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A B S T R A C T 

Galaxies, dark matter haloes, and star clusters have a finite extent, yet most simple dynamical models have an infinite extent. The 
default method to generate dynamical models with a finite extent is to apply an energy truncation to the distribution function, 
but this approach is not suited to construct models with a preset density profile and it imposes unphysical constraints on the 
orbit population. We investigate whether it is possible to construct simple dynamical models for spherical systems with a preset 
density profile with a finite extent, and ideally with a different range of orbital structures. We systematically investigate the 
consistency of radially truncated dynamical models, and demonstrate that no spherical models with a discontinuous density 

truncation can be supported by an ergodic orbital structure. On the other hand, we argue that many radially truncated models can 

be supported by a tangential Osipkov–Merritt orbital structure that becomes completely tangential at the truncation radius. We 
formulate a consistency hypothesis for radially truncated models with such an orbital structure, and test it using an analytical 
example and the numerical exploration of a large model parameter space using the SPHECOW code. We physically interpret our 
results in terms of the occupancy of bound orbits, and we discuss possible extensions of the tangential Osipkov–Merritt orbital 
structure that can support radially truncated models. 

Key words: galaxies: kinematics and dynamics. 
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 I N T RO D U C T I O N  

n the study of galaxies, dark matter haloes, and star clusters,
nalytical spherical dynamical models are one of the most useful 
ools. They can serve as a first-order model to characterize these 
tructures, they are useful as the starting point for full-scale numerical
imulation, or they can act as a laboratory setting in which the
ffects of physical processes can be explored. The impressive range 
f applications of popular models such as the King models (King 
966 ), the isochrone sphere (H ́enon 1959 , 1960 ), the Hernquist
odel (Hernquist 1990 ), the Plummer sphere (Plummer 1911 ), the 
FW model (Navarro, Frenk & White 1997 ; Łokas & Mamon 2001 ),
r the S ́ersic model (S ́ersic 1968 ; Ciotti 1991 ) clearly illustrates their
alue. 

In building spherical dynamical models, there are two main 
pproaches (Binney & Tremaine 2008 ; Ciotti 2021 ). The f -to- ρ
pproach starts with an e xplicit e xpression for the phase-space 
istribution function f ( E , L ), where E and L represent the binding
nergy and the angular momentum per unit mass, respectively. By 
electing a distribution function that is positive for all values of E 
nd L , one is automatically ensured that the dynamical model is
onsistent, that is, physically viable. The disadvantage of this f -to- ρ
pproach is that it does not lead to an e xplicit e xpression for an y of
he important dynamical properties such as the density or the velocity 
ispersion profiles. At best the density and potential can be obtained 
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y numerically solving Poisson’s equation. As a result, this approach 
s not suited to construct models with a preset density profile, as one
ften wants to do. 
The second approach, known as the ρ-to- f approach, starts from

n e xplicit e xpression for the density profile. The potential can be
erived using Poisson’s equation. With the assumption of an orbital 
tructure, the distribution function and all other important dynamical 
roperties can subsequently be calculated, at least in principle. The 
ain challenge of this approach is that, except for a number specific

hoices for the orbital structure, the determination of the distribution 
unction is far from trivial (Dejonghe 1986 ). Moreo v er, not ev ery
ensity profile can be generated self-consistently by any orbital 
tructure: only if the corresponding distribution function is positive 
 v er the entire phase space, the dynamical model is consistent.
his is nearly impossible to know without actually calculating and 

nvestigating the distribution function. Examples demonstrate that 
he consistency is not al w ays guaranteed, even for relatively simple
ensity profiles and orbital structures (e.g. Baes & Ciotti 2019a ; Baes
 Camps 2021 ). 
The vast majority of all analytical models presented in the literature 

ave an infinite extent, meaning that they have a non-zero density at
ll radii. Dynamical systems such as galaxies or star clusters have
 finite extent, so it is meaningful to investigate the possibility to
uild models with a finite extent. A popular way to do so is to
pply a truncation in binding energy to the distribution function. 
y excluding the orbits with the lowest binding energies, one 
utomatically excludes all particles or stars beyond a given truncation 
adius. The most famous example of this approach is the family of

http://orcid.org/0000-0002-3930-2757
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ing models, which are energy-truncated versions of the isothermal
phere (Michie 1963 ; King 1966 ; Binney & Tremaine 2008 ). There
re two major issues linked to this approach, ho we ver. The first one
s that energy-truncated models, by definition, belong to the f -to- ρ
ategory, so the density profile cannot be set at the beginning, and
ll important dynamical properties can usually only be calculated
umerically. The second disadvantage is that a truncation in binding
nergy imposes artificial and unphysical constraints on the system
Kashlinsky 1988 ). Indeed, it prohibits a fraction of orbits in the
odel to be populated, even though these orbits are gravitationally

ound to the system and remain within the allowed radial range.
specially nearly circular orbits near the truncation radius of the
ystem are excluded when an energy truncation is applied. 

This raises the question whether it is possible to construct simple
ynamical models for spherical systems with a preset density
rofile with a finite extent, and ideally with a different range of
rbital structures. In Baes ( 2022a ), hereafter Paper I, we started
ur investigation into this question by looking in detail at the special
ase of the uniform density sphere, the simplest model with a radially
runcated density profile. It was already well known that the uniform
ensity sphere cannot be supported by an ergodic orbital structure
Zel’dovich et al. 1972 ; Osipkov 1979 ; Binney & Tremaine 2008 ).

e demonstrated that the uniform density sphere is also inconsistent
ith any constant anisotropy or radial Osipkov–Merritt orbital

tructure, but we constructed a family of self-consistent dynamical
odels for the uniform density sphere in which all possible orbits

re populated. 
In this paper, the second in a series on self-consistent dynamical
odels with a finite extent, we systematically investigate the con-

istency of radially truncated dynamical models. More specifically,
e start from an arbitrary spherical density profile ρ0 ( r ) with an

nfinite extent, thus ρ0 ( r ) > 0 for all r , and we create a new model
y applying a radial truncation to this density profile, 

( r) = ρ0 ( r) � ( r T − r) , (1) 

here r T represents the truncation radius and � ( x ) the Heaviside
tep function. We stress that we specifically focus on models with a
iscontinuous truncation, so with ρ( r ) �= 0 for r → r T . We want to
nvestigate whether it is possible to build self-consistent dynamical
odels corresponding to this density profile, and if so, to find out
hich orbital structure would support it. 
This paper is organized as follows. In Section 2 , we present a

eneral consistency analysis for radially truncated models of the
ype ( 1 ). We start by considering ergodic models (Section 2.1 )
nd subsequently mo v e on the type II Osipkov–Merritt models
Section 2.2 ). At the end of this section, we formule a consistency
ypothesis for radially truncated models, which we test in Section 3
sing both an analytical case (Section 3.1 ) and a general numerical
pproach (Section 3.2 ). In Section 4 , we discuss our findings, and
e summarize in Section 5 . 

