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ABSTRACT

Galaxies, dark matter haloes, and star clusters have a finite extent, yet most simple dynamical models have an infinite extent. The
default method to generate dynamical models with a finite extent is to apply an energy truncation to the distribution function,
but this approach is not suited to construct models with a preset density profile and it imposes unphysical constraints on the
orbit population. We investigate whether it is possible to construct simple dynamical models for spherical systems with a preset
density profile with a finite extent, and ideally with a different range of orbital structures. We systematically investigate the
consistency of radially truncated dynamical models, and demonstrate that no spherical models with a discontinuous density
truncation can be supported by an ergodic orbital structure. On the other hand, we argue that many radially truncated models can
be supported by a tangential Osipkov—Merritt orbital structure that becomes completely tangential at the truncation radius. We
formulate a consistency hypothesis for radially truncated models with such an orbital structure, and test it using an analytical
example and the numerical exploration of a large model parameter space using the SPHECOW code. We physically interpret our
results in terms of the occupancy of bound orbits, and we discuss possible extensions of the tangential Osipkov—Merritt orbital

structure that can support radially truncated models.
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1 INTRODUCTION

In the study of galaxies, dark matter haloes, and star clusters,
analytical spherical dynamical models are one of the most useful
tools. They can serve as a first-order model to characterize these
structures, they are useful as the starting point for full-scale numerical
simulation, or they can act as a laboratory setting in which the
effects of physical processes can be explored. The impressive range
of applications of popular models such as the King models (King
1966), the isochrone sphere (Hénon 1959, 1960), the Hernquist
model (Hernquist 1990), the Plummer sphere (Plummer 1911), the
NFW model (Navarro, Frenk & White 1997; Lokas & Mamon 2001),
or the Sérsic model (Sérsic 1968; Ciotti 1991) clearly illustrates their
value.

In building spherical dynamical models, there are two main
approaches (Binney & Tremaine 2008; Ciotti 2021). The f-to-p
approach starts with an explicit expression for the phase-space
distribution function f(&, L), where £ and L represent the binding
energy and the angular momentum per unit mass, respectively. By
selecting a distribution function that is positive for all values of £
and L, one is automatically ensured that the dynamical model is
consistent, that is, physically viable. The disadvantage of this f-to-p
approach is that it does not lead to an explicit expression for any of
the important dynamical properties such as the density or the velocity
dispersion profiles. At best the density and potential can be obtained
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by numerically solving Poisson’s equation. As a result, this approach
is not suited to construct models with a preset density profile, as one
often wants to do.

The second approach, known as the p-to-f approach, starts from
an explicit expression for the density profile. The potential can be
derived using Poisson’s equation. With the assumption of an orbital
structure, the distribution function and all other important dynamical
properties can subsequently be calculated, at least in principle. The
main challenge of this approach is that, except for a number specific
choices for the orbital structure, the determination of the distribution
function is far from trivial (Dejonghe 1986). Moreover, not every
density profile can be generated self-consistently by any orbital
structure: only if the corresponding distribution function is positive
over the entire phase space, the dynamical model is consistent.
This is nearly impossible to know without actually calculating and
investigating the distribution function. Examples demonstrate that
the consistency is not always guaranteed, even for relatively simple
density profiles and orbital structures (e.g. Baes & Ciotti 2019a; Baes
& Camps 2021).

The vast majority of all analytical models presented in the literature
have an infinite extent, meaning that they have a non-zero density at
all radii. Dynamical systems such as galaxies or star clusters have
a finite extent, so it is meaningful to investigate the possibility to
build models with a finite extent. A popular way to do so is to
apply a truncation in binding energy to the distribution function.
By excluding the orbits with the lowest binding energies, one
automatically excludes all particles or stars beyond a given truncation
radius. The most famous example of this approach is the family of
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King models, which are energy-truncated versions of the isothermal
sphere (Michie 1963; King 1966; Binney & Tremaine 2008). There
are two major issues linked to this approach, however. The first one
is that energy-truncated models, by definition, belong to the f-to-p
category, so the density profile cannot be set at the beginning, and
all important dynamical properties can usually only be calculated
numerically. The second disadvantage is that a truncation in binding
energy imposes artificial and unphysical constraints on the system
(Kashlinsky 1988). Indeed, it prohibits a fraction of orbits in the
model to be populated, even though these orbits are gravitationally
bound to the system and remain within the allowed radial range.
Especially nearly circular orbits near the truncation radius of the
system are excluded when an energy truncation is applied.

