of canopy cover and impervious surfaces (MacFarlane 2009). 67 
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However, there remains substantial uncertainty regarding forest carbon offsets due to a dearth of 68 

accurate and detailed tree biomass data over multiple spatial and temporal scales (Weiskittel et 69 

al. 2015), particularly for urban forests (Tigges and Lakes 2017; Wilkes et al. 2018). Therefore, 70 

it is important to continue to develop new data and models for tree AGB across different growing 71 

environments.  72 

Urban and rural forest trees can have very different growth and biomass allocation patterns, 73 

because lower tree abundance in urban, as compared to rural, areas is associated with reduced 74 

competition for light (MacFarlane and Kane 2017; McHale et al. 2009). Open-grown trees in 75 

cities may grow faster than their rural forest counterparts (Pretzsch et al. 2015), despite the 76 

potential negative effects of urban environment (Arseniou and MacFarlane 2021). Trees with 77 

fewer neighbors have larger, more complex crowns, and sharper trunk taper in order to resist the 78 

strong wind loads which are frequent under urban and open-grown conditions (Bang et al. 2010; 79 

Gardiner et al. 2016; Mohamed and Wood 2015; Salim et al. 2015; Telewski et al. 1997). Open-80 

grown, urban trees allocate the largest portion of their AGB to branches (MacFarlane and Kane 81 

2017; Zhou et al. 2015), whereas trees in rural forests and plantations are narrower in crown 82 

diameter, and they allocate more mass to stems (Lines et al. 2012; Weiner 2004). Open-grown, 83 

urban trees and rural forest trees may also have very different woody structure. For example, 84 

Zhou et al. (2011) found that the trunk specific gravity of open-grown trees was greater than the 85 

trunk specific gravity of forest-grown trees in the same geographic region. Therefore, the 86 

significant allometric and structural differences between urban and rural forest trees should be 87 

considered when choosing methods to quantify their AGB.  88 

The dry AGB of any tree, regardless its growing environment, can be directly measured by 89 

weighing tree components (i.e., branches, stems and leaves), and quantifying the moisture of 90 
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green biomass after a tree has been harvested (Burt et al. 2021; Kükenbrink et al. 2021). 91 

However, this method is time consuming and costly, and only a limited number of trees can be 92 

destructively sampled (Calders et al. 2015; Weiskittel et al 2015). Therefore, the total AGB of 93 

trees and their biomass components (mass of branches, main stem and leaves) are usually 94 

estimated indirectly with "allometric models"- statistical models defining relationships between 95 

tree biomass and commonly-measured tree variables (e.g., diameter at breast height (DBH), total 96 

tree height, and crown dimensions; Dettmann and MacFarlane 2018; MacFarlane 2010, 2015; 97 

Radtke et al. 2017; Ver Planck and MacFarlane 2014, 2015).  98 

AGB estimation from allometric models has important challenges and limitations. Existing 99 

models are usually limited to certain regions and species, and large trees are usually excluded 100 

from the calibration datasets (Burt et al. 2021; Calders et al. 2015; Disney et al. 2019; Stovall et 101 

al. 2018; Weiskittel et al. 2015). Harvesting large numbers of sample trees needed to build 102 

allometric equations (Roxburgh et al. 2015; Sileshi et al. 2014) is particularly impractical in 103 

cities (Kükenbrink et al. 2021), and equations that have been created for rural forest trees may 104 

not be directly applicable to urban trees (Lefsky and McHale 2008; McHale et al. 2009).  105 

Terrestrial laser scanning (TLS) provides a non-destructive approach for quantifying tree 106 

architecture and dimensional properties (e.g., woody volume), which can be converted to AGB 107 

estimates (Calders et al. 2020; Liang et al. 2018). TLS is an active remote sensing technique 108 

where the sensor emits laser pulses and captures the three-dimensional structure of its 109 

surrounding environments by creating "point clouds" based on the returned energy that is 110 

analyzed as a function of either time (time-of-flight systems) or shift in the phase of the light 111 

wave of the emitted laser beam (phase-shift technology), and by using precise angular 112 
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measurements through optical beam deflection mechanisms (Calders et al. 2015; Liang et al. 113 

2016).  114 

Modeling the three-dimensional structure of trees based on TLS data can be achieved by 115 

generating Quantitative Structure Models (QSMs; Hackenberg et al., 2015a; Kaasalainen et al. 116 

2014; Raumonen et al. 2013). QSMs fit geometric primitives (i.e., cylinders) to three-117 

dimensional point-clouds (Bournez et al. 2017) in a way that preserves branch and stem topology 118 

and provides information about the size, location, hierarchy, and orientation of branching 119 

networks. QSMs provide accurate direct estimates of total aboveground volume of trees based on 120 

the number and dimension of fitted cylinders, which can be converted to AGB when multiplied 121 

by estimates of tree density, typically wood density (i.e., the ratio of dry woody biomass at 0% 122 

moisture content to green woody volume) (Burt et al. 2021; Demol et al. 2021). Unlike 123 

allometric models, estimating tree AGB from TLS data does not rely on biological assumptions 124 

of tree structure (Malhi et al. 2018), but its accuracy depends on (i) generating high-quality point 125 

clouds, (ii) assumptions and limitations of the QSM and (iii) representative estimates of the 126 

density of different parts of the trees (Disney et al. 2018, 2020; Olagoke et al. 2016).  127 

Point cloud quality and registration accuracy relies on obtaining unobstructed views of all parts 128 

of each tree, but is also affected by weather conditions during laser scanning (e.g., branches 129 

swaying due to wind) and scanner technical properties. Any point cloud errors are compounded 130 

by factors related to QSM quality (e.g., segmentation errors, cylinder fitting problems) (Calders 131 

et al. 2015; Disney et al. 2018). Malhi et al. (2018) describe fundamental challenges in 132 

accurately estimating tree biomass from QSMs including extraction of high order branches and 133 

classification of woody and non-woody parts of scanned trees. Leaves add unwanted noise in 134 

point clouds of trees for generating QSMs (Stovall et al. 2017) and inclusion of points from leafy 135 
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surfaces reduces reconstruction accuracy of woody skeletons (Burt et al. 2021). Therefore, leaf-136 

on point clouds require artificial leaf-removal using leaf-classification algorithms (Moorthy et al. 137 

2020; Vicari et al. 2019; Wang et al. 2019) prior to QSM generation. However, the effect of such 138 

classification algorithms on estimates of tree structure remains poorly understood (Arseniou et 139 

al. 2021a; Vicari et al. 2019). 140 

Tree wood density varies according to tree mechanical properties (Telewski 2012), hydraulic 141 

conductance (Markesteijn et al. 2011) and environmental or evolutionary strategies (Disney et al. 142 

2018). Published values of wood density are nonetheless available for different tree species 143 