 G E N E R A L  CONSISTENCY  ANALYSIS  

.1 Ergodic orbital structure 

o investigate whether the model defined by the density profile ( 1 )
an be supported self-consistently by an ergodic orbital structure,
e need to calculate the unique ergodic distribution function f ( E)

nd check whether it is positive over the entire phase space. The
rgodic distribution function can be calculated through the standard
NRAS 519, 6065–6076 (2023) 
ddington equation, 

 ( E) = 

1 

2 
√ 

2 π2 

d 

d E 

∫ E 
0 

d ̃  ρ

d � 

d � √ 

E − � 

, (2) 

here ˜ ρ( �) represents the augmented density, that is, the density
ritten as a function of the potential (Dejonghe 1986 ). Since the
ensity is truncated at r = r T , we find for the augmented density 

˜ ( �) = ˜ ρ0 ( �) � ( � − E T ) , (3) 

ith the truncation energy E T defined as E T = �( r T ). The formal
eri v ati ve is 

d ̃  ρ

d � 

( �) = ˜ ρ ′ 
0 ( �) � ( � − E T ) + ρT δ( � − E T ) , (4) 

here we have introduced the notation 

T = ρ0 ( r T ) = ˜ ρ0 ( E T ) > 0 . (5) 

nserting expression ( 4 ) in Eddington’s equation and applying partial
ntegration, we obtain 

 ( E) = 

ρT 

2 
√ 

2 π2 

δ( E − E T ) √ 

E − E T 
− � ( E − E T ) 

2 
√ 

2 π2 

[
ρT 

2 ( E − E T ) 3 / 2 

+ 

r T ρ
′ 
0 ( r T ) 

E T 
√ 

E − E T 
−

∫ E 
E T 

˜ ρ ′′ 
0 ( �) d � √ 

E − � 

]
, (6) 

here we have used the fact that 

˜ ′ 0 ( E T ) = 

r T ρ
′ 
0 ( r T ) 

E T 
. (7) 

xpression ( 6 ) shows several interesting characteristics. First, the
istribution function is identically zero for E < E T , which means
hat orbits with binding energy below the truncation energy E T 
re not populated. A radial truncation of the density profile thus
utomatically generates a truncation in binding energy for the ergodic
istribution function. Secondly, the first term in ( 6 ) contains a Dirac
elta function at the truncation energy. In principle, a Dirac delta
unction term in the distribution function is not necessarily an issue,
ut the fascinating aspect here is that the weight is infinite. Finally, the
erm between the square brackets in equation ( 6 ) is always ne gativ e at
inding energies just beyond the truncation energy. Indeed, the first
erm will dominate the distribution function for E � E T , and since
T > 0, we find that the distribution function is ne gativ e. We thus
nd that all spherical models with a discontinuous density truncation
ave inconsistent ergodic distribution functions, that is, they cannot
e supported by an ergodic orbital structure. 

.2 Tangential Osipkov–Merritt orbital structure 

he fact that truncated models cannot be supported by an ergodic
rbital structure does not imply that it is impossible to generate
elf-consistent dynamical models for them. Some orbital configu-
ations are less demanding than others. In particular, tangentially
nisotropic dynamical models are generally less demanding than
adially anisotropic ones. If we want to search for positive distribution
unctions, and thus physically viable dynamical models for truncated
ensity profiles, it seems wise we have to focus on orbital structures
ith tangential anisotropy. 
One interesting option is the class of tangential Osipkov–Merritt
odels. These models, denoted as type II models by Merritt ( 1985 ),

re characterized by an ellipsoidal velocity distribution and an
nisotropy profile that gradually changes from isotropic in the centre
o completely tangential at the radius r a , the anisotropy radius. More
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pecifically, 

( r) = − r 2 

r 2 a − r 2 
. (8) 

hese type II or tangential Osipkov–Merritt (hereafter TOM) models 
re only meaningful for models with a finite extent, with r a � r T .
n Paper I, we showed that the uniform density sphere cannot be
upported by an ergodic orbital structure, but that it can be supported
y a TOM orbital structure with r a = r T . 
To investigate whether TOM models are a valid option for general 

runcated density models, we need to go through a similar analysis 
s for the ergodic case: we need to calculate the distribution function
nd check the positivity o v er the entire phase space. The distribution
unction of TOM models depends on binding energy E and angular 
omentum L only through the combination 

 = E + 

L 

2 

2 r 2 a 

. (9) 

iven a density profile and anisotropy radius, it can be obtained using
n inversion relation similar to equation ( 2 ), 

 ( E, L ) ≡ f ( Q ) = 

1 

2 
√ 

2 π2 

d 

d Q 

∫ Q 

0 

d 	 

d � 

d � √ 

Q − � 

, (10) 

ith 

( �) = 

(
1 − r 2 

r 2 a 

)
ρ( r) 

∣∣∣∣
r = r ( �) 

. (11) 

ith a density profile as in equation ( 1 ), the function 	( �) reads 

( �) = 	 0 ( �) � ( � − E T ) . (12) 

omparing the expressions ( 10 ) and ( 12 ) to the expressions ( 2 ) and
 3 ), we see that we have formally identical equations as in the ergodic
ase if we make the substitutions ˜ ρ �→ 	 and E �→ Q . As a result,
e can immediately write for the distribution function, 

 ( Q ) = 

ρT 

2 
√ 

2 π2 

δ( Q − E T ) √ 

Q − E T 
− � ( Q − E T ) 

2 
√ 

2 π2 

[
	 T 

2 ( Q − E T ) 3 / 2 

+ 

	 ′ 0 ( E T ) √ 

Q − E T 
−

∫ Q 

E T 

	 ′′ 0 ( �) d � √ 

Q − � 

]
. (13) 

ith 

 T = 	( E T ) = 

(
1 − r 2 T 

r 2 a 

)
ρT . (14) 

n the general case with r a > r T , we have 	 T > 0, and we can,
ased on the discussion in the previous subsection, conclude that 
he distribution function ( 13 ) is not positive over the entire phase
pace. The TOM dynamical models with r a > r T are thus physically
nconsistent. 

The situation changes for the special case r a = r T , ho we ver. In
his case the anisotropy changes systematically from isotropy in the 
entre to complete tangential anisotropy at the truncation radius, 

( r) = − r 2 

r 2 T − r 2 
. (15) 

quation ( 12 ) shows that 	 T = 0 in this case, and as a result the
istribution function simplifies to 

 ( Q ) = 

� ( Q − E T ) 
2 
√ 

2 π2 

[
2 ρT 

E T 
√ 

Q − E T 
+ 

∫ Q 

E T 

	 ′′ 0 ( �) d � √ 

Q − � 

]
. (16) 

ompared to the general case ( 13 ), both the term with the Dirac
elta function and the term that diverges negatively for Q � E T have
isappeared. 
Unfortunately, it is not immediately possible to make firm general 
tatements about the positivity of this expression over the entire 
hase space: whether or not this expression is positive for all values
f Q depends on the specific shape of the density profile and on
he value of the truncation radius. On the other hand, it is clear
hat the expression ( 16 ) has the potential to be a positive and hence
hysically viable distribution function for large classes of truncated 
ensity models. For the smallest values of Q for which the distribution
s non-zero, Q � E T , first term between the square brackets will
ominate the expression, and this term is al w ays positiv e. F or the
argest values of Q , corresponding to the smallest radii, the TOM

odels are isotropic and we expect a similar behaviour as the ergodic
istribution function of the non-truncated model. 
Based on these considerations, we formulate the following con- 

istency hypothesis: If a spherical density model can be supported 
elf-consistently by an ergodic orbital structure, then the model that 
s radially truncated at r = r T can be supported self-consistently by
he TOM orbital structure with r a = r T . 

