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Abstract  

While the visual environment contains massive amounts of information, we should not and 

cannot pay attention to all events. Instead, we need to direct attention to those events that have 

proven to be important in the past and suppress those that were distracting and irrelevant. 

Experiences molded through a learning process enable us to extract and adapt to the statistical 

regularities in the world. While previous studies have shown that visual statistical learning (VSL) 

is critical for representing higher order units of perception, here we review the role of VSL in 

attentional selection. Evidence suggests that through VSL, attentional priority settings are 

optimally adjusted to regularities in the environment, without intention and without conscious 

awareness. 
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Statistical Learning  

Extracting regularities from the environment in service of automatic behaviour is one of the most 

fundamental human abilities and is often referred to as statistical learning. Abundant research 

supports the idea that observers easily learn the underlying structure of auditory and/or visual 

sensory input. One of the most well-known findings is that infants exposed to continuous 

nonsense streams of speech for only two minutes, react differently to hearing novel “words” that 

repeatedly occurred in the stream as opposed to “nonwords” which recombined the same 

syllables. This indicates that infants can use information about syllable co-occurrences to discover 

word boundaries [5]. Following the classic work on speech segmentation, several studies used 

sequentially presented shapes in which temporal patterns were embedded, for example by 

randomly intermixing sets of triplets (i.e., three shapes presented in sequence; see example in 

Figure 1) into a long sequence [7-10]. Analogous to auditory statistical learning, at a surprise test 

following learning, participants typically showcase larger familiarity with triplets they were 

exposed to relative to foil triplets, indicating sensitivity to the visual patterns. Because evidence 

for statistical learning was found when stimuli were observed passively without any explicit task 

(and when observers were performing a completely different unrelated task [12]), it has been 

argued  that the mere exposure to these streams is enough to passively absorb these regularities 

[7, 13], but see [14]. Statistical learning is assumed to be an implicit process that assimilated the 

statistical regularities in the input, operating without intent and outside explicit awareness [9].  

 This impressive learning ability has been the subject of investigation in many cognitive 

domains (see [11] for a discussion). Crucially, the acquisition of our most fundamental abilities, 

such as language [16] (see [17] for a review), motor skills learning [18], object recognition [7, 19], 
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scene and object perception [20, 21], and conditioning [22] relies on such implicit adaptations to 

regularities [23] (see [24] for a review).  

Recently, it has become clear that visual statistical learning (VSL) (see Glossary) plays an 

important role not only for learning sequentially presented individual shapes in which there is no 

competition for selection (as in triplet learning; Figure 1 top) but also when regularities are 

embedded within visual search displays containing multiple elements (Figure 1 bottom). While 

these two forms of statistical learning arguably tap into mechanisms that track regularities across 

time, and concur in the implicit nature of learning, there are also clear differences. Whereas 

triplet learning induces expectations regarding a temporal sequence of particular stimuli such 

that the next object on screen can be predicted based on the current visual input [9, 25], spatial 

regularities embedded in visual search displays may shape attentional priority in space such that 

task relevant locations are boosted and task irrelevant locations ignored [26] (see Box 1: VSL: A 

unitary learning system or a collection of paradigms).  
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Figure 1. Examples of paradigms often used in research on Visual Statistical Learning (VSL). In 
(A) Visual triplet learning, participants are exposed to a continuous stream of shapes with 
embedded triplets. In a familiarity judgment test afterwards, participants show greater 
familiarity for triplets than for foils. In a target detection test, participants are faster to respond 
to a target shape when it is the second or third shape in a triplet. In this task, participants 
implicitly learn the statistical temporal relationships among visual stimuli. In (B) Distractor 
location learning, participants perform the additional singleton task searching for a unique 
shape (diamond between circles or a circle between diamonds) while ignoring a color singleton 
distractor. The color distractor, if present, appeared more likely in one location than in the 
other locations. The typical finding is that relative to baseline (i.e., no distractor present; gray 
bar) distractors captured attention (slower RTs: dark blue bar), but critically this attentional 
capture was significantly attenuated when the distractor was presented at the high probability 
location (light blue bar). In this task participants implicitly learn that the distractor is presented 
more likely in one location, and suppress this location in order to attenuate distraction. 
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Visual attentional selection 

In many everyday activities, it is critical to dissociate between information that is relevant and 

information that is distracting. For example, picture yourself driving. While trying to focus on the 

task at hand, your senses are constantly bombarded with new information: the blare of a car 

horn, a traffic light turning red, pedestrians crossing the street, blinking advertisements alongside 

the road, a buzz from your phone. Attention makes it possible to selectively prioritize relevant 

information (e.g., the crossing pedestrians) while suppressing task irrelevant information (e.g., 

blinking advertisements). Through experience, attentional selection (see Glossary) is facilitated 

as you learn to direct attention to those events that have proven to be important in the past and 

suppress those that were distracting.  