(Chave et al. 2009; Miles and Smith 2009), because wood density is thought to be 144 

phylogenetically preserved (MacFarlane 2020). Despite the potential for high-quality tree 145 

component volume estimates from TLS, there can be significant variation in wood density 146 

among and within species across different environments (Burt et al. 2021; Demol et al. 2021; 147 

MacFarlane 2020), which can lead to bias in AGB estimates.  Published averaged values of 148 

wood density are available for many species (Chave et al. 2009; Miles and Smith 2009), but few 149 

studies have examined their potential for biomass estimation (e.g., Demol et al. 2021; 150 

MacFarlane 2015).  151 

In this study, we used TLS-based volume estimates and estimates of within-tree basic density 152 

(both wood and bark) to model woody AGB of thirty-one trees, including both needle-leaf 153 

evergreen and broad-leaf deciduous species growing in rural forest and urban conditions. The 154 

objectives of the study were: (i) to evaluate TLS-based woody AGB and component biomass 155 

(main stem and branches) estimates relative to tree mass measurements from destructively 156 

sampled trees; (ii) to assess the effect of measured versus published basic density values on the 157 

accuracy of total and component woody biomass estimates from TLS-based volumes; (iii) to 158 
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evaluate use of TLS for total and component woody biomass estimation of trees growing in 159 

different environments along a continuum of crowding conditions (i.e., rural forest to open 160 

urban); (iv) to assess the effect of artificial leaf-separation from leaf-on point clouds on total and 161 

component woody biomass estimates for broad-leaf deciduous and needle-leaf evergreen tree 162 

species. 163 

 164 

Materials and methods 165 

Tree data 166 

The experimental approach in this study identified healthy trees with undamaged crowns 167 

representing different species within two functional groups (broad-leaf deciduous and needle-leaf 168 

evergreen), in contrasting growing environments (rural and urban settings), that could be 169 

destructively sampled after scanning. Ten rural forest trees of two broad-leaf deciduous species 170 

(Quercus rubra and Acer rubrum) and ten trees of two needle-leaf evergreen species (Tsuga 171 

canadensis and Pinus strobus) were sampled at the Harvard Forest, in Petersham, MA, USA. 172 

The urban tree dataset included ten trees of three broad-leaf deciduous species (Acer rubrum, 173 

Acer saccharum, Gleditsia triacathos) and one needle-leaf evergreen species (Pinus nigra), 174 

sampled on the Michigan State University campus, MI, USA. Trees were selected to cover a 175 

large range of sizes (Table 1) and a complete list of all their measured/estimated properties is 176 

available in Online Resource 1.  177 

 178 

Table 1 List of the study trees growing in different environments (UF = urban forest; RF = rural 179 

forest), belonging to different functional groups (BD = broad-leaf deciduous; NE = needle-leaf 180 

evergreen), and having different leaf conditions during laser scanning (Off = leaf-off;  On = leaf-181 
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on). The variables DBH, Height, Total Woody AGB, Main Stem Biomass and Branch Biomass 182 

are based on reference data from destructive measurements 183 

 184 

Tree Growing 

Environment 

Functional 

Group 

Leaf 

Condition 

DBH 

(m) 

Height 

(m) 

Total 

Woody 
AGB (kg) 

Main 

Stem 
Biomass 

(kg) 

Branch 

Biomass 
(kg) 

A. rubrum UF BD Off 0.358 7.96 364.099 133.163 230.936 
A. saccharum UF BD Off 0.389 12.53 901.250 392.020 509.230 

A. saccharum UF BD Off 0.478 13.99 1427.948 497.488 930.459 

A.  saccharum UF BD Off 0.523 12.66 2081.490 692.070 1389.420 
P.  nigra UF NE On 0.549 14.57 2008.654 796.001 1212.653 

G. triacanthos UF BD On 0.577 15.79 3576.340 996.852 2579.488 

G. triacanthos UF BD On 0.467 12.41 1538.288 463.202 1075.087 

G. triacanthos UF BD On 0.457 12.68 1663.478 460.320 1203.157 
G. triacanthos UF BD On 0.432 14.05 1853.480 526.375 1327.105 

G. triacanthos UF BD On 0.429 11.67 1524.280 409.848 1114.432 

G. triacanthos UF BD On 0.495 11.80 1769.792 472.779 1297.013 
T. canadensis RF NE On 0.401 24.45 708.264 586.594 121.670 

P. strobus RF NE On 0.137 15.64 51.457 44.162 7.295 

T. canadensis RF NE On 0.231 17.65 181.305 136.519 44.787 
P. strobus RF NE On 0.216 20.39 153.642 134.191 19.451 

T. canadensis RF NE On 0.180 16.25 120.461 87.697 32.763 

T. canadensis RF NE On 0.081 8.63 12.201 9.180 3.021 
P. strobus RF NE On 0.427 25.36 752.809 508.206 244.603 

P. strobus RF NE On 0.257 20.54 208.891 162.461 46.430 

P. strobus RF NE On 0.333 24.60 472.288 370.911 101.377 

Q. rubra RF BD Off 0.363 21.60 813.403 596.597 216.806 
A. rubrum RF BD Off 0.287 22.74 387.375 301.129 86.246 

T. canadensis RF NE On 0.345 24.45 529.965 368.397 161.567 

Q. rubra RF BD Off 0.193 21.15 174.977 157.141 17.835 
A. rubrum RF BD Off 0.076 11.00 17.721 15.763 1.958 

A. rubrum RF BD Off 0.218 23.13 247.392 217.795 29.597 

A. rubrum RF BD Off 0.119 13.44 57.312 46.416 10.895 
A. rubrum RF BD Off 0.107 16.86 56.248 44.753 11.495 

Q. rubra RF BD Off 0.267 23.53 401.772 353.278 48.494 

Q. rubra RF BD Off 0.503 24.11 1435.951 1103.754 332.197 

Q. rubra RF BD Off 0.323 22.16 648.207 443.782 204.425 

 185 

 186 

Reference tree sampling 187 

Reference data for rural forest trees were collected during the leaf-on period in August 2017. 188 

Reference data for urban trees of A. rubrum, A. saccarhum and P. nigra were collected in leaf-189 

off condition in January 2018; whereas reference data for G. triacanthos were collected leaf-on 190 
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in August 2019. A detailed description of all reference tree measurements is given in the 191 

following sub-sections.  192 

Standing tree measurements 193 

Total standing tree heights were recorded with a TruPulse 360 laser range finder and DBH (at 194 

1.37 m from the ground) was measured with a diameter tape to the nearest 0.25 centimeter. 195 

Crown width was measured with a Vertex IV distance measuring device across its semi-major 196 

and semi-minor axes. The crowding condition of each tree was categorized as open grown, 197 

dominant, co-dominant, intermediate and overtopped, and also using a continuous competition 198 

index, which was computed from the DBH of all neighboring trees ≥ 10 cm DBH, within a 7.3 m 199 

radius and their distance to the focal tree (see MacFarlane and Kane 2017).  200 

Destructive measurements for green weights  201 

After felling, the main stem of each tree was determined by following the largest and straightest 202 

stems from the cut bottom to the top. All other stems connected to the main stem were defined as 203 

branches. After separating branches, the main stem was cut at 1.37 m, 2.44 m, and at subsequent 204 