This raises the question whether it is possible to construct simple
dynamical models for spherical systems with a preset density
profile with a finite extent, and ideally with a different range of
orbital structures. In Baes (2022a), hereafter Paper I, we started
our investigation into this question by looking in detail at the special
case of the uniform density sphere, the simplest model with a radially
truncated density profile. It was already well known that the uniform
density sphere cannot be supported by an ergodic orbital structure
(Zel’dovich et al. 1972; Osipkov 1979; Binney & Tremaine 2008).
We demonstrated that the uniform density sphere is also inconsistent
with any constant anisotropy or radial Osipkov—Merritt orbital
structure, but we constructed a family of self-consistent dynamical
models for the uniform density sphere in which all possible orbits
are populated.

In this paper, the second in a series on self-consistent dynamical
models with a finite extent, we systematically investigate the con-
sistency of radially truncated dynamical models. More specifically,
we start from an arbitrary spherical density profile po(r) with an
infinite extent, thus po(r) > 0 for all r, and we create a new model
by applying a radial truncation to this density profile,

p(r) = po(r) O(ry — 1), )]

where r; represents the truncation radius and ©(x) the Heaviside
step function. We stress that we specifically focus on models with a
discontinuous truncation, so with p(r) # 0 for r — r;. We want to
investigate whether it is possible to build self-consistent dynamical
models corresponding to this density profile, and if so, to find out
which orbital structure would support it.

This paper is organized as follows. In Section 2, we present a
general consistency analysis for radially truncated models of the
type (1). We start by considering ergodic models (Section 2.1)
and subsequently move on the type II Osipkov—Merritt models
(Section 2.2). At the end of this section, we formule a consistency
hypothesis for radially truncated models, which we test in Section 3
using both an analytical case (Section 3.1) and a general numerical
approach (Section 3.2). In Section 4, we discuss our findings, and
we summarize in Section 5.

2 GENERAL CONSISTENCY ANALYSIS

2.1 Ergodic orbital structure

To investigate whether the model defined by the density profile (1)
can be supported self-consistently by an ergodic orbital structure,
we need to calculate the unique ergodic distribution function f(&)
and check whether it is positive over the entire phase space. The
ergodic distribution function can be calculated through the standard
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Eddington equation,

&=

1 d /5 dg  dv @
2272 dE oy dY JE—U'
where p(W) represents the augmented density, that is, the density

written as a function of the potential (Dejonghe 1986). Since the
density is truncated at r = rr, we find for the augmented density

A(W) = po(V) O — &), 3

with the truncation energy & defined as & = W(r;). The formal
derivative is

dp »
@(‘P) = Po(W) O(¥ — &) + pr (¥ — &), “4)
where we have introduced the notation

pr = po(rr) = po(Er) > 0. ()

Inserting expression (4) in Eddington’s equation and applying partial
integration, we obtain

f(&) = pr 8(E — &) . O — &) [ Pr
2/272 JE =& 2272 [2(E = &)
LY M] ©
ENE=& e VE-W T
where we have used the fact that
e =" pg“:”). @)

Expression (6) shows several interesting characteristics. First, the
distribution function is identically zero for £ < &;, which means
that orbits with binding energy below the truncation energy &
are not populated. A radial truncation of the density profile thus
automatically generates a truncation in binding energy for the ergodic
distribution function. Secondly, the first term in (6) contains a Dirac
delta function at the truncation energy. In principle, a Dirac delta
function term in the distribution function is not necessarily an issue,
but the fascinating aspect here is that the weight is infinite. Finally, the
term between the square brackets in equation (6) is always negative at
binding energies just beyond the truncation energy. Indeed, the first
term will dominate the distribution function for £ 2 &;, and since
pr > 0, we find that the distribution function is negative. We thus
find that all spherical models with a discontinuous density truncation
have inconsistent ergodic distribution functions, that is, they cannot
be supported by an ergodic orbital structure.