 Despite its prominent role within a broad range of fundamental cognitive abilities, for 

many years the role of statistical learning within attentional selection has been ignored. While 

there is a long history of studying how previous selection episodes influence selection on the 

current trial, in particular in the context of low-level priming [27, 28], these effects are typically 

not considered “statistical learning” because of their short-term nature [29]. It is becoming 

increasingly clear however, that selection priority is often influenced by previous selection 

experiences (i.e., selection history) in a manner that is disconnected from both the observer’s 

current goals (i.e., goal driven (top-down) selection) and stimulus-driven (bottom-up) selection 

(i.e., bottom-up salience)[30]. 

A classic study by Biederman [31] demonstrated that statistical learning is not limited to 

temporal and spatial relationships among auditory and visual stimuli [5, 12], but also affects 

attentional selection. This seminal study showed that objects violating visual regularities learned 
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over a lifetime, are more difficult to find, for example when these objects are presented at 

inconsistent locations within scenes (e.g., a water cooker on the floor)[20]. Building on this work, 

research known under the term "contextual cueing" has shown that search is facilitated when 

the target appears at the same location in a visual layout that was encountered previously 

relative to visual layouts that were never seen before [32, 33] (for review see [34]). The classic 

finding is that targets are located faster in display configurations that are fixed throughout the 

experiment relative to configurations that are only seen once, indicating that observers learned 

the association between the spatial configuration and the target location. In addition, so called 

“probability cuing” studies have shown that participants can learn which location (or area within 

the display) is more likely to contain the target, which results in an attentional bias as evidenced 

by participants being faster to detect a target positioned in high probability locations than in low 

probability locations [35-37].  

All these studies are consistent with classic Posner cueing studies [38] which have shown 

that people are faster to detect targets appearing in probable locations than improbable 

locations [39]. Notably however, unlike Posner cueing studies in which people are asked to 

explicitly direct attention in a top-down, goal-driven way to a location in space, in contextual and 

probability cueing studies the effect occurs without instruction, and without the intention to 

learn. Typically, observers show little awareness for what they had learned [40](see Box 2: Aware 

or Unaware?). Contextual and probability cueing studies hence reveal that the visual system is 

sensitive to regularities in the environment, and that it will encode and retrieve information that 

is relevant for the task.  
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History-based distractor suppression 

The research discussed above highlights how statistical learning helps to extract task-relevant 

properties by learning the underlying structure of visual input [9], either when that information 

is presented in isolation or when it is embedded in a search display. More recent research 

however demonstrates that history-driven selection biases resulting from this learning does not 

only prioritize target properties, such as the location and features of the target [32], as human 

observers are also sensitive to properties of objects that are task irrelevant [26, 41-47] (for recent 

reviews see [48, 49]).  

 In a series of experiments, Wang and Theeuwes [45-47] examined whether observers 

could learn regularities regarding the location of the distractor, and if so, how it influences 

attentional priority. For this purpose, they made a small modification to the additional singleton 

paradigm [50, 51], in which participants search for a unique shape (either a diamond between 

circles or a circle between diamonds), such that the salient, yet irrelevant, color singleton, when 

present, appeared with a higher probability at one specific location (Figure 1B; left panel). The 

typical finding is that even though the salient color singleton distractor is completely irrelevant 

to the task, it captures attention, evidenced by slower responses to the target when a singleton 

is present relative to when it is absent  [50, 51]. As visualized in Figure 1B (right panel), relative 

to baseline (i.e., no distractor present; gray bar) distractors indeed capture attention, but 

critically this attentional capture is significantly attenuated at the high probability location (light 

blue bar) relative to low probability distractor locations (dark blue bar).  