1.22 m intervals. All weights were measured with at least three significant figures. The green 205 

(fresh) weight of all main stem sections was measured with an Intercomp Crane Scale which is 206 

accurate to 0.23 kg. Disks of thickness approximately 5 cm were extracted at 0.15 meter (stump 207 

height), 1.37 meters (breast height), and every subsequent 1.22 m section. Depending on the size 208 

of a disk its green weight (including bark) was measured in the field using an Ohaus scale which 209 

is accurate to 0.01 g or an Adam scale which is accurate to 5 g, and it was used to estimate disk 210 

basic density (see below, Measurements and computations in the laboratory). Two perpendicular 211 

disk diameters inside- and outside- bark were recorded, as well as four measurements of disk 212 

thickness from diameter endpoints (all measures to the nearest 0.1 cm).  213 
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Branch measurements followed different protocols for trees of broad-leaf and needle-leaf 214 

species. Starting at the base of a broad-leaf specimen and working upward, first-order branches 215 

(branches attached directly to the main stem) were systematically removed. Each branch was 216 

measured for basal diameter (bd) and classified as either a "small" branch (bd < 2.5 cm) or 217 

branch (bd ≥ 2.5 cm). For every branch with bd ≥ 2.5 cm, basal diameter, linear length, status 218 

(live or dead), and its position on the main stem (the height of the branch "center" attached to the 219 

main stem) was recorded. Branches were further separated and weighed using the crane scale, 220 

including second and higher order portions of a branch with leaves. After weighing the total 221 

green weight of each branch, leaves and attached twigs were clipped from the branch, weighed 222 

separately, and subtracted from the total green weight. One disk was removed from the mid-223 

section of each branch, weighed green and measured (as above) to compute disk green volume. 224 

Small branches with bd < 2.5 cm were counted, their status (live or dead) was recorded, and 225 

weighed in a pile. A sample of small branches were weighed green in the field and taken back to 226 

the laboratory for further measurements.  227 

 228 

For trees of needle-leaf species, first-order branches are generally smaller and more numerous 229 

than those of broad-leaf species. So, for these species, the trunks were divided into 1.22 m 230 

sections, starting from the base, and all branches were removed from each section and weighed 231 

in the field. Live and dead branches were weighed separately in each section, and three branches 232 

from a representative whorl were selected from the middle of each measurement section to 233 

represent branches in that section of the tree. The basal diameter, length and status (live or dead) 234 

of all branches in the whorl were measured, then one dead and two live branches were selected 235 

for laboratory analysis to determine moisture content and basic density.  236 

 237 
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Regardless of species, "miscellaneous" branches (branches founded on the ground that clearly 238 

belonged to the felled tree and whose location on the tree could not be determined) were pooled 239 

together and weighed in a third pile. Because the location of these branches in the tree was 240 

unknown and they varied in size, it was difficult to subsample this mixed material, and thus, the 241 

dry-weight/green-weight ratio for these branches was calculated as the weighted average of all 242 

branches in a tree (see below, Measurements and computations in the laboratory). 243 

 244 

Measurements and computations in the laboratory 245 

Disks and samples from the main stem and branches were taken to the laboratory for additional 246 

analysis. The bark of each disk was peeled "green" as soon as possible and the green-biomass of 247 

wood and bark components were weighed separately. Finally, bark and wood components of all 248 

disks were oven-dried at 105 °C for 48 hours, then weighed and recorded. The following 249 

computations include both the wood and bark components of a disk.  250 

 251 

The moisture content of each disk (𝑀𝐶𝑑𝑖𝑠𝑘) was computed from the following equation: 252 

𝑀𝐶𝑑𝑖𝑠𝑘= 
(𝐺𝑊𝑑𝑖𝑠𝑘− 𝐷𝑊𝑑𝑖𝑠𝑘)

𝐺𝑊𝑑𝑖𝑠𝑘
,  (eq. 1) 253 

where 𝐺𝑊𝑑𝑖𝑠𝑘 is the green weight of a disk in kg, and 𝐷𝑊𝑑𝑖𝑠𝑘 is its dry weight in kg. 254 

 255 

Dry biomass of the measurement section of the main stem or branch from which a disk was 256 

sampled was computed from the following equation: 257 

𝐷𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛= (1-𝑀𝐶𝑑𝑖𝑠𝑘)* 𝐺𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛, (eq. 2) 258 

where 𝐷𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛  is the dry weight of the section in kg, and 𝐺𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛 is the green weight of the 259 

section in kg measured in the field.  260 
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Total AGB (excluding the foliage) of a tree was computed by adding together the dry weight of 261 

all main stem and branch sections of the tree. 262 

 263 

The basic density of each sampled disk (𝐵𝐷𝑑𝑖𝑠𝑘 in g/cm3) included both bark and wood tissues 264 

and it was computed from the following equation: 265 

𝐵𝐷𝑑𝑖𝑠𝑘= 
𝐷𝑊𝑑𝑖𝑠𝑘

𝐺𝑉𝑑𝑖𝑠𝑘
,    (eq. 3) 266 

where 𝐺𝑉𝑑𝑖𝑠𝑘 is the green-volume of the disk (in cm3) computed from the laboratory-measured 267 

dimensions of the disk whose shape was assumed cylindrical. Basic density values of disks were 268 

extrapolated to corresponding sections of the main stem or branch from which they were 269 

sampled.  270 

 271 

Basic density of main stems including both bark and wood tissues was computed as the weighted 272 

average of basic density among stem sections, and the basic density of branches was computed 273 

as the weighted average of basic density values among branch sections including both bark and 274 

wood tissues. Weights were based on the cross-sectional area of the disk. 275 

 276 

Finally, the competition that each urban and rural forest tree faced was quantified, because we 277 

hypothesized that uncertainty of TLS-based biomass estimates should increase with competition 278 

strength due to occlusion of tree parts in point clouds from neighboring trees. The competition 279 

index was computed as follows: 280 

CI = ∑ ∑

𝐷𝐵𝐻𝑗
𝐷𝐵𝐻𝑖

𝐷𝑖𝑠𝑡𝑖𝑗

𝑠
𝑗=1

𝑛
𝑖=1 ,  (eq. 4) 281 
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where n is the number of the study trees, s is the number of the tree neighbors ≥ 10 cm DBH 282 

around each study tree i within a radius of 7.3 m, 𝐷𝐵𝐻𝑗 is the diameter at breast height of each 283 

tree neighbor j, 𝐷𝐵𝐻𝑖 is the diameter at breast height of each study tree i, and 𝐷𝑖𝑠𝑡𝑖𝑗  is the 284 

distance in meters between a study tree i and its tree neighbor j. This is a distance-dependent 285 

competition index which assumes that smaller trees are more sensitive than larger trees to the 286 

competition effects from their tree neighbors (Canham et al. 2004).  287 

Terrestrial laser scanning of trees and point cloud processing 288 

All urban trees were scanned with a FARO Focus3D X 330 terrestrial laser scanner (FARO 289 