 TESTING  T H E  CONSI STENCY  HYPOT H ES IS  

n this section, we test the consistency hypothesis we formulated at
he end of Section 2 . We first present a family of truncated density

odels for which we can analytically calculate the distribution 
unction under the assumption of a TOM orbital structure. This 
llows an explicit investigation of the consistency of these dynamical 
odels. Subsequently, we will explore a larger suite of models using

umerical means. 

.1 A completely analytical model 

s our first test case, we consider a truncated version of the Plummer
 1911 ) sphere, one of the most popular models in stellar dynamics
tudies. This model is characterized by the density profile 

0 ( r ) = 

3 

4 π

M 

b 3 

(
1 + 

r 2 

b 2 

)−5 / 2 

, (17) 

here M is the total mass, and b is scale length. In the remainder of
his section, we use dimensionless units in which G = M = b = 1,
hich simplifies the density profile to 

0 ( r) = 

3 

4 π

(
1 + r 2 

)−5 / 2 
. (18) 

he Plummer model is famous for having a simple power-law ergodic
istribution function (Binney & Tremaine 2008 ), and for the fact
hat the distribution function can also be calculated analytically for 
arious other orbital configurations (Osipkov 1979 ; Merritt 1985 ; 
ejonghe 1986 , 1987 ; Cuddeford 1991 ; Baes & Van Hese 2007 ). 
When we apply a radial truncation to the density profile ( 18 ), we

btain 

( r) = 

3 

4 π

(
1 + r 2 

)−5 / 2 
� ( r T − r) . (19) 

ntroducing the notation 

 = 

1 √ 

1 + r 2 T 

, (20) 

he potential of this truncated Plummer model can, for r � r T , be
ritten as 

( r) = 

1 √ 

1 + r 2 
− s 3 . (21) 
MNRAS 519, 6065–6076 (2023) 
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ombining the expressions ( 11 ), ( 18 ), and ( 21 ), we can immediately
erive a compact expression for the function 	 0 ( �), 

 0 ( �) = 

3 

4 π (1 − s 2 ) 

[ (
� + s 3 

)5 − s 2 
(
� + s 3 

)3 
] 
. (22) 

nserting this expression into the general expression ( 16 ), we find,
fter some algebra, an e xplicit e xpression for the TOM distribution
unction, 

 ( Q ) = 

3 
√ 

2 

56 π3 

� ( Q − E T ) 
(1 − s 2 ) 

[
7 s 4 √ 

Q − E T 
+ V ( Q ) 

√ 

Q − E T 
]

, (23) 

ith V ( Q ) a cubic polynomial, 

 ( Q ) = 2 
(
4 Q + 3 s + 4 s 3 

)
[8 Q 

2 − 2 s(1 − 8 s 2 ) Q 

+ s 2 (1 − 2 s 2 + 8 s 4 )] (24) 

nd with 

 T = s 
(
1 − s 2 

)
. (25) 

In Fig. 1 , we show a number of characteristics of the family of
runcated Plummer models for different values of the truncation
adius. The upper panel shows the density, which is identical for
ll models up to the truncation radius, where it abruptly truncated.
s a result of this truncation, the total mass is reduced and the
ravitational potential (middle panel) is a decreasing function of r T 
t every radius. The lower panel shows the distribution function ( 23 )
s a function of Q , normalized to the central value of the potential.
or each value of r T , the distribution function is zero for all Q < E T ,

t di verges to wards infinity when Q approaches E T from the high
inding-energy side, and is positive for all E T < Q < �(0). The
ost important characteristic is that the distribution function is non-

e gativ e for all Q , that is, o v er the entire phase space. This means that
he truncated Plummer model can be supported by a TOM orbital
tructure. 

We note that the behaviour described abo v e applies to any value of
he truncation radius: all truncated Plummer models can be supported
y a TOM orbital structure. Looking at the systematic behaviour as a
unction of truncation radius, we note that all quantities shown tend
o converge to the yellow curves when r T increases. These yellow
urves correspond to the limiting case r T → ∞ , or no truncation at
ll. When we set r T = r a → ∞ in equations ( 9 ), ( 20 ), and ( 25 ), we
ave Q = E , s = 0 and E T = 0, and the distribution function ( 23 )
educes to 

 ( E ) = 

24 
√ 

2 

7 π3 
E 7 / 2 . (26) 

his distribution function is nothing but the ergodic distribution
unction of the non-truncated Plummer model (Dejonghe 1987 ;
inney & Tremaine 2008 ). 

.2 Numerical investigation using SPHECOW 

he Plummer model is quite unique in that the TOM distribution
unction of the truncated version can be calculated analytically, and
he positivity can therefore easily be tested. For the vast majority of
pherical density profiles this is not the case. In order to further test
ur consistency hypothesis, we resort to a numerical investigation. 

.2.1 Implementation in SPHECOW 

PHECOW (Baes, Camps & Vandenbroucke 2021 ) is a software
ool designed to numerically explore the dynamical structure of
NRAS 519, 6065–6076 (2023) 
ny spherical model defined by an analytical density profile or
urface density profile. The code contains implementations for many
ommonly used models, including the Plummer, Hernquist, Jaffe,
FW, S ́ersic, Nuker, Einasto, and Zhao models, and is set up in such
 way that new models can easily be added. For each model, the user
an numerically explore the most important dynamical quantities,
uch as velocity dispersion profiles, the distribution function, and
he differential energy distribution, under the assumption of either an
rgodic or a radially anisotropic Osipkov–Merritt orbital structure.
ecent applications of SPHECOW include detailed analyses of the
 amilies of S ́ersic, Nuk er, and Einasto models (Baes & Ciotti 2019a ,
 ; Baes 2020 , 2022b ), a study of the physical consistency of the
ouble and broken power-law models (Baes & Camps 2021 ), and
n investigation of the differential energy distribution and the total
ntegrated binding energy of dynamical models (Baes & Dejonghe
021 ). 
For the purpose of testing our consistency hypothesis for truncated
odels, two extensions to SPHECOW were required. The first exten-

art/stad117_f1.eps
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ion was an implementation of the truncated version of large suite of
ensity models. Secondly, as the code only considered ergodic and 
adially anisotropic Osipkov–Merritt models, we needed to expand 
ts applicability to TOM orbital structures. 