 These results are interpreted as evidence that through statistical learning, locations that 

are likely to contain a distractor become suppressed such that they compete less for attention 
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than other locations (for similar conclusions see [26, 52]). As a consequence, the priority signal 

of any object, be it relevant or irrelevant to the task at hand, presented at that location is 

attenuated. If the distractor is presented at that location, attentional capture is reduced. But also, 

when the target happens to be presented at that high probability distractor location, its selection 

is less efficient, as reflected by longer response times. This hampered processing of targets at 

high probability distractor locations suggests that learned spatial suppression is basically feature-

blind (see Box 3: Space-based versus Feature-based suppression). 

  
 

The implicit nature of statistical learning in visual search  

Several follow-up studies have further characterized the learned distractor suppression effect. In 

line with the classical studies showcasing that statistical regularities are extracted passively, 

without any intention to learn and without explicit awareness of the learned associations [53], 

suppression at the high probability distractor location is observed independent of participants 

explicit awareness of the regularity, although procedures to dissociate between ‘aware’ and 

‘unaware’ participants using post-hoc questionnaires has been criticized (see Box 2). While future 

work is necessary to establish to what extent the effect is truly independent of conscious 

awareness, it is noteworthy that the observed suppression effect appears identical in groups of 

participants in which the experimental manipulation either highlighted or masked the underlying 

statistical regularity [54]. Moreover, distractor regularities are learned even when the regularities 

are unrelated to the current task and goals [55, 56], again suggesting that this form of suppression 

relies on implicit learning that requires little to no executive control. Indeed, high probability 

distractor locations are suppressed to the same extent, irrespective of whether working memory 



10 

 

 10 

is loaded with a visual-spatial memory task [57, 58]. Also, distractor suppression is observed 

independent of whether participants search for a unique feature (e.g., a shape singleton) 

favouring singleton detection mode, or search for a specific target feature (feature search mode) 

[47, 59]. Together these findings indicate that oftentimes learning regularities about distracting 

information occurs implicitly, with little awareness, and is independent from the current search 

goals and the availability of executive resources.  

 

 

How does learning occur?  

While statistical learning has long been described as a learning mechanism that operates 

automatically across ages and modalities [7,8], growing evidence suggest that allocating 

attention to the individual events in a stream can boost statistical learning and is sometimes even 

necessary [9, 60, 61]. For learning to occur in visual search, we also assume that spatial attention 

towards a target or a distractor is a prerequisite for learning to occur [59, 62, 63]. For example, 

in “probability cuing” studies [35-37, 64]  in which a target appears more often in one region than 

in other regions, each time attention is directed to the target, associations are formed between 

the target and its location within the visual field. In a recent study investigating across trials 

learning it was shown that if there is no initial direction of attention to the target (for example 

when search is serial rather than parallel) learning across trial regularities does not occur, but 

that learning can be instantiated when targets are made salient such that they pop-out from the 

display [65]. We assume that spatial statistical learning operates by continuously adjusting 

weights within an assumed “spatial priority map”, which at any moment in time dynamically 
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controls the deployment of covert attention and gaze [26]. When a location contained relevant 

information in the past, that location is up-regulated, whereas a location is down-regulated when 

it has a higher probability of containing distracting information. In this view, selection simply 

follows the priority landscape that arises after combining a variety of signals, such as current 

goals and bottom-up saliency, within which priority weights are induced by previous selection 

episodes. The premise that statistical learning of distractor (and target) location reflects weight 

changes in spatial priority maps also means that learning is not restricted to a single location, as 

weights at multiple location can be adjusted in parallel. Indeed, learned suppression is 

concurrently observed at multiple high probability distractor locations [63, 66] and learning of 

target and distractor probabilities can co-occur, even when the two are manipulated 

independently [37]. 

 

The time course of learning 

Consistent with demonstrations that statistical learning in triplet learning tasks is extremely rapid 

[25, 67], current evidence suggests that the updating of local priority accrues extremely fast only 

needing few trials to become manifest [68]. These time course analyses are complicated however 

because statistical learning and short term intertrial priming effects are naturally conflated, 

making it impossible to exclusively attribute the observed suppression/enhancement to learning. 

Critically, even though in VSL studies there are contributions of different types of inter-trial 

effects (e.g., location, feature, or response repetitions)[27, 28], effects attributed to statistical 

learning remain in place when all these priming effects are taken into account [36, 69].  