Technologies Inc., Lake Mary, FL, USA). The G. triacanthos trees were scanned during the leaf-290 

on period in July, 2019. The remaining urban trees of the other species were laser-scanned 291 

during the leaf-off period in November, 2017. An example of a leaf-off and leaf-on point cloud 292 

of an urban tree is available in Online Resource 2. The FARO Focus3D X 330 terrestrial laser 293 

scanner operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 mrad, a 294 

range of 0.6 m - 330 m and it captures single return laser scanning data (Calders et al. 2020).  295 

Each individual urban tree was scanned at high resolution in calm wind conditions from a 296 

minimum of four different directions at different distances to minimize occlusion effects in the 297 

captured point clouds. The first two scans were conducted in opposite directions, from distances 298 

that allowed for a clear sighting of the top of the focal tree. The other two scans were also 299 

conducted in opposite directions (at a 90° angle from the first two scans), but from a closer 300 

distance to the tree, to better capture its stem and its branching architecture. Two or three 301 

additional scans were conducted right below the crown of large trees with wide crowns to 302 

densify branch laser returns. Spatial registration of scans was enhanced by six reference target-303 

spheres placed around each tree, following field scanning protocols suggested by Wilkes et al. 304 
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(2017). The software SCENE 2019.2 (FARO Technologies Inc., Lake Mary, FL, USA, 2019.2) 305 

was used to co-register and filter all scans. The same software was used to manually isolate the 306 

point cloud from its background. This process has been shown to be an accurate alternative to a 307 

fully automatic segmentation process (Seidel 2019).  308 

Rural forest trees were laser-scanned during the leaf-off period in April, 2017 using a RIEGL 309 

VZ-400 laser scanner. This laser scanner operates with laser light of 1550 nm wavelength, 310 

nominal beam divergence 0.35 mrad, pulse repetition rate 300 kHz, and it captures multiple 311 

return laser scanning data (Calders et al. 2015; Calders et al. 2020). The trees in Harvard Forest 312 

were scanned across two plots1: the 50 m x 50 m Main plot (16 trees; 48 scans: 36 scans on 10 m 313 

centers in the 50 m x 50 m area and 12 additional scans in the buffer area and at 25 m diagonally 314 

from the corners) and the 20 m x 20 m North plot (4 trees; 9 scans: 1 scan at center, 4 scans at 315 

corners, and 4 scans at midpoints of sides of the square plot). Retroreflective targets were used to 316 

guide the co-registration of individual scans in RiSCAN PRO. Trees were extracted with treeseg 317 

(Burt et al. 2018), followed by visual inspections for quality control. 318 

The TLSeparation algorithm (Vicari 2017) was used to separate and artificially remove leaves 319 

from the point clouds of trees of evergreen species (T. canadensis, P. strobus, P. nigra), and 320 

deciduous species that were scanned during the leaf-on period (G. triacanthos). TLSeparation 321 

employs unsupervised classification of geometric features and "shortest-path" analysis to 322 

enhance detection of high-frequency paths through the branching network (Vicari et al. 2019). 323 

Woody structure was thus separated and isolated from foliage in a woody structure point cloud. 324 

 
1 More information on this campaign can be found here: http://tlsrcn.bu.edu/index.php/harvard-

forest-calibration-activity/ 
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QSMs were generated from the leaf-off and leaf-removed point clouds of the study trees (Fig. 1) 325 

using the algorithm TreeQSM v.2.3.0 (Copyright (C) 2013-2017 Raumonen P.). There are two 326 

main steps in the TreeQSM algorithm: (i) point cloud segmentation into stem and branches based 327 

on cover sets, and (ii) segment volume and surface area reconstruction with cylinders (Calders et 328 

al. 2015; Raumonen et al. 2015). TreeQSM algorithm generates multiple QSMs for each tree 329 

with varying parameter sets for the minimum and maximum size of the cover sets whose 330 

generation is random during the point cloud segmentation process and it selects the optimal QSM 331 

(Raumonen et al. 2013). Therefore, generated QSMs can be slightly different even using the 332 

same input parameters (Calders et al. 2015). Based on the optimal QSM parameter combination 333 

the algorithm produced 30 additional QSMs to estimate variation of tree variables (e.g. volumes), 334 

due to the inherent stochastic component of the algorithm (Raumonen et al. 2013). In TreeQSM, 335 

the main stem of a tree is separated from its branches following these criteria: (i) the main stem 336 

extends near the top of a tree, (ii) it goes straight up, and (iii) it is not too curved (the ratio of the 337 

stem length to the stem base-tip distance, must be the minimum among all candidate main stems; 338 

Raumonen P., personal communication, June 2, 2020).  339 

The total woody volume (including bark tissues) was computed from optimal QSMs of leaf-off 340 

and leaf-removed point clouds of study trees as the sum of all cylinders fitted to each point cloud 341 

(see close-up in Fig. 1-c). Total woody volumes were further separated into main stem and 342 

branch components and converted to biomass by multiplying volumes by corresponding basic 343 

density values computed from disks removed during destructive sampling (see Measurements 344 

and computations in the laboratory). Published values of species bark and wood density (Miles 345 

and Smith 2009) were applied to TLS-based volumes as an alternative biomass estimation 346 
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process. Total woody AGB of a tree was computed by adding together the component biomass 347 

values of the tree. 348 

 349 

Fig. 1 Digital representations of an urban tree (first row) and a rural forest tree (second row) of 350 

the same species (A. rubrum) showing (a, d) leaf-off point clouds, (b, e) generated QSMs, and (c, 351 

f) close-ups of the QSMs illustrating cylinders fitted to the point cloud of the trees. QSM colors 352 

denote different branching orders (i.e., blue is main stem, green is 1st order, red is 2nd order, etc.)  353 

 354 

Comparison between TLS-based biomass estimates and reference biomass measurements 355 

Agreement between TLS-based tree woody AGB and tree component biomass estimates with 356 

reference biomass values was quantified with a concordance correlation coefficient (CCC; Lin 357 

1989), which ranges between -1 (complete discordance) and 1 (complete concordance) (Calders 358 

et al. 2015; Gonzalez de Tanago et al. 2018). Pearson's correlation coefficient (r) was used to 359 

quantify the relationship between absolute errors of TLS-based biomass estimates and reference 360 

biomass values, and to quantify the relationship between relative errors in TLS-based biomass 361 

estimates and the competition index. Statistical significance of all relationships was assessed at α 362 

= 0.05 and all analyses were performed within the R 3.6.1 environment (R Core Team 2015). 363 

Different error metrics were computed to assess the quality of TLS-based biomass estimates 364 