The first task was relatively straightforward. Rather than im- 
lementing a truncated version for every single existing, and fu- 
ure, model in SPHECOW , we used a generic approach based on
he decorator design pattern. In object-oriented programming, a 
ecorator is a design pattern that dynamically attaches additional 
esponsibilities to an object (Gamma et al. 1994 ; Freeman et al.
004 ). It provides a flexible and powerful alternative to subclassing
or extending functionality. In the SPHECOW context, we defined a 
ew TruncatedModel class that takes another model as input 
nd truncates its density profile at a user-specified truncation radius. 
he advantage of the decorator approach is clear: we only had to

mplement the TruncatedModel decorator class once, and it can 
e applied to any possible model. It can also be applied to models
ithout an analytical density profile, that is, models with an analytical 

urface density profile as starting point, such as the S ́ersic or Nuker
odels. 
For the numerical calculation of the dynamical structure of an 

rbitrary spherical model under the assumption of a TOM orbital 
istribution, we needed to implement the rele v ant formulae, and 
onvert them to integrations with respect to radius. Most of these 
ormulae are modest adaptations of the formulae corresponding 
o a radial Osipkov–Merritt orbital distribution, as presented in 
ection 2.1.3 of Baes et al. ( 2021 ), based on expressions derived
y various authors (e.g. Osipkov 1979 ; Merritt 1985 ; Cuddeford 
991 ; Baes & Dejonghe 2002 ; Mamon & Łokas 2005a ; Agnello,
vans & Romanowsky 2014 ; Ciotti 2021 ). In Appendix A , we give
 xplicit e xpressions for the most important dynamical quantities as
mplemented in SPHECOW . 

To check the accuracy of the new implementations, we have 
ompared the results of the SPHECOW calculations for the truncated 
lummer model to the analytical results shown in Fig. 1 . The top
anel shows the relative error on the distribution function. For 128 
auss–Le gendre inte gration points, as suggested by Baes et al. 

 2021 ) to be a good compromise between accuracy and speed,
e reproduced the analytical distribution function with a typical 

oot mean square relative error of the order of 10 −8 . The bottom
anel shows a comparison involving more complex calculations. 
he purple data in Fig. 2 shows the remaining mass of the truncated
lummer model as a function of the truncation radius. The solid

ine shows the analytical result, whereas the dots show the SPHECOW 

alculation, obtained by integrating the pseudo-differential energy 
istribution N ( Q ) o v er all values of Q . Ev en the calculation of
his quantity, which contains various nested levels of numerical 
uadrature, is accurate to at least eight significant digits. The red data
how the calculation of the total kinetic energy as a function of r T ,
nd the solid line represents the analytical result. The dots represent 
he SPHECOW results, obtained by integrating the velocity dispersion 
rofiles, which by themselves involve two levels of quadrature. 
lso here, we easily reco v er the analytical results to at least eight

ignificant digits. 

.2.2 Exploration of the model space 

he extended SPHECOW code allows a numerical investigations of the 
onsistency hypothesis formulated at the end of Section 2.2 . Our ap-
roach was relatively straightforward: for each model implemented 
n SPHECOW for which we know that the ergodic distribution function 
s positive for all binding energies, we constructed different truncated 
ersions by selecting different truncation radii. Subsequently, we 
alculated the corresponding TOM distribution function and we 
hecked its positivity o v er all E T < Q < � 0 . At the same time, we
alculated some other dynamical quantities, such as the velocity 
ispersion and the pseudo-differential energy distribution, which 
ere used to test the validity of the calculations using the consistency

hecks described in Section 3.2.1 . 
Fig. 3 presents an example of this approach for the family of

inasto models. The structure and dynamics of this family of models
as been investigated by various authors (e.g. Cardone, Piedipalumbo 
 Tortora 2005 ; Mamon & Łokas 2005a ; Dhar & Williams 2010 ;
etana-Montene gro et al. 2012a ; Retana-Montene gro, Frutos-Alfaro 
 Baes 2012b ). Using the SPHECOW code, Baes ( 2022b ) showed

hat the Einasto model has a positive ergodic distribution function 
or all models with Einasto index n � 

1 
2 . Fig. 3 shows the density,

istribution function, and pseudo-differential energy distribution for 
inasto models with different Einasto indices (different colours) 
nd different truncation radii: the top row corresponds to the non-
runcated Einasto model ( r T → ∞ ), and the subsequent row to
radually decreasing values ( r T = 5, 1 and 0.2). These three values
ave been chosen as representative for the three re gimes: the y
orrespond to a truncation beyond, at, and before the half-mass 
adius, respectively. 

In all cases, we see that the behaviour of the dynamical properties
t small radii ( r 	 r T ) mimics the behaviour of the corresponding
MNRAS 519, 6065–6076 (2023) 
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Figure 3. Density (left-hand column), distribution function (middle column), and pseudo-differential energy distribution (right-hand column) for a set of 
truncated Einasto models, assuming a TOM orbital structure. The different rows correspond to decreasing values of r T , with the top row corresponding to the 
non-truncated models ( r T → ∞ ) and the bottom row to model truncated at small radii ( r T = 0 . 2). Within each panel, different colours correspond to Einasto 
models with different values for the Einasto index, n , as indicated in the upper left panel. We have adopted dimensionless units with G = M = r h = 1. 
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on-truncated ergodic Einasto models. In particular, we find that the
istribution function for the limiting n = 

1 
2 model, corresponding

o a truncated Gaussian density profile, converges to a finite, non-
ero value for Q → �(0) for all values of r T , whereas all models
ith larger Einasto inde x hav e a distribution function that diverges

s Q approaches �(0). This similarity is logical as all models share
he same density profile for r < r T , and the TOM models are also
sotropic at small radii ( r 	 r T ). The similarity at small radii between
he TOM truncated models and the ergodic non-truncated models
ecreases for decreasing r T , as can be expected. 
At larger radii, on the other hand, we find a radically different

ehaviour between the truncated and non-truncated models. For
he standard Einasto models, the ergodic distribution function is
NRAS 519, 6065–6076 (2023) 
 positive and monotonically increasing function of binding energy
 v er the entire range 0 < E < �(0), and for E → 0 we find that the
istribution function smoothly converges to zero. For the truncated
odels, the distribution function is identically zero for all 0 < Q <

 T , and it diverges as ( Q − E T ) −1 / 2 for Q � E T , as expression ( 16 )
ndicates. A similar radical change in behaviour is seen at large
adii when comparing the differential energy distribution for the
sotropic models and the pseudo-differential energy distribution of
he corresponding truncated models. 