Interestingly, intertrial repetitions are not required for learning to occur [41], nor does their 
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absence modulate the learning speed. Indeed, learning is equally fast regardless of the ratio 

between high- and low-probability distractor locations [70].  

 

Proactive suppression 

In the absence of any regularities, suppression of distractors often occurs reactively, implying 

that after the distractor captured attention active suppression mechanisms rapidly intervene [71, 

72]. For example, it was shown that suppression at a particular location was selectively adjusted 

on a trial-by-trial basis to the saliency level of the distractor presented at that location [63] (see 

also Box 3). In the case of suppression stemming from local weight changes in priority maps of 

space however, it is assumed that suppression is brought into force proactively. To test this, 

Huang and colleagues [37] combined the additional singleton paradigm with a probe detection 

task, which made it possible to take a peek at selection priorities just before the actual search 

display was presented. Probe reaction times indicated that already before the display was 

presented, the location that was likely to contain a target was enhanced while the location that 

was most likely to contain a distractor was suppressed. These findings confirm that contingencies 

regarding targets and distractors can be learned simultaneously possibly via a proactive 

adjustment of the weights within the priority map. It remains controversial however, whether 

such proactive suppression is evident in active neural tuning [73] or alternatively relies on activity 

silent mechanisms that require sensory input to come into play [49, 74].  

Eye-movement studies confirm the idea that there is proactive suppression [75]. There is a 

strong link between attentional spatial selection and saccadic eye movements [76]: the eyes 

typically land at the location to which attention is directed [77]. This implies that if one changes 
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the additional singleton paradigm in such a way that eye movements are required to find the 

target (i.e., making the line inside the target shape very small so that foveation is needed to 

determine its orientation) one would expect that participants are less likely to make eye 

movements toward the high probability location when this location is suppressed. This is exactly 

what was found: there are fewer saccades, and with longer latencies, directed towards the high 

probability distractor location, irrespective of whether that location contained a target or a 

distractor on the current trial [78]. In addition to proactive suppression, however, there was also 

evidence for some reactive suppression: on trials where the eyes were captured by the 

distractor, subsequent disengagement was faster at the high compared to the low probability 

distractor location [79] (see also [75, 80]). 

 

Resetting the learned priority landscape 

The current evidence shows that once learned suppression is established it remains stable, even 

though from that moment on distractors capture little to no attention [47]. Thus, while capture 

to a location is likely needed for initial learning to occur [59, 62, 63], when contingencies are 

learned and suppression is in place, the mere presentation of a distractor at the suppressed 

location is sufficient to maintain the local weight changes. Also, when search for the target 

continues but the distractor is temporarily removed from the display, learned spatial suppression 

reappears when the distractor is presented again [68]. To reset the current learned priority 

landscape, either a new high probability location needs to be introduced [81], or within the same 

display the spatial imbalance needs to be removed altogether (i.e., all locations of target and 

distractors are randomly assigned). Although it is unclear how quickly unlearning in these 
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conditions occurs, with some studies reporting longer persistence [44] than others [55, 82], there 

is a clear asymmetry in the rate of learning during acquisition and extinction, the latter being 

much slower. This makes sense from an ecological perspective: while one wants to quickly adapt 

to clear changes in the environment, learned suppression should not immediately return to 

baseline if the spatial imbalance is temporarily absent as, in that specific context, suppression 

was useful in the past and likely will be again in the near future.  

 

 

More complex regularities 

Our discussion of regularities so far focused on a stationary high-probability location, and 

therefore is easily described through local weight changes in a priority map. In this sense,  this 

research differs from typical triplet learning studies, where the regularities are sequential in 

nature: a particular event A is followed by event B and C [9, 61]. Regularities in daily life are often 

much more dynamic, and dependent on what happened before, the timing of an event, and the 

context in which it occurs. 

  

Learning trial-to-trial transitions 

Recent work shows that attentional selection is also sensitive to regularities across trials, which 

are more similar to the regularities in other statistical learning tasks. For example, participants 

can learn simple patterns across pairs of trials such that prioritization at a given location on the 

current trial was instantiated by encountering a predictive target at another location on the 

preceding trial (e.g., a target at the 3 o’clock position is always followed by a target at the 9 
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o’clock position, and vice versa)[83]. Even though these regularities were randomly mixed within 

random trial sequences, the visual system was nevertheless sensitive to these regularities and 

adjusted the priority landscape on a trial by trial basis. As indicated , a follow up study showed 

that in order to learn these across-trial regularities, the target must be salient and needs to pop 

out from the display [84].  