(Burt et al. 2021; Calders et al. 2015; Fan et al. 2020):  365 

• the error for each tree: ε = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑇𝐿𝑆 − 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑅𝑒𝑓 (eq. 5) 366 
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• the relative error for each tree: RE = 
|𝜀 |

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑅𝑒𝑓
 (eq. 6) 367 

• the mean relative error across all trees (%): MRE% = 
1

𝑛
 ∑ 𝑅𝐸𝑖

𝑛
𝑖=1 *100%   (eq. 7) 368 

• the root mean square error that refers to the overall accuracy across all trees: 369 

RMSE = √
1

𝑛
∑ 𝜀𝑖 

2𝑛
𝑖=1   (eq. 8) 370 

• relative RMSE% = 
𝑅𝑀𝑆𝐸

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑅𝑒𝑓.𝑚𝑒𝑎𝑛
*100% (eq. 9) 371 

In the above equations (eqs. 5-9), 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑇𝐿𝑆  is the TLS-based woody AGB or component 372 

biomass of the main stem and branches, 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑅𝑒𝑓  is the AGB or component biomass from 373 

reference measurements, 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑅𝑒𝑓.𝑚𝑒𝑎𝑛 is its mean value across trees, n represents the total 374 

number of trees and the index i refers to individual trees.  375 

Accuracy of TLS-based woody AGB and component biomass estimates was evaluated for urban 376 

versus rural forest trees, and for leaf-off versus leaf-removed point clouds. Since the trees were 377 

in different conditions, we fitted the following linear mixed-effects model to better understand 378 

how TLS-based woody AGB estimates of study trees were affected by tree condition: 379 

𝐴𝐺𝐵𝑇𝐿𝑆 = 𝑏0
(𝐿+𝐻)

+ 𝑏1
(𝐿+𝐻) ∗ 𝐴𝐺𝐵𝑅𝑒𝑓 +  𝜀,    (eq. 10) 380 

where 𝐴𝐺𝐵𝑇𝐿𝑆  is total aboveground biomass (kg) of study trees from TLS data, 𝐴𝐺𝐵𝑅𝑒𝑓  is total 381 

aboveground biomass (kg) based on reference data, b0 is the intercept, and b1 is the slope of the 382 

relationship. L and H are nested random effects representing the leaf condition of the point 383 

clouds (L is a factor with two levels: leaf-off versus leaf-removed) as well as the growing 384 

environment (H is a factor with two levels: urban versus rural forest), respectively. The additive 385 
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error term (𝜀) is normally distributed. Without nested random effects L and H, Eq. 10 becomes a 386 

simple, linear, fixed-effects model:  387 

𝐴𝐺𝐵𝑇𝐿𝑆 = 𝑏0 + 𝑏1 ∗ 𝐴𝐺𝐵𝑅𝑒𝑓 +  𝜀,   (eq. 11) 388 

The accuracy comparisons of the TLS-based biomass estimates of urban and rural forest trees 389 

with leaf-off and leaf-removed point clouds were based on the combination of woody volumes 390 

from TLS data with reference wood density values from destructive measurements. The 391 

coefficient of variation (CV) of woody mass was used to characterize uncertainty in estimating 392 

total woody AGB and components biomass associated with consecutive QSM reconstructions of 393 

the same point cloud of a tree (QSM reconstructions only contribute the volume component of 394 

AGB estimation). 395 

 396 

Results 397 

Uncertainty in estimated woody biomass from multiple QSM reconstructions 398 

Coefficients of variation indicated that uncertainty due to consecutive QSM reconstructions of 399 

the same point cloud (30 QSM reconstructions per tree) averaged 4.3%, 3.1% and 6.3% of 400 

estimated total woody AGB, main stem biomass, and branch biomass, respectively across all 401 

study trees. CV distributions of woody AGB and main stem biomass were positively skewed, but 402 

more uniform for branch biomass (Fig. 2). 403 

 404 
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Fig. 2 Histogram of the coefficient of variation of (a) total woody AGB, (b) main stem biomass, 405 

and (c) branch biomass of study trees, based on 30 QSM reconstructions from the same point 406 

cloud of every tree.  407 

AGB and components biomass across all study trees 408 

Biomass estimates from TLS were strongly correlated with those from destructive reference data 409 

using both reference and published basic density values for total woody AGB, main stem, and 410 

branch biomass (Fig. 3). However, TLS-based biomass values of larger trees were mostly 411 

underestimated using published basic densities, and for some larger trees, there was also a 412 

significant underestimation with the reference basic density values applied (Fig. 3).  413 

 414 

Fig. 3 Regression of TLS-based biomass versus reference biomass (kg) among 31 study trees for 415 

(a) Total woody AGB, (b) Main stem biomass, and (c) Branch biomass. Different colors 416 

represent different sources for basic density values, whereas rural forest and urban trees are 417 

represented with different symbols. Shading indicates 95% confidence interval around each 418 

regression line, and the 1:1 dashed line is shown in black 419 

 420 

The exponential relationship of total woody AGB and diameter at breast height (DBH) was 421 

similar among reference and TLS-based biomass data with reference and published basic density 422 

values (note the substantial confidence interval overlap in Fig. 4). However, underestimation bias 423 

of total woody AGB was greatest for large DBH trees when published basic density values were 424 

used (Fig. 4). 425 

 426 
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Fig. 4 Relationship between the total woody AGB of 31 study trees and their diameter at breast 427 

height (DBH) based on reference biomass, TLS-based biomass estimates using reference and 428 

published basic density values. Shading indicates 95% confidence intervals around the fitted 429 

lines. Different colors represent different sources for biomass values, whereas rural forest and 430 

urban trees are represented with different symbols 431 

 432 

Table 2.  Statistical metrics to assess the performance of TLS-based biomass estimates across all 433 

study trees 434 

Metric  Total woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

Total woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

 

With reference basic density values 

 

With published basic density values 

Mean 

Relative 

Error (%) 

 

 

24.5 

 

13.8 

 

124.1  

 

26.3 

 

14.1 

 

107.7 

RMSE (kg) 

 

147.743 114.973 167.434 244.846 133.144 194.127 

Relative 

RMSE (%) 
 

17.52 30.92 35.52 

 

29.04 35.8 41.19 

CCC 0.982 0.909 0.961 0.947 0.878 0.941 

 
 435 

 436 

To examine if overall error in TLS-based biomass estimates was independent of tree size we 437 

examined the relationship between absolute errors of TLS-based biomass estimates and reference 438 

biomass values using reference and published basic densities (Burt et al. 2021). Absolute errors 439 

of TLS-based total woody AGB and branch biomass using reference basic densities were not 440 

significantly correlated with the respective reference biomass values (p > 0.05), whereas absolute 441 
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errors of TLS-based main stem biomass increased with the reference main stem biomass values 442 

(Pearson's r = 0.54, p = 0.0019). Absolute errors of TLS-based total woody AGB, main stem, 443 

and branch biomass using published basic densities increased with reference biomass values 444 