The main result of this numerical investigation is that all truncated
inasto models with n � 

1 
2 have a distribution function that is

ositiv e o v er the entire range of Q , for each value of the truncation
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adius. These truncated models can thus be supported by a TOM
rbital structure with r a = r T . 
We have repeated this exercise for different models with a positive 

rgodic distribution function, including the families of Dehnen or γ - 
odels (Dehnen 1993 ; Tremaine et al. 1994 ), S ́ersic models (Ciotti

991 ; Baes & Ciotti 2019a ), and generalized NFW models (Jing &
uto 2000 ; Merritt et al. 2006 ). We consistently find the same result:
or the range of parameters for which these models have a positive
rgodic distribution function, all the truncated counterparts can be 
upported by a TOM orbital structure. 

 DISCUSSION  

.1 Physical interpretation: orbit occupancy 

he main result of this paper is that radially truncated spherical 
odels with a density discontinuity can never be supported self- 

onsistently by an isotropic orbital structure, whereas they can often 
e supported by a TOM orbital structure with r a = r T . In Section 2 ,
e hav e pro vided a mathematical proof, b ut we ha v e not yet pro vided
 physical interpretation. 

To understand these results physically, it is useful to view 

 dynamical model as a combination of orbits, essentially as 
n Schwarzschild’s orbit superposition method (e.g. Richstone & 

remaine 1984 ; Neureiter et al. 2021 ). Each orbit in a spherical
otential is a plane Rosetta orbit, and we group all the orbits with the
ame pericentre and apocentre into a single building block (which 
e still call an orbit). The construction of a dynamical model comes
own to determining the weight of each orbit. When building up a
pherical dynamical model in this way, it is most convenient to start
t the outermost radius and to gradually add orbits to the mixture
ith continuously decreasing apocentres. For each apocentre r + 

, we 
ave a range of orbits to choose from, corresponding to different 
ericentres r −, and we have to determine the weight of each of them
y ensuring that both the resulting density and velocity distribution 
t r = r + 

are in agreement with the predetermined density and orbital
tructure. 

When viewing a dynamical model in this way, it might seem 

trange that some distribution functions are ne gativ e. The reason 
s that each orbit does not only contribute to the density at its
pocentre, but it also pollutes the density at smaller radii, and 
hese contributions need to be taken into account when calculating 
he density and velocity distribution. Adding orbits with a given 
pocentre to reproduce the constraints at that radius can sometimes 
reate an excess at smaller radii that can only be lifted by adding
rbits with a ne gativ e weight, which ob viously does not lead to a
hysically valid dynamical model. 
Let us now concentrate on models with a discontinuous radial 

ensity truncation, and specifically look at the ergodic orbital 
tructure. If we want to build up an ergodic distribution function, 
e can only add families of orbits to the mixture, all with the

ame binding energy. If we start building up these models outside- 
n, we first need to add the family of orbits that reaches r T at the
pocentre of the radial member of this family, which corresponds 
o the binding energy E = E T . This ergodic family of orbits has a
istribution function f ( E) = c δ( E − E T ), with c a constant that sets
he weight of this family. The density profile corresponding to this
istribution function is 

( r) = 4 
√ 

2 π
∫ �( r) 

0 
f ( E) 

√ 

�( r) − E d E 

= 4 
√ 

2 π c 
√ 

�( r) − E T � ( r T − r) . (27) 
one of the orbits extends beyond r T , as required. On the other hand,
e note that this density profile smoothly converges to zero at r = r T .
ince all other families of orbits with E i < E T do not contribute to the
ensity at the truncation radius, the only way to realize a sharp density 
runcation at r = r T is to give the family above an infinite weight, that
s, by including an infinite number of stars in the mixture with binding
nergy E T . This will obviously create an infinite density at all radii
 < r T as well, which can only be alleviated by adding orbits with
e gativ e weights, such that the final sum is finite. This combination
f positive and negative contributions can be seen in equation ( 6 ):
he first term contains the infinite positive contribution at the discrete
inding energy E = E T , whereas the second term accounts for the
e gativ e contribution (and potentially some positive contributions 
s well). These ne gativ e weights imply that the dynamical model is
on-physical. 
The same situation arises for many other orbital structures: not 

nly ergodic orbital structures will fail to support radially truncated 
ensity models, but actually most orbital structures. In Section 2.2 ,
e demonstrated that they cannot be supported by TOM orbital 

tructures with r a > r T , and the same argumentation goes for, for
xample, models with constant anisotropy or a radial Osipkov–
erritt orbital structure. For the specific case of the uniform density

phere, this was demonstrated explicitly in Paper I. 
For TOM models with r a = r T , we can start populating the model

ith a mix of orbits with r + 

= r T without immediate problems,
nd we can gradually work our way inwards, while attempting to
eproduce both the density and the velocity distribution at each radius.
he examples shown throughout this paper demonstrate that many 

runcated spherical density profiles can be generated self-consistently 
y a TOM orbital structure with r a = r T . 

.2 The consistency hypothesis 

t the end of Section 2.2 we formulated a consistency hypothesis that
tates that any truncated density model for which the non-truncated 
ounterpart can be supported by an ergodic orbital structure, can be
upported by the TOM orbital structure with r a = r T . A number of
eflections on this consistency hypothesis are appropriate. 

First of all, we emphasize that this hypothesis remains an hy-
othesis. We tested its validity by numerically calculating the TOM 

istribution functions for a large set of such models, and consistently
btained the same result. This strengthens our conviction that it 
s generally valid, but it is not conclusive evidence. Attempts to
ormally proof the positivity of the TOM distribution function, or 
ore specifically the second term between the square brackets in 

quation ( 16 ), given the positivity of the ergodic distribution function
f the non-truncated model, did not lead to useful results. 
Secondly, it is useful to indicate that our consistency hypothesis 

s a sufficient but not a necessary criterion. It is easy to generate
runcated density models that can be supported by a TOM orbital
tructure while the non-truncated version cannot be supported by 
n ergodic distribution function. A simple example is the uniform 

ensity sphere, which can be supported by a TOM orbital structure
Paper I). The uniform density sphere is, ho we ver, also the truncated
ersion of any broken power-law model with γ = 0, and none
f these models can be supported by an ergodic orbital structure
Baes & Camps 2021 ). Interestingly, the TOM orbital structure can
otentially even support truncated density models with a central 
ole. It is well known that the density needs to be a monotonically
ecreasing function of radius for a model to be supported by an
rgodic distribution function, which can be considered as a special 
ase of the global density slope–anisotropy inequality (GDSAI; 
MNRAS 519, 6065–6076 (2023) 
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iotti & Morganti 2009 , 2010 ), 

( r) ≡ −d ln ρ

d ln r 
( r) � 2 β( r) . (28) 

he GDSAI is shown to be satisfied for all dynamical models with a
eparable augmented density for which the central anisotropy β0 � 

1 
2 

An 2011a , b ; Van Hese, Baes & Dejonghe 2011 ). For the models
ith a TOM orbital structure, which belong to this class of models,

he GDSAI becomes 

( r) � − 2 r 2 

r 2 T − r 2 
. (29) 

ll models with a monotonically decreasing density profile automat-
cally satisfy this criterion, since the right-hand side of this inequality
s al w ays ne gativ e. Interestingly, the GDSAI leav es the door open
or models in which γ ( r ) is not necessarily positive over the entire
adial range, including models with a central density hole. 