2.2 Tangential Osipkov—Merritt orbital structure

The fact that truncated models cannot be supported by an ergodic
orbital structure does not imply that it is impossible to generate
self-consistent dynamical models for them. Some orbital configu-
rations are less demanding than others. In particular, tangentially
anisotropic dynamical models are generally less demanding than
radially anisotropic ones. If we want to search for positive distribution
functions, and thus physically viable dynamical models for truncated
density profiles, it seems wise we have to focus on orbital structures
with tangential anisotropy.

One interesting option is the class of tangential Osipkov—Merritt
models. These models, denoted as type II models by Merritt (1985),
are characterized by an ellipsoidal velocity distribution and an
anisotropy profile that gradually changes from isotropic in the centre
to completely tangential at the radius r,, the anisotropy radius. More
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specifically,

r2

B(r) = — ®)

2 _ 20
A r

These type II or tangential Osipkov—Merritt (hereafter TOM) models
are only meaningful for models with a finite extent, with r, > ry.
In Paper I, we showed that the uniform density sphere cannot be
supported by an ergodic orbital structure, but that it can be supported
by a TOM orbital structure with r, = ry.

To investigate whether TOM models are a valid option for general
truncated density models, we need to go through a similar analysis
as for the ergodic case: we need to calculate the distribution function
and check the positivity over the entire phase space. The distribution
function of TOM models depends on binding energy £ and angular
momentum L only through the combination

2

L
0= E—I—;. 9)

Given a density profile and anisotropy radius, it can be obtained using
an inversion relation similar to equation (2),

Q dQ
= 1
fE& L= f(Q)= 2fn2 dQ v «/ﬁ (10)
with
r2
o(W) = <1 - 7) p(r) (1)
a r=r(¥)

With a density profile as in equation (1), the function o(\V) reads
o(W) = 0o(W) O — &). (12)

Comparing the expressions (10) and (12) to the expressions (2) and
(3), we see that we have formally identical equations as in the ergodic
case if we make the substitutions g — @ and £ — Q. As a result,
we can immediately write for the distribution function,

£(0) = pr Q@ —-&) ©Q—-¢&) { or
2272 VO =& 2272 [2(0 — &)
+ &) 2 of(w) d\p} (13)
VO =& a NO—V |
with
2
or =o0(&) = (1 - %) Or. (14)
ra

In the general case with r, > r;, we have o; > 0, and we can,
based on the discussion in the previous subsection, conclude that
the distribution function (13) is not positive over the entire phase
space. The TOM dynamical models with r, > r; are thus physically
inconsistent.

The situation changes for the special case r, = rr, however. In
this case the anisotropy changes systematically from isotropy in the
centre to complete tangential anisotropy at the truncation radius,

r2

B(r) = — (15)

2 _ 2

Equation (12) shows that o; = 0 in this case, and as a result the
distribution function simplifies to

00 - &) 2pr ¢ Q(’)’(‘P)d‘lf}
= Ry =—————— . 16
1(Q) ot L} %Q—ETJF . VO—U (16)

Compared to the general case (13), both the term with the Dirac
delta function and the term that diverges negatively for O = &; have
disappeared.
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Unfortunately, it is not immediately possible to make firm general
statements about the positivity of this expression over the entire
phase space: whether or not this expression is positive for all values
of Q depends on the specific shape of the density profile and on
the value of the truncation radius. On the other hand, it is clear
that the expression (16) has the potential to be a positive and hence
physically viable distribution function for large classes of truncated
density models. For the smallest values of Q for which the distribution
is non-zero, Q 2 &, first term between the square brackets will
dominate the expression, and this term is always positive. For the
largest values of Q, corresponding to the smallest radii, the TOM
models are isotropic and we expect a similar behaviour as the ergodic
distribution function of the non-truncated model.