(Pearson's r = 0.75, p < 0.001; r = 0.62, p < 0.001; r = 0.61, p < 0.001 respectively). 445 

 446 

Growing environment and leaf-condition factors affecting the accuracy of TLS-based 447 

biomass estimates 448 

The fixed-effects model of TLS-based woody AGB as a linear function of reference AGB values 449 

(eq. 11) showed strong explanation power (adj. R2 = 0.927), and the mixed-effects model (eq. 450 

10), including the nested effects of L and H, had stronger explanatory power (adj. R2 = 0.986). 451 

The effect L (leaf conditions: leaf-off versus leaf-removed point clouds) explained 45.9% of the 452 

difference between the fixed-effects and mixed-effects models, whereas the effect H (growing 453 

environment: urban versus rural forest conditions) explained 42.4%. Overall, the effect of L and 454 

H together explained only 5.9% of the total variation in AGB, showing that most of the variation 455 

between TLS-based and reference AGB was not due to the growing environment or the leaf-456 

removal algorithm.  457 

AGB and components biomass for urban and rural forest trees 458 

Strong positive correlations were found between biomass estimates from TLS data and reference 459 

data for total woody AGB, main stem, branch biomass, and trunk biomass (the section of main 460 

stem up to the crown base height; as defined in MacFarlane 2015) of rural forest trees and urban 461 

trees. Error analysis showed that TLS-based woody AGB of rural forest trees was less accurate 462 

compared to urban trees (see relative RMSE (%) in Table 3, and Fig. 5). TLS-based stem 463 
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biomass estimates of urban trees were less accurate compared to rural forest trees, and the 464 

opposite pattern was observed for TLS-based branch biomass estimates. However, in both urban 465 

and rural growing environments the mass of the trunk was predicted with a high level of 466 

accuracy (Fig. 5-d). 467 

 468 

Fig. 5 Relationship between TLS-based biomass and reference biomass (kg) of study trees for 469 

their (a) Total woody AGB, (b) Main stem biomass, (c) Branch biomass, and (d) Trunk biomass 470 

(the section of main stem up to the crown base height; MacFarlane 2015). Colors distinguish 471 

urban and rural forest trees, and symbols distinguish leaf-off and leaf-removed point clouds. 472 

Shading indicates a 95% confidence interval around regression lines, and the 1:1 dashed line is 473 

drawn in black 474 

 475 

Table 3. Statistical performance metrics of TLS-based biomass estimates for rural forest and 476 

urban trees, and trees with leaf-off or leaf-removed point clouds 477 

Metric  Total woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

Total woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

 

Rural forest trees 

 

Urban trees 

Mean 

Relative 

Error (%) 

 

 

36.2 

 

8.7 

 

184.7 

 

3.2 

 

23 

 

14.1 

RMSE (kg) 

 

109.02   43.741 99.147 199.764 183.777 247.250 

Relative 

RMSE (%) 
CCC 

29.34 

       

      0.953 

15.38 

       

      0.987 

113.77 

     

      0.623 

 

11.75 

       

      0.959 

34.61 

       

       0.62            

21.13 

       

      0.891 

 

Trees with leaf-off point clouds 

 

Trees with leaf-removed point clouds 

Mean       
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Relative 

Error (%) 

 

14.9 14.4 93.1 32.4 13.2 149.7 

 RMSE (kg) 

 

47.26 111.693 108.349 194.846 117.605 203.601 

Relative 

RMSE (%) 

7.34 31.3 37.73 19.34 30.6 32.68 

 

CCC 

 

0.997 

 

0.926 

 

0.968 

 

0.976 

 

0.892 

 

0.955 

 478 

The competition strength experienced by study trees had a small, positive effect on the relative 479 

error (RE) of TLS-based branch biomass estimates. Urban trees had generally lower RE and 480 

were open-grown and faced very little competition from other trees. Whereas most rural forest 481 

trees of dominant, co-dominant, intermediate and overtopped canopy classes showed 482 

increasingly greater RE (Table 4, Fig. 6), and an ANOVA statistical test showed significant 483 

differences among the mean competition index values of the different tree canopy classes (p = 484 

0.001, Table 4). RE in TLS-based branch woody biomass of the study trees was positively 485 

related to the competition index (Pearson's r = 0.38, p = 0.033; Fig. 6) indicating occlusion 486 

effects in point clouds of tree crowns due to increasing crowding. However, the competition 487 

index was not related to relative errors in either TLS-based woody AGB or main stem biomass.  488 

 489 

Fig. 6 Relationship between the relative error (RE) in branch woody biomass from TLS data and 490 

the competition index (CI) of the trees. Urban and rural forest trees have been plotted with 491 

different colors and symbols. Shading indicates 95% confidence interval around the fitted line 492 

 493 

 494 
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Table 4 Competition index (CI) values per canopy class of the study trees 495 

 

Tree canopy class 

 

CI (mean [min, max]) 

 

Open-grown 

 

Dominant 

 

Co-dominant 

 

Intermediate 

 

Overtopped 

 

 

0.03 [0.01, 0.05] 

 

0.81 [0.62, 0.99] 

 

0.97 [0.39, 1.34] 

 

1.54 [0.87, 2.94] 

 

3.49 [1.73, 5.61] 

 

 496 

AGB and components biomass of leaf-off and leaf-removed tree point clouds 497 

Strong positive correlations were found between biomass estimates from TLS and reference data 498 

for total woody AGB, main stem biomass, and branch biomass of trees with both leaf-off and 499 

leaf-removed point clouds. The fitted regression lines (Fig. 7) did not show much contrast for 500 

biomass estimates from leaf-off versus leaf-removed point clouds, but the error analysis showed 501 

that the total woody AGB estimates from leaf-off point clouds were more accurate (see relative 502 

RMSE (%) in Table 3).  503 

 504 

Fig. 7 Relationship between TLS-based biomass and the reference biomass (kg) of study trees 505 

for their (a) Total woody AGB, (b) Main stem, and (c) Branch biomass. Trees with leaf-off and 506 

leaf-removed point clouds are plotted with different colors, and urban and rural forest trees are 507 

plotted with different symbols. Shading indicates a 95% confidence interval around regression 508 

lines, and the 1:1 dashed line is drawn in black 509 



 26 

Discussion 510 

 Terrestrial laser scanning (TLS) data have been systematically used in forest ecology since the 511 

early 2000s (Calders et al. 2020; Hackenberg et al. 2015b; Hopkinson et al. 2004). To the best of 512 

our knowledge, this is one of few studies that evaluated and compared total TLS-based woody 513 

AGB and component biomass accuracy for trees growing in fundamentally different 514 

environments and in different seasonal leaf conditions. Previous studies have mostly focused on 515 

total AGB and woody volume of trees growing in either rural forest or urban conditions (Burt et 516 

al. 2021; Calders et al. 2015; Holopainen et al. 2011; Kankare et al. 2013; Moskal and Zheng 517 