A recent study, where attentional capture was reduced relative to random baseline 

condition when the distractor was presented according to a consistent pattern across trials (i.e., 

moving clock or anti-clock wise across the display), suggests that this type of inter-trial learning 

is not unique to targets, but also holds for learned distractor suppression [85]. Yet, it still needs 

to be established whether such across trial distractor sequence learning also holds for sequence 

pairs.  Nevertheless, these experiments show that while learned attentional biases can be quite 

persistent, the priority landscape is highly flexible and can be up- and down-weighted for specific 

locations across trials if need be. This suggests that changing weights to adjust attentional priority 

at a given location is not a slow and effortful process, but instead can be extremely flexible. This 

suggests that either changes can be implemented so fast that weights can be increased and 

decreased on a trial-by-trial basis, or multiple priority maps can be entertained so that the correct 

one can be turned ‘on’ for the upcoming trial. Importantly, recent evidence does suggest that 

trial-to-trial distractor regularities need to concern specific properties of the distractor (such as 

its location) to modulate attention: search is not affected by the trial-to-trial predictability of the 

presence of a distractor when its characteristics are not predictable [86]. 

 

Learning where and when   
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Humans cannot only learn to expect particular locations across trials [84], they are also able to 

learn to orient attention to particular locations at specific moments in time [87, 88]. In their 

pioneering modification of the Posner’s orienting task Coull and Nobre [89], instead of cueing the 

likely target location, cues predicted the time interval after which a target would likely occur. 

Better performance for valid trials (i.e., predicted time interval) than for invalid trials was 

observed, indicating that humans can orient attention to particular moments in time in a goal-

driven way.   

 Recently it was shown that orienting in time cannot only be done by cueing in a top-down 

way, but also by learning to expect the moment in time of the occurrence of an event [90]. This 

study examined whether learned suppression at high probability locations would benefit from 

expectations in time. Critically, there were two high probability locations (maximally distant from 

one another), of which one location only had a high distractor probability in displays that 

appeared early in time (after 500ms), whereas the other location was more likely to contain a 

distractor later in time (after 1500ms). The results showed higher search efficiency for targets 

when the distractor appeared at a high probability location after the predicted time interval than 

when it appeared at that same location after the non-predicted interval. These findings suggest 

that suppression can wax and wane depending on learned expectations in time.  

Similar results were reported in a study measuring eye movements to explore spatial 

orienting in time [91]. Participants performed a search task in which the presentation of targets 

was spatiotemporally predictable, such that the target appeared in a specific quadrant at a 

specific time point in time within a trial. Performance was significantly better for 

spatiotemporally predictable than unpredictable targets. Overall, these findings suggest that 
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observers can learn to anticipate the moment in time when targets or distractors arrive within a 

scene. This learning will result in the momentary enhancement (in case of targets) or momentary 

suppression (in case of distractors) of the location where presentation of the target or distractor 

occurs. It reveals a remarkable flexible tuning of the attentional biases to the learned regularities 

present in time and space.  

 

 

Learning in context 

The experiments discussed so far each contained only one regularity set, be it static or dynamic. 

For statistical learning to be of value in daily life, however, it is important to consider what 

happens when regularity A is learned in context A, regularity B is learned in context B, and so on. 

Is only the last-learned regularity available, or can learners intelligently differentiate between the 

context of each regularity? Without some form of contextual binding, selection history effects 

would require a constant re-learning of biases for contexts that have already been encountered. 