Based on these considerations, we formulate the following con-
sistency hypothesis: If a spherical density model can be supported
self-consistently by an ergodic orbital structure, then the model that
is radially truncated at r = ry can be supported self-consistently by
the TOM orbital structure with r, = ry.

3 TESTING THE CONSISTENCY HYPOTHESIS

In this section, we test the consistency hypothesis we formulated at
the end of Section 2. We first present a family of truncated density
models for which we can analytically calculate the distribution
function under the assumption of a TOM orbital structure. This
allows an explicit investigation of the consistency of these dynamical
models. Subsequently, we will explore a larger suite of models using
numerical means.

3.1 A completely analytical model

As our first test case, we consider a truncated version of the Plummer
(1911) sphere, one of the most popular models in stellar dynamics
studies. This model is characterized by the density profile

3 M r2\ "
po(r) = ir b (1 + ﬁ) ) (17)

where M is the total mass, and b is scale length. In the remainder of
this section, we use dimensionless units in which G =M =b =1,
which simplifies the density profile to

3 _
o) = (1412772, (18)

The Plummer model is famous for having a simple power-law ergodic
distribution function (Binney & Tremaine 2008), and for the fact
that the distribution function can also be calculated analytically for
various other orbital configurations (Osipkov 1979; Merritt 1985;
Dejonghe 1986, 1987; Cuddeford 1991; Baes & Van Hese 2007).

When we apply a radial truncation to the density profile (18), we
obtain

3
pr) = (1+7) RO — ). (19)

Introducing the notation

1

s =, (20)
V1+r2
the potential of this truncated Plummer model can, for r < rp, be
written as
! 3
V()= —— —s5°. (21

V1472
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Combining the expressions (11), (18), and (21), we can immediately
derive a compact expression for the function oo(¥),

00(W) = [(\If 457 =52 (w4 s3)3} . 22)

4 (1 — s2)

Inserting this expression into the general expression (16), we find,
after some algebra, an explicit expression for the TOM distribution
function,

f(Q)=

372 O(Q — &) { 7s
5673 (1-s2) |JO=&
with V(Q) a cubic polynomial,

V(Q) =2 (40 +3s +4s°) [80% — 25(1 — 85H)Q

+ 52(1 — 25 + 8sH)] (24)

+V(Q) VO - 5T:| . (23)

and with
E=s(1-5%). (25)

In Fig. 1, we show a number of characteristics of the family of
truncated Plummer models for different values of the truncation
radius. The upper panel shows the density, which is identical for
all models up to the truncation radius, where it abruptly truncated.
As a result of this truncation, the total mass is reduced and the
gravitational potential (middle panel) is a decreasing function of r;
at every radius. The lower panel shows the distribution function (23)
as a function of Q, normalized to the central value of the potential.
For each value of rr, the distribution function is zero for all Q < &,
it diverges towards infinity when Q approaches &; from the high
binding-energy side, and is positive for all & < Q < W(0). The
most important characteristic is that the distribution function is non-
negative for all Q, that is, over the entire phase space. This means that
the truncated Plummer model can be supported by a TOM orbital
structure.

We note that the behaviour described above applies to any value of
the truncation radius: all truncated Plummer models can be supported
by a TOM orbital structure. Looking at the systematic behaviour as a
function of truncation radius, we note that all quantities shown tend
to converge to the yellow curves when r; increases. These yellow
curves correspond to the limiting case rr — 00, or no truncation at
all. When we set r = r, — 00 in equations (9), (20), and (25), we
have Q =&, s = 0 and & = 0, and the distribution function (23)
reduces to
1= 292 g, (26)

T3
This distribution function is nothing but the ergodic distribution
function of the non-truncated Plummer model (Dejonghe 1987;
Binney & Tremaine 2008).

3.2 Numerical investigation using SPHECOW

The Plummer model is quite unique in that the TOM distribution
function of the truncated version can be calculated analytically, and
the positivity can therefore easily be tested. For the vast majority of
spherical density profiles this is not the case. In order to further test
our consistency hypothesis, we resort to a numerical investigation.