2011; Olschofsky et al. 2016; Polo et al. 2009; Rahman et al. 2017; Stovall et al. 2017; 518 

Tanhuanpää et al. 2017; Vonderach et al. 2012), while other studies focused on crown 519 

architecture (Jung et al. 2011; Metz et al. 2013; Moorthy et al. 2010), stem profile (Maas et al. 520 

2008), or woody surface area (Arseniou et al. 2021b). More comparative studies are needed to 521 

understand how to achieve the best results under a variety of field conditions. 522 

Overall accuracy of TLS-based biomass estimates  523 

The overall accuracy of AGB across all study trees using reference basic density values (see 524 

Relative RMSE (%), Table 2), was comparable to overall accuracies reported by Calders et al. 525 

(2015) and Olagoke et al. (2016) (CV(RMSE) = 16.1%; %RMSE = 13.5%). AGB estimation 526 

from QSMs can be within 10% of measured biomass from destructive sampling (Wilkes et al. 527 

2018). Error analysis across all study trees showed that overall accuracy of the TLS-based main 528 

stem biomass estimates was higher compared to the accuracy of branch biomass estimates (see 529 

error metrics in Table 2). This result was expected due to challenges associated with branch 530 

reconstruction in QSMs (Disney et al. 2018). Smaller branches are often overestimated with TLS 531 
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data (Disney 2019; Momo Takoudjou et al. 2018), although branch-size underestimation of 8% 532 

from QSMs has been described for branches with base diameters between 20 cm and 60 cm, and 533 

6% underestimation for branches with greater than 60 cm base-diameters (Lau et al. 2018; Lau et 534 

al. 2019a). 535 

Influence of measured versus published values of basic tree density 536 

Previous studies have shown that AGB estimates from allometric models based on locally 537 

collected TLS data can be more accurate than biomass estimates from general, regional, 538 

allometric models (Holopainen et al. 2011; Kankare et al. 2013; Kükenbrink et al. 2021; Lau et 539 

al. 2019b; Stovall et al. 2018; Wilkes et al. 2018; Zheng et al. 2019). However, local TLS-based 540 

allometric models require estimates of basic density to generate tree AGB estimates from TLS 541 

volume data. The similar allometric relationship that was found in this study between TLS-based 542 

total woody AGB and DBH, with either reference or published basic density values (their 543 

confidence intervals significantly overlapped), and the strong agreement between TLS-based and 544 

reference values of total woody AGB, main stem, and branch biomass, using either reference or 545 

published basic density values, underscores the precision of the TLS-based AGB estimates 546 

across all study trees.  However, TLS-based biomass estimates from published basic density 547 

values were less accurate compared to those using reference basic densities (see Relative RMSE 548 

(%), Table 2), corroborating previous studies using direct wood density measurements (Burt et 549 

al. 2021; Demol et al. 2021).   550 

Previous studies have found that errors in TLS-based AGB and branch biomass, using reference 551 

basic density values from destructive measurements, were generally independent of tree size 552 

(Burt et al. 2021; Calders et al. 2015). However, when we used published basic density values 553 
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instead of measured reference values, the errors in AGB estimation were larger for bigger trees, 554 

similar to results reported by Gonzalez de Tanago et al. (2018) and Burt et al. (2021). 555 

MacFarlane (2020) showed that branch wood density was relatively higher than stem wood 556 

density for larger trees, experiencing less competition, and Takoudjou et al. (2020) reported 10% 557 

bias in TLS-based woody AGB estimates, with published wood density values, due to vertical, 558 

within-tree, variation in wood density. Overall, this suggests that the use of published density 559 

values, which are almost always taken from samples collected low on the trunk (i.e., breast 560 

height, 1.3 m), could contribute to bias in TLS-based AGB and branch biomass for larger open-561 

grown urban or canopy-dominant, forest-grown trees.  562 

Moving forward, reliable TLS-based biomass estimates of individual trees may be possible 563 

without reference basic density values from destructive sampling. This will be especially 564 

important for studying tree AGB in urban areas and protected forests, where tree destructive 565 

sampling may not be feasible (Calders et al. 2020; Kükenbrink et al. 2021; Lefsky and McHale 566 

2008).  Some studies have developed corrective models from literature values of wood specific 567 

gravity and tree size and structural metrics to estimate tree-level, volume-averaged wood specific 568 

gravity (Sagang et al. 2018; Takoudjou et al. 2020) and to calibrate species-averaged basic 569 

density values for trees in various regions. Promising advances in x-ray tomography (Van den 570 

Bulcke et al. 2019) are also expected to significantly contribute to increased accuracy in non-571 

destructive estimation of basic density values.  572 

Influence of QSM stochasticity  573 

According to Disney et al. (2018), tree volume estimation from QSMs involves some inherent 574 

stochasticity, due to non-deterministic procedures for fitting geometric primitives (e.g., 575 
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cylinders) to tree point clouds. Here, only a relatively small portion of total uncertainty in mean 576 

woody AGB was associated with multiple QSM reconstructions, indicating that TreeQSM 577 

algorithm was robust. Coefficient of variation of the branch biomass was larger than the 578 

coefficient of variation of the woody AGB or main stem biomass, indicating that branch 579 

reconstruction involves greater uncertainty than main stems; most likely a function of branch 580 

size (Disney et al. 2018) or the topological complexity of the tree.  581 

Influence of urban versus rural environments on TLS-based biomass accuracy 582 

In general, we found strong agreement between TLS-based biomass estimates and reference 583 

biomass data for both rural and urban forest trees, though the urban tree results were based on a 584 

smaller sample size and thus less generalizable. Calders et al. (2015) and Gonzalez de Tanago et 585 

al. (2018) also found strong correlations between total woody AGB from TLS and reference data 586 

(concordance correlation coefficients were 0.98 and 0.95, respectively) in rural forests. Momo 587 

Takoudjou et al. (2018) compared total woody volume, as well as component volumes of 588 

stumps, stems, and crowns, of rural forest trees, between TLS and reference data and found TLS-589 

based volume estimates were highly accurate (R2 values greater than 0.98). Fewer studies have 590 

focused on TLS-based biomass estimation for urban trees, but a recent study by Kükenbrink et 591 

al. (2021) reported R2 value of 0.95 for TLS-based woody AGB of urban trees compared to 592 

reference AGB data.   593 

Despite strong correlations between TLS-based and reference biomass values, error analysis 594 

revealed that TLS-based woody AGB of the rural forest trees we studied was less accurate and 595 

had a greater relative RMSE (%) compared to the urban trees. The rural forest tree errors we 596 

found were comparable to error values for the TLS-based AGB of tropical forest trees 597 
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(CV(RMSE) = 28%, reported by Gonzalez de Tanago et al. (2018). Momo Takoudjou et al. 598 

(2018) found that the % mean relative error of TLS-based woody AGB of rural forest trees was 599 

23%, comparable to the mean relative error of the TLS-based woody AGB of the rural trees in 600 

this study. Calders et al. (2015) reported CV(RMSE)% equal to 16.1% for TLS-based woody 601 