Indeed, in classical auditory statistical learning, contextual cues such as a change in voice or pitch 

have been shown to help listeners track multiple sets of embedded patterns in continuous speech 

[92, 93]. Also, contextual cuing and reward learning have been shown to involve highly context-

specific learning [94, 95]. Counter to these observations, when learning tracks spatial 

probabilities of targets across search displays, learning generalizes to new contexts, especially 

when the tasks involve similar search behaviours [96, 97]. However, learning becomes context 

specific when processing of the context is necessary to perform the task [96], or when the two 

tasks differ in attentional demands [98]. Although less well characterized, the current evidence 
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also suggests that spatial suppression effects are not context dependent [82], not even when the 

contexts are made task-relevant [99]. However, context-dependent learning effects in those 

studies may have been obscured because the contexts were randomly intermixed. Statistical 

learning by definition requires integration across multiple trials, so that any regularity possibly 

needs to be sustained for some period in order to be learned. When learning is blocked, each 

regularity is linked to its context, making it possible to retrieve it when that context is 

encountered later on (J. de Waard et al., unpublished). Future research needs to establish to 

what extent the experimental context, as well as the task relevance of the associated regularity 

needs to be fixed for learning to occur in order to further our insight into the mechanisms 

underlying statistically learned (de)prioritization.  

 

Neural mechanisms 

To date, very little is known about the underlying neural substrates driving learned distractor 

suppression and target enhancement. Although not yet experimentally confirmed, based on 

other studies examining different forms of statistical learning, the medial temporal lobe (MTL), 

and in particular the hippocampus, arguably plays a prominent role in tuning attentional priority 

in response to regularities in the environment [100-104]. FMRI studies using triplet or pair 

learning have shown larger hemodynamic responses in the hippocampus to predictive first 

stimuli of repeatedly presented pairs [104]. It seems feasible that during visual search, activity 

pattern of MTL also represents the learned regularities of the environment; yet, instead of plastic 

stimulus representations [105], we claim plasticity of the settings of the priority map 

representing space (see Figure 2). The MTL and specifically the hippocampus, which have also 



19 

 

 19 

been linked to contextual cueing [106], is known to represent space, particularly allocentric 

spatial location as demonstrated by the discovery of “place cells” in both rodents [107, 108] and 

humans [109].  

 We propose that the statistical regularities present in the spatial environment change the 

representation of this space within the hippocampus, and possibly other subcortical structures 

such as the basal ganglia [110]. These might then change the attentional priority settings 

throughout networks of cortical and subcortical nodes exhibiting properties of priority maps of 

space (e.g., frontal eye field, lateral intraparietal area, inferotemporal cortex, the superior 

colliculus) and in turn indirectly (via the aforementioned nodes) in lower-order areas with strong 

retinotopic organization. Although our focus is on priority maps of space, consistent with this 

perspective it has been shown that learned expectations can attenuate distractor processing 

across the visual hierarchy based on overall distractor probability [111] and learned feature 

expectations [112] (also see Box 3). Similarly, early visual cortex BOLD signals  are reduced for 

distractors (as well as targets) occurring in high versus low probability regions [113]. This suggests 

that specific suppression due to learning is implemented all the way down the visual stream. 

Similarly, consistent with generic proactive suppression, EEG studies showed that both targets 

and distractors elicit a PD, a neural marker of suppression [114, 115] at high probability distractor 

locations [59, 73]. Critically, the same stimuli presented at low probability distractor locations 

elicited an N2pc, a neural marker of selection [116]. 

 Although highly speculative, we reason that the observed tuning of attentional priority in 

response to more dynamic regularities such as trial-to-trial transitions (rather than a stationary 

high probability location) might also be driven by hippocampal learning. While place cells in the 
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hippocampus were traditionally believed to encode the observer’s current location in space, the 

successor representation has been recently proposed wherein hippocampal place cell firing 

represents the current state in terms of its future (successor) states [117]. Moreover, recent 

evidence highlights that relational knowledge between objects or experiences is encoded into 

cognitive spaces, map-like structures relying on firing patterns that also encode maps in physical 

space [118, 119]. An intriguing possibility thus is that learning about regularities, be it a temporal 

sequence of objects as in classic triplet/pair learning or regularities across visual searches (see 

Figure 1), turn hippocampal representations into a predictive map-like structure. In the case of 

regularities in visual search, rather than representing the anticipated object [104], these 

successor representations could entertain different priority maps such that the correct priory 