3.2.1 Implementation in SPHECOW

SPHECOW (Baes, Camps & Vandenbroucke 2021) is a software
tool designed to numerically explore the dynamical structure of
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Figure 1. Some properties of the family of truncated Plummer models for
different values of the truncation radius rr. The different panels show the
density (upper), potential (middle), and distribution function (bottom). We
have chosen dimensionless units with G =M =b = 1.

any spherical model defined by an analytical density profile or
surface density profile. The code contains implementations for many
commonly used models, including the Plummer, Hernquist, Jafte,
NFW, Sérsic, Nuker, Einasto, and Zhao models, and is set up in such
a way that new models can easily be added. For each model, the user
can numerically explore the most important dynamical quantities,
such as velocity dispersion profiles, the distribution function, and
the differential energy distribution, under the assumption of either an
ergodic or a radially anisotropic Osipkov—Merritt orbital structure.
Recent applications of SPHECOW include detailed analyses of the
families of Sérsic, Nuker, and Einasto models (Baes & Ciotti 2019a,
b; Baes 2020, 2022b), a study of the physical consistency of the
double and broken power-law models (Baes & Camps 2021), and
an investigation of the differential energy distribution and the total
integrated binding energy of dynamical models (Baes & Dejonghe
2021).

For the purpose of testing our consistency hypothesis for truncated
models, two extensions to SPHECOW were required. The first exten-
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sion was an implementation of the truncated version of large suite of
density models. Secondly, as the code only considered ergodic and
radially anisotropic Osipkov—Merritt models, we needed to expand
its applicability to TOM orbital structures.

The first task was relatively straightforward. Rather than im-
plementing a truncated version for every single existing, and fu-
ture, model in SPHECOW, we used a generic approach based on
the decorator design pattern. In object-oriented programming, a
decorator is a design pattern that dynamically attaches additional
responsibilities to an object (Gamma et al. 1994; Freeman et al.
2004). It provides a flexible and powerful alternative to subclassing
for extending functionality. In the SPHECOW context, we defined a
new TruncatedModel class that takes another model as input
and truncates its density profile at a user-specified truncation radius.
The advantage of the decorator approach is clear: we only had to
implement the TruncatedModel decorator class once, and it can
be applied to any possible model. It can also be applied to models
without an analytical density profile, that is, models with an analytical
surface density profile as starting point, such as the Sérsic or Nuker
models.

For the numerical calculation of the dynamical structure of an
arbitrary spherical model under the assumption of a TOM orbital
distribution, we needed to implement the relevant formulae, and
convert them to integrations with respect to radius. Most of these
formulae are modest adaptations of the formulae corresponding
to a radial Osipkov—Merritt orbital distribution, as presented in
section 2.1.3 of Baes et al. (2021), based on expressions derived
by various authors (e.g. Osipkov 1979; Merritt 1985; Cuddeford
1991; Baes & Dejonghe 2002; Mamon & Lokas 2005a; Agnello,
Evans & Romanowsky 2014; Ciotti 2021). In Appendix A, we give
explicit expressions for the most important dynamical quantities as
implemented in SPHECOW.

To check the accuracy of the new implementations, we have
compared the results of the SPHECOW calculations for the truncated
Plummer model to the analytical results shown in Fig. 1. The top
panel shows the relative error on the distribution function. For 128
Gauss—Legendre integration points, as suggested by Baes et al.
(2021) to be a good compromise between accuracy and speed,
we reproduced the analytical distribution function with a typical
root mean square relative error of the order of 107, The bottom
panel shows a comparison involving more complex calculations.
The purple data in Fig. 2 shows the remaining mass of the truncated
Plummer model as a function of the truncation radius. The solid
line shows the analytical result, whereas the dots show the SPHECOW
calculation, obtained by integrating the pseudo-differential energy
distribution N(Q) over all values of Q. Even the calculation of
this quantity, which contains various nested levels of numerical
quadrature, is accurate to at least eight significant digits. The red data
show the calculation of the total kinetic energy as a function of ry,
and the solid line represents the analytical result. The dots represent
the SPHECOW results, obtained by integrating the velocity dispersion
profiles, which by themselves involve two levels of quadrature.
Also here, we easily recover the analytical results to at least eight
significant digits.