A third and final reflection on the consistency hypothesis is that
ot all truncated density models can be supported self-consistently
y a TOM orbital structure. It is easy to generate counter-examples.
 or e xample, Baes ( 2022b ) showed that Einasto models with Einasto

ndex n < 

1 
2 cannot be supported by an isotropic orbital structure.

hese models are created by a very flat density profile at small
adii, followed by a very sharp (but not infinitely sharp) break in
he density profile. If this model is truncated at a sufficiently small
adius, it essentially reduces to the uniform density sphere, which is
ompatible with a TOM orbital structure. Truncating it at a radius
eyond the break radius results in a model that cannot be supported
elf-consistently by a TOM orbital structure. 

.3 Alternati v e orbital structures 

he TOM orbital structure with r a = r T is a viable option that can
upport many, but not all, truncated density profiles. On top of that,
he TOM orbital structure has the very useful characteristic that
he determination of the distribution function is relatively simple: it
an be derived from the density using an Eddington-like inversion
ormula involving just a single integral. It is only natural to wonder
hether there are other options that can or should be explored. 
The purely circular orbit model is an obvious alternative: since

ircular orbits do not pollute the density at smaller radii, circular orbit
odels in principle work for all possible density profiles (Richstone
 Tremaine 1984 ; Binney & Tremaine 2008 ). There are other, more

eneral, alternatives, however. 

.3.1 Tangential Cuddeford orbital structure 

ne interesting alternative, or rather generalization of the TOM
rbital structure, is what we can refer to as the tangential Cuddeford
hereafter TC) orbital structure. This orbital structure, presented in
aper I for the special case of the uniform density sphere, is an
xtension of the type of dynamical models proposed by Cuddeford
 1991 ) to tangentially anisotropies. The TC orbital structure is
haracterized by the anisotropy profile 

( r) = β0 − (1 − β0 ) 

(
r 2 

r 2 T − r 2 

)
. (30) 

or each choice of the parameter β0 < 1, models with this orbital
tructure are indeed completely tangential at the truncation radius.
he TC orbital structure is clearly a generalization of the TOM one,
hich just corresponds to β0 = 0. Models with β0 < 0 are tangentially

nisotropic in the central regions and systematically get even more
NRAS 519, 6065–6076 (2023) 
angential for increasing radius. Models with β0 > 0 are radially
nisotropic in the central regions, and they first become isotropic and
ubsequently tangentially anisotropic when moving to larger radii. 

The distribution function corresponding to the TC orbital structure
as the general form 

 ( E, L ) = L 

−2 β0 f C ( Q ) , (31) 

ith Q given by equation ( 9 ) and f C ( Q ) a function that can be
btained from the density using an Eddington-like inversion formula
see Paper I for details). Whether or not a TC orbital structure is a
iable option for a given truncated density model depends on the
pecific shape of the density profile, on the value of the truncation
adius, and on the value of the central anisotropy. In particular,
he central density slope–anisotropy inequality (An & Evans 2006 )
eeds to be satisfied as a minimum requirement to have a positive
istribution function. For the uniform density sphere, all TC models
ith β0 ≤ 0 are consistent, whereas models with radially anisotropic

entral regions ( β0 > 0) are not, as expected based on the central
ensity slope–anisotropy inequality and as demonstrated explicitly in
aper I. A similar consistency analysis can in principle be performed
or other radially truncated models. 

.3.2 Other orbital structures with tangential anisotropy at the 
runcation radius 

s far as we are aware, the TC orbital structure, with the TOM as
 special case, is the only orbital structure that becomes completely
angentially anisotropic at the truncation radius and that allows for a
irect calculation of the distribution function using an Eddington-like
nversion formula. It is possible to construct dynamical models with
ther, more general anisotropy profiles that become purely tangential,
ut in those cases the calculation of the distribution function is far
ore involved. 
One possible w ay forw ard is an approach based on separable

ugmented densities. F or an y giv en potential–density pair, there are
nfinitely many different options to create augmented densities. Each
hoice completely determines an independent dynamical model,
nd there is a one-to-one correspondence between the augmented
ensity and the distribution function (Lynden-Bell 1962 ; Dejonghe
986 ; Hunter & Qian 1993 ). A major advantage of using separable
ugmented densities, i.e. functions of the form 

˜ ( �, r) = 	( �) g( r) , (32) 

s that the anisotropy profile of the resulting dynamical model only
epends on the function g in a simple way (e.g. Qian & Hunter 1995 ), 

( r) = −1 

2 

d ln g 

d ln r 
( r) . (33) 

his characteristic makes it possible to set up models with a preset
ensity profile and a preset anisotropy profile. In particular, we can
im at dynamical models that are completely tangential at r = r T 
nd which might be suitable options for radially truncated models.
aking inspiration from Baes & Van Hese ( 2007 ), we can consider

he function 

( r) = 

(
r 

r T 

)−2 β0 
(

1 − r 2 δ

r 2 δT 

)−ξ/δ

, (34) 

ith parameters β0 < 1, ξ > 0, and δ > 0. The corresponding
nisotropy profile for r � r T is 

( r) = β0 − ξ

(
r 2 δ

r 2 δ − r 2 δ

)
, (35) 
T 
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hich becomes completely tangential at the truncation radius. 
omparing this to the expressions ( 15 ) and ( 30 ), we see that it reduces

o the TC orbital structure for the special case ξ = 1 − β0 and δ =
, and to the TOM orbital structure for β = 0 and ξ = δ = 1. 
For a given density profile, the calculation of the augmented den- 

ity is usually straightforward. The main challenge is the calculation 
f the corresponding distribution function. In general, the inver- 
ion from augmented density to distribution function involves the 
ombination of a forward and an inverse Laplace–Mellin transform 

Dejonghe 1986 ). For the case of separable augmented densities, 
he Laplace and Mellin transforms can be separated, but the entire 
nversion still remains a significant challenge. One characteristic we 
an exploit is that the inversion is a linear operation. If we manage
o expand the factor 	( �) in the augmented density ( 32 ) as a linear
ombination of simpler components, 

( �) = 

∑ 

k 

c k 	 k ( �) , (36) 

nd for each component ˜ ρk ( �, r) = 	 k ( �) g( r) we can calculate the
orresponding distribution function F k ( E, L ), then we immediately 
ave the distribution function for the complete model, 

 ( E, L ) = 

∑ 

k 

c k F k ( E, L ) . (37) 

his approach has been applied by Van Hese, Baes & Dejonghe 
 2009 ) to construct distribution functions with a general anisotropy 
rofile for the set of realistic dark matter halo models proposed by
ehnen & McLaughlin ( 2005 ), based on the library of analytical

omponents set up by Baes & Van Hese ( 2007 ). In principle, this
pproach can also be followed for the radially truncated density 
odels considered in this paper if one wants to generate models with
 more general anisotropy profile than the TOM or TC ones. 