landscape can be activated based on the current successor representation.  
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Figure 2. Simplified overview of factors and brain regions involved in attentional selection. The 
landscape of the priority map (orange), which ultimately determines attentional selection, 
integrates three sources of selection bias: I. the observers current selection goals (green), II. the 
physical salience of the items competing for attention (purple), and III. statistical learning based 
on the trial history (blue). We propose that statistical regularities present in prior searches 
change the representation of space within the hippocampus and possibly other subcortical 
structures such as the basal ganglia such that priority at a given location is either upregulated (in 
case of target learning) or downregulated (in case of distractor learning). Within spatial priority 
maps this information is then integrated with bottom-up saliency information encoded in early 
visual areas and structures like the superior colliculus [141], and top-down attention as controlled 
by the frontal-parietal network [142]. The current evidence suggests that there is not a single 
common map in the brain, and hence we do not link the spatial priority map to a specific brain 
structure. Instead, a number of cortical areas arguably work together to generate resulting 
behavior. Specifically, the lateral intraparietal area of posterior parietal cortex, inferotemporal 
cortex, frontal eye fields and intermediate layers of the superior colliculus have each been 
described as priority maps [143, 144]. Figure is adapted from [145]. 
 

Concluding Remarks 

The topic of statistical learning has been heavily investigated in the last two decades yet with a 

large focus on the learning of embedded temporal patterns, following in the footsteps of the 
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seminal work by Saffran and colleagues [5]. Only much more recently have researchers started 

to study the role of statistical learning in attentional selection. This review discusses recent 

behavioral, eye-tracking and neuroimaging work which demonstrated that attentional priority 

settings are adjusted in a dynamic way based on the environmental regularities that the observer 

encounters. We highlighted the similarities between traditional statistical pattern learning and 

the statistical learning in visual search, such as the observation that learning is largely implicit 

and unintentional as well as the range of regularities (across both time and space) that can be 

assimilated. Nonetheless, it has also outlined distinct challenges for potential learning 

mechanisms, and the extent to which the extraction of and adaptation to regularities in different 

cognitive domains are tackled by overlapping neural systems remains largely an open question 

(see Outstanding Questions). 
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Glossary 

• Additional singleton paradigm: a visual search task in which observers search for a 

unique shape (usually a diamond between circles or a circle between diamonds) while an 

element with a unique color is also present. The uniquely colored element is called a color 

singleton distractor, and its presence interferes with search for the target. 

• Attentional selection: a collection of processes that allow the prioritization of particular 

input for further processing while simultaneously suppressing irrelevant or distracting 

information.  

• Attentional capture: the automatic and involuntary direction of attention towards an 

object irrespective of whether or not the object is relevant for the task at hand.  

• Feature search mode: a search strategy in which the observer selectively searches for a 

specific target-defining property such as a specific color or specific shape (see also 

Singleton detection mode).  

• Goal-driven (top-down) selection: selection is volitional, completely driven by the 

momentary, current (task) goals of the observer. 
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• History-driven selection: selection is driven by previous selection experiences; not 

necessarily related to the observer’s current goals (i.e., top-down attention) or the display 

characteristics (bottom-up salience). 

• Proactive Suppression: the priority signal at a specific location is suppressed before the 

actual stimulus is presented (proactive control) (see also Reactive Suppression)  

• Reactive Suppression: the priority signal at a specific location is suppressed following the 

initial allocation of attention to that location (reactive control) (see also Proactive 

Suppression).  

• Singleton detection mode: a search strategy in which the observer searches for any 

unique salient item that is unique within a display (any stimulus that ‘pops out’ from the 

display) (see also Feature search mode). 

• Stimulus-driven (bottom-up) selection: when selection is automatic, completely driven 

by the properties of the (physically salient) stimuli present in the display. 

• Spatial Priority map: a representation of a topographic space encoding the priority of 

individual locations combining signals from sensory input (bottom-up), current goal states 

(top-down or behavioral relevance) and statistical learning (history driven).  

• Visual Statistical Learning (VSL): the automatic, implicit learning of the statistical 

regularities (temporal and/or spatial) that characterize the visual environment. 
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Box 1. VSL: A unitary learning system or a collection of paradigms?  
Whether SL in different sensory modalities and cognitive domains within a same modality is 
supported by a single set of underlying mechanisms is a topic of debate (e.g.,)[1-3]. While we 
discuss different "Visual Statistical Learning" (VSL) tasks that all show sensitivity to statistical 
regularities in a visual environment, we do imply that VSL is necessarily a unified concept. The 
nature of regularities in different VSL tasks differs substantially: for example, regularities can be 
in time versus space, and transitional (i.e., after A follows B) versus distributional (i.e., A is more 
frequent) [4]. In addition, the behavioral outcomes of learning also differ vastly (e.g., recognition 
of a group of objects that form a pattern versus attentional suppression of a certain location).    
 