3.2.2 Exploration of the model space

The extended SPHECOW code allows a numerical investigations of the
consistency hypothesis formulated at the end of Section 2.2. Our ap-
proach was relatively straightforward: for each model implemented
in SPHECOW for which we know that the ergodic distribution function
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Figure 2. Convergence tests for the implementation of the truncation
decorator and the TOM orbital structure within SPHECOW. The top panel
shows the relative error between the analytical value and the SPHECOW value
for the TOM distribution function of the truncated Plummer model, for the
same truncation radii as shown in Fig. 1. The bottom panel shows the total
mass and the total kinetic energy of the truncated Plummer model as a function
of the truncation radius. Dots show the results of the SPHECOW calculation
(see text for details), solid lines are the analytical results. We have chosen
dimensionless units with G =M =b = 1.

is positive for all binding energies, we constructed different truncated
versions by selecting different truncation radii. Subsequently, we
calculated the corresponding TOM distribution function and we
checked its positivity over all & < Q < W,. At the same time, we
calculated some other dynamical quantities, such as the velocity
dispersion and the pseudo-differential energy distribution, which
were used to test the validity of the calculations using the consistency
checks described in Section 3.2.1.

Fig. 3 presents an example of this approach for the family of
Einasto models. The structure and dynamics of this family of models
has been investigated by various authors (e.g. Cardone, Piedipalumbo
& Tortora 2005; Mamon & Ltokas 2005a; Dhar & Williams 2010;
Retana-Montenegro et al. 2012a; Retana-Montenegro, Frutos-Alfaro
& Baes 2012b). Using the SPHECOW code, Baes (2022b) showed
that the Einasto model has a positive ergodic distribution function
for all models with Einasto index n > % Fig. 3 shows the density,
distribution function, and pseudo-differential energy distribution for
Einasto models with different Einasto indices (different colours)
and different truncation radii: the top row corresponds to the non-
truncated Einasto model (r; — 00), and the subsequent row to
gradually decreasing values (rr = 5, 1 and 0.2). These three values
have been chosen as representative for the three regimes: they
correspond to a truncation beyond, at, and before the half-mass
radius, respectively.

In all cases, we see that the behaviour of the dynamical properties
at small radii (» < r;) mimics the behaviour of the corresponding
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Figure 3. Density (left-hand column), distribution function (middle column), and pseudo-differential energy distribution (right-hand column) for a set of
truncated Einasto models, assuming a TOM orbital structure. The different rows correspond to decreasing values of ry, with the top row corresponding to the
non-truncated models (rr — 00) and the bottom row to model truncated at small radii (rr = 0.2). Within each panel, different colours correspond to Einasto
models with different values for the Einasto index, n, as indicated in the upper left panel. We have adopted dimensionless units with G =M =r, = 1.

non-truncated ergodic Einasto models. In particular, we find that the
distribution function for the limiting n = % model, corresponding
to a truncated Gaussian density profile, converges to a finite, non-
zero value for Q — W(0) for all values of ry, whereas all models
with larger Einasto index have a distribution function that diverges
as Q approaches W(0). This similarity is logical as all models share
the same density profile for r < r;, and the TOM models are also
isotropic at small radii (r < ry). The similarity at small radii between
the TOM truncated models and the ergodic non-truncated models
decreases for decreasing rr, as can be expected.

At larger radii, on the other hand, we find a radically different
behaviour between the truncated and non-truncated models. For
the standard Einasto models, the ergodic distribution function is
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a positive and monotonically increasing function of binding energy
over the entire range 0 < £ < W(0), and for £ — 0 we find that the
distribution function smoothly converges to zero. For the truncated
models, the distribution function is identically zero for all 0 < Q <
&r, and it diverges as (Q — &)~'/? for Q 2 &, as expression (16)
indicates. A similar radical change in behaviour is seen at large
radii when comparing the differential energy distribution for the
isotropic models and the pseudo-differential energy distribution of
the corresponding truncated models.