.3.3 Purely radial orbital structure 

p to now we have focused on orbital structures that become 
ompletely tangential at the truncation radius as candidates to support 
runcated density models. There is, ho we ver, another possibility: 
rbital structures that are completely radial at the truncation radius. 
he simplest example of an orbital structure with this characteristic 

s the one in which only purely radial orbits are populated. For
 purely radial orbital structure, the distribution function has the 
orm 

 ( E, L ) = δ( L 

2 ) f rad ( E) , (38) 

n which f rad ( E) can be obtained from the density using an Eddington-
ike inversion formula that only involves a single differential (e.g. 
ichstone & Tremaine 1984 ; Oldham & Evans 2016 ; Ciotti & Ziaee
orzad 2018 ). In fact, the purely radial orbital structure can be
onsidered as a special limiting case of the TC orbital structure
or β0 → 1. 

The idea that a purely radial orbital structure can support a 
runcated density model is illustrated by the example of the truncated 
ingular isothermal sphere, which has the density profile 

( r ) = 

M 

4 π r T r 2 
� ( r T − r ) . (39) 

his simple model can be supported self-consistently by a purely 
adial orbital structure, as demonstrated by Fridman & Polyachenko 
 1984 ). Interestingly, the truncated singular isothermal sphere can 
e supported by the purely radial ( β = 1) and the purely circular ( β
 −∞ ) orbital structure, but not by any constant anisotropy model
ith −∞ < β < 1, including the ergodic model ( β = 0). 

.4 Connection to real dynamical systems 

he study presented here is primarily a theoretical study on the
xistence and consistency of radially truncated dynamical models. 
n this subsection, we discuss two aspects of our models in relation
o real dynamical systems. 

.4.1 The TOM dynamical structure 

e have demonstrated in this paper that many spherical density 
rofiles with a discontinuous radial truncation can be supported self- 
onsistently by a TOM orbital structure. It remains to be seen whether
uch a TOM orbital structure can be representative for the orbital
tructure of real dynamical systems. 

Observed galaxy clusters and simulated dark matter haloes tend 
o have an anisotropy profile that is roughly isotropic at the central
nd mildly to significantly radial at larger radii (Taylor & Navarro
001 ; Diemand, Moore & Stadel 2004 ; Ludlow et al. 2011 ; Lemze
t al. 2012 ; Wojtak, Gottl ̈ober & Klypin 2013 ; Butsky et al. 2016 ;
vensmark et al. 2021 ). The anisotropy profiles of observed galaxies
how a larger variety. A detailed study of the internal kinematics of
61 passive galaxies by Santucci et al. ( 2022 ) showed a variety
f anisotropies, with flatter galaxies on average more tangential 
nd more massive and round galaxies more radially anisotropic. 
stimates of the anisotropy of galaxies at large radii based on the
rbits of globular clusters also vary widely, from mildly radially 
nisotropic for the Milky Way (Gaia Collaboration 2018 ) and 
GC 5846 (Napolitano et al. 2014 ) to roughly isotropic for M87

Zhu et al. 2014 ) to significantly tangential for NGC 1407 (Spitler
t al. 2012 ). It needs to be added that these different estimates are
ften subject to significant systematic uncertainties. 
The radially truncated models and the TOM orbital structure 

iscussed in this paper might be most rele v ant in the context of
lobular clusters. Using detailed N -body simulations, Baumgardt 
 Makino ( 2003 ) and Sollima et al. ( 2015 ) argue that globular

lusters are nearly isotropic in the inner regions, but that their outer
arts rapidly become tangentially anisotropic. Vesperini et al. ( 2014 )
ound a similar orbital structure for simulated isolated globular 
lusters: an inner isotropic core, followed by a region of increasing
adial anisotropy. For clusters evolving in an external tidal field, 
o we v er, the y found that the tangential anisotropy peaks in the
luster intermediate regions and then progressively decreases, with 
he cluster outermost regions being characterized by isotropy or a 

ild tangential anisotropy. Bianchini, Sills & Miholics ( 2017 ) found
n even larger diversity in the orbital structure of their simulated
lobular clusters: at small radii, all globular clusters tend to be
sotropic, but they can be either radially or tangentially anisotropy 
n the intermediate and outer regions, with the velocity anisotropy 
rimarily depending on the strength of the tidal field cumulatively 
xperienced by a cluster. 

Detailed observations and dynamical models for nearby globular 
lusters also show a range of orbital structures. The best-fitting 
chwarzschild orbit-superposition model for ω Cen by van de Ven 
t al. ( 2006 ) is close to isotropic in the inner regions and becomes
ncreasingly tangentially anisotropic in the outer regions. In a study of 
ine inner Milky Way globular clusters, Cohen et al. ( 2021 ) found that
ost of their clusters are isotropic even out to their half-light radii,
hile NGC 6380 was found to be tangentially anisotropic beyond its
alf-light radius. 
MNRAS 519, 6065–6076 (2023) 
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.4.2 Sharp versus smooth truncation 

he goal of this series of papers is to study the existence of self-
onsistent dynamical models with a preset density distribution with
 finite extent. In this paper, we focused on such models created
y truncating smooth infinite-extent models abruptly at a truncation
adius. This results in models with a sharp and discontinuous density
runcation, with ρ( r ) �= 0 as r → r T . Such a discontinuous density
runcation is the simplest mathematical construction to generate a
runcation, but it is probably not so realistic when considering real
ynamical systems. Instead of a sharp and discontinuous truncation
ne could consider a more gradual truncation; this can be realized by
eplacing the Heaviside step function in equation ( 1 ) by a continuous
unction that smoothly tends to zero for r → r T and leaves the density
rofile unaffected for r 	 r T . This makes the mathematics of the
roblem significantly more complex, but one might wonder how it
ould affect the conclusions of this work. 
One of the immediate consequences of a discontinuous density

runcation is that such models can never be supported by an ergodic
rbital structure, as demonstrated mathematically in Section 2.1
nd discussed in Section 4.1 . Based on expression ( 6 ) one would
e inclined to argue that, for ρT = 0, the negativity of the ergodic
istribution function for E → E T is no longer a certainty, and thus that
moothly truncated models with an ergodic orbital structure might
e consistent. 
This situation reminds of the consistency analysis of the family of

roken power-law models, in which the density is a combination of
wo pure power laws merged the break radius (Du et al. 2020 ). Baes
 Camps ( 2021 ) demonstrated that broken power-law models can

ever be supported by an ergodic orbital structure, because the sharp
reak in the density profile at the break radius forces the ergodic
istribution function to be ne gativ e at binding energies just beyond
 b = �( r b ). Instead of the infinitely sharp density break that is a
efining property of the double power-law models, one can consider
 more gradual transition between the two power laws. This yields the
amily of double power-law models (Zhao 1996 ), where an additional
arameter controls the smoothness of the transition between the inner
nd outer power-law density profile. For sufficiently soft transitions,
hese double power-law models can be supported by an ergodic
rbital distribution. For sufficiently sharp transitions, ho we ver, we
ncounter the same situation as for the broken power-law models:
he distribution function is ne gativ e for E � E b and the ergodic model
s inconsistent. 