AGB for rural forest trees, which is more comparable to the relative RMSE (%) of AGB of the 602 

urban trees in this study. According to Kükenbrink et al. (2021), the RMSE of TLS-based woody 603 

AGB of urban trees was 556 kg, which is larger than the RMSE of the TLS-based woody AGB 604 

of the urban trees here. However, the relative RMSE (%) of AGB, which accounts for 605 

differences in tree mass, was not provided in their study. Vonderach et al. (2012) reported a bias 606 

in the total tree volume of urban trees ranging between -5.1% and +14.3% based on a voxel-607 

based method for tree volume estimation from TLS data.  608 

The stronger correlation between the TLS-based branch biomass and reference biomass for urban 609 

trees may be related to the general lack of branch occlusion from neighboring trees, compared to 610 

rural forest conditions, where the laser scanner can be obstructed by other vegetation (Wilkes et 611 

al. 2017). This idea is supported by the increasing relative error in TLS-based branch biomass 612 

with competition strength faced from tree neighbors. However, the two groups of trees were also 613 

scanned using different scanning patterns and with different laser scanning systems, both of 614 

which can affect the quality of TLS data (Wilkes et al. 2017). It is worth noting that the TLS-615 

based branch biomass estimates of urban trees were better, even though the Harvard Forest trees 616 

were scanned with a RIEGL VZ-400 laser scanner, which typically captures higher quality point 617 

clouds of trees (with less noise, due to its greater maximum range and better resolution of small 618 

branches) than the FARO Focus3D X 330 terrestrial laser scanner (Calders et al. 2020) used to 619 

scan the urban trees. 620 
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Our study showed that urban trees allocated more biomass to branches compared to rural forest 621 

trees (see Online Resource 2). This greater allocation to branches has been shown to enhance 622 

mechanical stability against strong wind loads in the absence of or reduced competition for light 623 

from neighbors (MacFarlane and Kane 2017). The fact that the TLS-based stem biomass 624 

estimates of urban trees were less accurate compared to main stem biomass estimates of rural 625 

forest trees, could be explained by the fact that urban trees tend to have wider crowns and less 626 

discrete main stems compared to rural forest trees (MacFarlane and Kane 2017). In a previous 627 

study, Tanhuanpää et al. (2017) reported -5.5% underestimation in stem biomass of urban trees 628 

from TLS data, so our result is not unique. One explanation is that detection of main stems in the 629 

QSMs may not have aligned well with main stems based on destructive measurements, and no 630 

special treatment was implemented to ensure that tree main stem from reference measurements 631 

perfectly matches with tree main stem in a QSM; we simply allowed the QSM to choose the 632 

main stem.  Therefore, this interpretation is further supported by the strong agreement between 633 

TLS-based biomass and reference biomass values for the trunk of the urban trees, which is the 634 

section of the main stem up to the crown base height (MacFarlane 2015).  635 

Influence of the leaf-removal algorithm on TLS-based biomass accuracy 636 

There was a strong agreement between both leaf-off and leaf-removed TLS-based biomass 637 

estimates and reference biomass data. Momo Takoudjou et al. (2018) also reported a strong 638 

agreement between TLS-based woody AGB and reference biomass data (R2 = 0.97), when 639 

performing a manual (rather than automated) leaf-removal from the leaf-on point clouds in their 640 

study. However, Momo Takoudjou et al. (2018) did not examine how the manual-artificial leaf-641 

removal process affected the estimation of the main stem and the branch biomass. Our study 642 

showed that overall accuracy of TLS-based biomass of main stem from leaf-off point clouds was 643 
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similar to overall accuracy of main stem biomass from leaf-removed point clouds, which was 644 

expected because the leaf-separation algorithm should not affect the main stem. It was surprising 645 

that the accuracy of TLS-based branch biomass estimates after the artificial leaf-removal was 646 

comparable to the branch biomass estimates from leaf-off point clouds (see relative RMSE (%), 647 

Table 3), because we expected some confusion between leaf and branch material (Demol et al. 648 

2022).  649 

The tree with the largest underestimation in TLS-based AGB and branch biomass was an urban 650 

G. triacanthos tree, whose leaves were artificially removed (see Figs. 7-a and 7-c). G. 651 

triacanthos trees have compound leaves with modular architecture (i.e., the leaf blade consists of 652 

several leaflets stemming from the leaf rachis; Champagne and Sinha 2004; Klingenberg et al. 653 

2012). The leaf type of a tree species can affect the quality of artificial leaf-removal (Moorthy et 654 

al. 2020). According to Wang et al. (2019) leaf-separation algorithms typically detect leaves as 655 

simple, flat structures, which implies that the modular structure of compound leaves of G. 656 

triacanthos trees may confuse the leaf-separation algorithms. However, the TLS-based biomass 657 

estimates of the remaining G. triacanthos trees, which had lower AGB and branch biomass, were 658 

not significantly underestimated after the artificial leaf-removal. This could imply that the effect 659 

of leaf type may also depend on branching complexity. Arseniou et al. (2021a) found that 660 

artificial leaf-removal using the TLSeparation algorithm introduced an underestimation of the 661 

structural complexity of urban trees of G. triacanthos species which increased with maximum 662 

branch order, and larger trees tend to have higher branch orders (Seidel et al. 2019). According 663 

to Demol et al. (2022), leaf-removal algorithms may also remove small branches (less than 5 cm 664 

in diameter) whose TLS-based volume can be otherwise overestimated in a QSM depending on 665 

point cloud quality and scanner characteristics. In general, despite the existence of different 666 
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algorithms to separate leaves from leaf-on point clouds of trees (Moorthy et al. 2020; Stovall et 667 

al. 2017; Vicari et al. 2019; Wang et al. 2019), more work is likely needed to further improve 668 

leaf versus wood classification systems. 669 

Conclusions 670 

The results of this study have important implications for estimating biomass and carbon stocks of 671 

forests, especially urban forests, which currently have limited data and models for tree biomass 672 

estimation. TLS data can provide reliable estimates of the aboveground biomass of trees and 673 

could provide comparable data for calibrating tree biomass equations, without the need for 674 

destructive sampling. This study suggests that both measured and published basic densities can 675 

be used to successfully convert TLS-based volume to biomass, but the use of published densities 676 

can reduce accuracy.  This study also shows how the growing environment of trees (i.e., urban 677 

versus rural forest growing conditions), and their leaf conditions (i.e., leaf-off versus leaf-on 678 

which requires artificial leaf-removal) affects the accuracy of TLS-based tree biomass 679 

estimation. Occlusion from surrounding trees is an important contributor to biomass estimation 680 

uncertainty, particularly for branches.  However, future studies should include more trees of 681 

more species growing in different urban and rural forest locations to better understand how 682 

species functional traits and fundamentally different growing environments influence the 683 

accuracy of TLS-based biomass estimates.  684 
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