A theoretical model can be proposed in which the extraction of these different types of 
regularities relies on shared computations in the hippocampus [6]. Such a unitary learning system 
would be parsimonious, yet there is currently no convincing empirical evidence in support of this 
view. Alternatively, sensitivity to specific regularities could be an emergent property of different 
learning mechanisms (see [11], for a discussion). For example, learning to suppress the location 
where a distractor is likely to occur could rely on different computations compared to learning to 
predict the upcoming object in a sequence. In this case, VSL would be a label for a range of 
phenomena that appear to be similar in the sense that they all concern the extraction of structure 
in visual input, but are not mechanistically similar. As such, an individual’s learning ability could 
differ substantially across VSL tasks, to a larger extent than what could be explained by basic 
differences in for example encoding the stimuli [11]. 
 
One way to tackle this question would be to investigate individual differences: systematic positive 
correlations between performance across a range of VSL tasks such as the embedded triplet 
learning as well as learned distractor suppression would be consistent with the view of VSL as a 
unitary learning system [4, 11]. Relatedly, one could look at special populations or neurological 
patients with hypothesized deficits in SL. A unitary learning system would predict difficulties in 
acquiring sensitivity to statistical structure that are general in the sense that they emerge across 
all visual tasks that tap the learning of statistical structure  [11, 15].   
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Box 2. Aware or unaware?  
Numerous studies have shown that the extraction of regularities from the environment and the 
adaptations to these regularities can proceed without the intention to learn and without 
conscious awareness [23, 53, 120, 121]. With ‘without conscious awareness’ we imply that 
participants are not able to explicitly indicate the regularities present in the display. In most 
experiments investigating statistical learning of the location of the distractor, at most, only a few 
participants are aware of the regularities present in the display [45-47, 66, 122, 123]. In 
experiments in which regularities regarding the target are manipulated, awareness is much 
higher with about two-thirds of the participants able to report the high probability target location 
[37]. Note however that this all depends on the probabilities used, the number of trials and the 
way awareness is assessed. Yet, everything being equal, it may not be surprising that the 
awareness regarding the likely target location is much higher than that of the distractor location 
as the target is task relevant. Note however that while in triplet learning explicit knowledge 
regarding the sequences of visual stimuli improves performance [124] and larger search biases 
have been found sometimes for individuals that are aware of a target regularity in visual search 
[125], no such effect was reported with learning to suppress a location. In a study that explicitly 
tested this, it was shown that the amount of suppression was exactly the same irrespective of 
whether the experimental manipulation highlighted or masked the underlying statistical 
regularity [54]. Related to this is the finding that the explicit instruction to supress a location in a 
top-down way does not work; if anything this resulted in an attentional prioritization of the 
location that needed to be supressed [45]. It should be noted however that the current approach 
to determine awareness of particular processes has been criticized on methodological grounds 
as inferences about being aware or not are made on the basis of null effects in relatively small 
samples [126]. In addition, recent work using alternative awareness measures suggests that the 
awareness of distractor regularities might have been underestimated in previous work [127].  

  

Box 3. Space-based versus Feature-based suppression 
There is ample evidence that through statistical learning locations that are likely to contain a 
distractor are supressed proactively [37, 73, 128, 129], indicating that the location within the 
priority map is supressed before the display is presented. While this suppression is assumed to 
be implemented at a spatial priority map and thus generic, there is also evidence that under 
specific conditions spatial suppression can become tuned to specific distractor features and/or 
dimensions [43, 66, 130]. It is less clear however, whether through statistical learning, particular 
features can be supressed proactively independent of their location. Some have argued that it is 
indeed possible to suppress distractor features without first directing attention to them [75, 115, 
131-136]. Yet, there has been some controversy about this as others have argued that this 
suppression is, at least partly, reactive [72, 137, 138], suggesting that attention needs to be 
directed to the feature before it can be supressed (known as rapid disengagement [138]). Also, 
it has been argued that in specific conditions when observers are able to selectively attend the 
relevant (target) feature, it may appear that the irrelevant distractor feature is supressed [49, 
139]. Yet, enhancing the target feature does not necessarily imply proactive feature suppression. 
For a detailed discussion on this issue see [140].  
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