This case suggests that the replacement of the infinitely sharp
runcation by a more gentle one, with a truncated but continuous
ensity profile as a result, could result in a situation where consistent
rgodic orbital structures are possible as long as the truncation is
ufficiently soft. For truncations that are sufficiently sharp, one may
xpect the ergodic distribution function, and constant-anisotropy dis-
ribution functions, to remain inconsistent. An in-depth investigation
s beyond the scope of this paper. 

 SUMMARY  

his paper is the second in a series on the search for and the discussion
f self-consistent dynamical models with a finite extent. In the first
aper of this series (Paper I), we performed an in-depth study of the
niform density sphere, the simplest model with a radially truncated
ensity profile. By explicitly calculating the phase-space distribution
unction, we demonstrated that the uniform density sphere cannot be
upported by an ergodic, constant anisotropy, or radial Osipkov–

erritt orbital structure. On the other hand, we showed that it can be
NRAS 519, 6065–6076 (2023) 
upported by a TOM orbital structure, and more generally, by a TC
rbital structure as long as the central anisotropy is not radial. In this
econd paper, our ambition was to investigate in a more systematic
ay by which orbital structures radially truncated density models

an be supported. 
The first conclusion of this paper is that no radially truncated

pherical model with a density discontinuity at the truncation radius
an be supported by an ergodic orbital structure. This can be shown
xplicitly in a relatively straightforward way by calculating the
rgodic distribution function. The same conclusion accounts for all
onstant anisotropy or Osipkov–Merritt orbital structures: none of
hese orbital structures can support a radially truncated model with
 density discontinuity. 

Our second conclusion is that the TOM orbital structure with r a =
 T is capable of self-consistently supporting a large set of truncated
ensity models. We formulate a consistency hypothesis: if a spherical
ensity model can be supported self-consistently by an ergodic orbital
tructure, then the model that is radially truncated at r = r T can be
upported self-consistently by a TOM orbital structure with r a = r T .
he validity of this consistency hypothesis is not formally pro v en,
ut it is corroborated by an e xtensiv e suite of numerical tests. 

These results can be understood by considering a dynamical
odels as a superposition of orbits. The combination of a sharp

ensity truncation and the requirement of velocity isotropy at the
reak radius can only be realized by an infinite number of orbits with
inding energy E T , which generates a mass density excess at smaller
adii that can only be compensated by orbits with ne gativ e weights.
he result is a ne gativ e, and thus non-physical ergodic phase-space
istribution function. 
These conclusions demonstrate that the uniform density is not

 special case, but rather a typical example of a truncated density
odel. We hope this paper is another step towards a broader

nderstanding of the dynamical structure of models with a finite
xtent. 
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PPENDI X:  TO M  O R B I TA L  S T RU C T U R E  IN  

P H E C OW 

or the numerical calculation of the dynamical structure of an 
rbitrary spherical model under the assumption of a TOM orbital 
istribution, we needed to implement the rele v ant formulae in SPHE-
OW . The TOM orbital structure is characterized by an anisotropy
arameter r a , and it is only physically meaningful for spherical
ensity profiles with a finite extent and with r a � r T . In the remainder
f this section, it is assumed that the density profile ρ( r ) satisfies this
ondition. It is also assumed that the first and second deri v ati ves of
he density have been implemented, or that they can be computed
rom the surface density and its deri v ati ves. 

The radial velocity dispersion is most easily obtained as the 
olution of the Jeans equation, which becomes for the TOM orbital
tructure (Merritt 1985 ; Mamon & Łokas 2005a ), 

2 
r ( r ) = 

1 

	( r ) 

∫ r a 

r 

	( u ) GM ( u ) d u 

u 

2 
, (A1) 

ith 

( r) = 

(
1 − r 2 

r 2 a 

)
ρ( r) . (A2) 

he tangential velocity dispersion is 

2 
t ( r) = 2 [ 1 − β( r) ] σ 2 

r ( r) , (A3) 

ith the anisotropy profile β( r ) given by expression ( 8 ). The general
xpression for the projected velocity dispersion for an anistropic 
pherical model is (Binney & Mamon 1982 ; Dejonghe 1987 ) 

( R ) σ 2 
p ( R ) = 2 

∫ ∞ 

R 

[
1 − R 

2 

u 

2 
β( u ) 

]
ρ( u ) σ 2 

r ( u ) u d u √ 

u 

2 − R 

2 
, (A4) 
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( R ) σ 2 
p ( R ) = 2 

∫ r a 

R 

(
r 2 a − u 

2 + R 

2 

r 2 a − u 

2 

)
ρ( u ) σ 2 

r ( u ) u d u √ 

u 

2 − R 

2 
. (A5) 

n equi v alent expression, which eliminates one le vel of quadrature,
an be obtained by substituting expression ( A1 ) in this expression and
hanging the order of integration (Mamon & Łokas 2005b ; Agnello
t al. 2014 ; Ciotti 2021 ). The result is 

( R ) σ 2 
p ( R ) = 

∫ r a 

R 

w( u, R) ρ( u ) GM( u ) d u 

u 

2 
, (A6) 

ith 

w( u, R) = 

(
r 2 a − u 

2 

r 2 a − R 

2 

)
(A7) 

( 

2 r 2 a − R 

2 √ 

r 2 a − R 

2 
arctanh 

√ 

u 

2 − R 

2 

r 2 a − R 

2 
+ 

R 

2 
√ 

u 

2 − R 

2 

r 2 a − u 

2 

) 

. 

he TOM distribution function is obtained using equation ( 10 ). We
ecast this expression to a form that is more suitable for numerical
ntegration, 

 ( Q ) = 

1 

2 
√ 

2 π2 

[
2 r a ρ( r a ) 

GM tot 
√ 

Q − �( r a ) 
+ 

∫ r a 

r( Q ) 

� ( u ) d u √ 

Q − �( u ) 

]
, 

(A8) 
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ith 

 ( r ) = 

r 2 

GM ( r ) 

[
	 ′′ ( r ) + 	 ′ ( r ) 

(
2 

r 
− 4 π ρ( r ) r 2 

M ( r ) 

)]
. (A9) 

inally, for the pseudo-differential energy distribution (Cuddeford
991 ; Baes et al. 2021 ), i.e. the distribution of mass as a function of
 , we have 

 ( Q ) = f ( Q ) g( Q ) , (A10) 

ith g ( Q ) a pseudo-density-of-states function, 

( Q ) = 16 
√ 

2 π2 
∫ r( Q ) 

0 

(
1 − u 

2 

r 2 a 

)−1 √ 

�( u ) − Q u 

2 d u. (A11) 
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