The main result of this numerical investigation is that all truncated
Einasto models with n > 1 have a distribution function that is

2
positive over the entire range of Q, for each value of the truncation
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radius. These truncated models can thus be supported by a TOM
orbital structure with r, = ry.

We have repeated this exercise for different models with a positive
ergodic distribution function, including the families of Dehnen or y -
models (Dehnen 1993; Tremaine et al. 1994), Sérsic models (Ciotti
1991; Baes & Ciotti 2019a), and generalized NFW models (Jing &
Suto 2000; Merritt et al. 2006). We consistently find the same result:
for the range of parameters for which these models have a positive
ergodic distribution function, all the truncated counterparts can be
supported by a TOM orbital structure.

4 DISCUSSION

4.1 Physical interpretation: orbit occupancy

The main result of this paper is that radially truncated spherical
models with a density discontinuity can never be supported self-
consistently by an isotropic orbital structure, whereas they can often
be supported by a TOM orbital structure with r, = rr. In Section 2,
we have provided a mathematical proof, but we have not yet provided
a physical interpretation.

To understand these results physically, it is useful to view
a dynamical model as a combination of orbits, essentially as
in Schwarzschild’s orbit superposition method (e.g. Richstone &
Tremaine 1984; Neureiter et al. 2021). Each orbit in a spherical
potential is a plane Rosetta orbit, and we group all the orbits with the
same pericentre and apocentre into a single building block (which
we still call an orbit). The construction of a dynamical model comes
down to determining the weight of each orbit. When building up a
spherical dynamical model in this way, it is most convenient to start
at the outermost radius and to gradually add orbits to the mixture
with continuously decreasing apocentres. For each apocentre r, we
have a range of orbits to choose from, corresponding to different
pericentres r_, and we have to determine the weight of each of them
by ensuring that both the resulting density and velocity distribution
at r = ry are in agreement with the predetermined density and orbital
structure.

When viewing a dynamical model in this way, it might seem
strange that some distribution functions are negative. The reason
is that each orbit does not only contribute to the density at its
apocentre, but it also pollutes the density at smaller radii, and
these contributions need to be taken into account when calculating
the density and velocity distribution. Adding orbits with a given
apocentre to reproduce the constraints at that radius can sometimes
create an excess at smaller radii that can only be lifted by adding
orbits with a negative weight, which obviously does not lead to a
physically valid dynamical model.

Let us now concentrate on models with a discontinuous radial
density truncation, and specifically look at the ergodic orbital
structure. If we want to build up an ergodic distribution function,
we can only add families of orbits to the mixture, all with the
same binding energy. If we start building up these models outside-
in, we first need to add the family of orbits that reaches r; at the
apocentre of the radial member of this family, which corresponds
to the binding energy £ = &;. This ergodic family of orbits has a
distribution function f(£) = ¢ (€ — &), with ¢ a constant that sets
the weight of this family. The density profile corresponding to this
distribution function is

W(r)
o(r) = 4\/§7T/ FE V() — EdE
0
=427 c\/U(r) — E O — ). (27)
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None of the orbits extends beyond rr, as required. On the other hand,
we note that this density profile smoothly converges to zero at 7 = rr.
Since all other families of orbits with £ < &; do not contribute to the
density at the truncation radius, the only way to realize a sharp density
truncation at r = ry is to give the family above an infinite weight, that
is, by including an infinite number of stars in the mixture with binding
energy &r. This will obviously create an infinite density at all radii
r < rr as well, which can only be alleviated by adding orbits with
negative weights, such that the final sum is finite. This combination
of positive and negative contributions can be seen in equation (6):
the first term contains the infinite positive contribution at the discrete
binding energy £ = &, whereas the second term accounts for the
negative contribution (and potentially some positive contributions
as well). These negative weights imply that the dynamical model is
non-physical.

The same situation arises for many other orbital structures: not
only ergodic orbital structures will fail to support radially truncated
density models, but actually most orbital structures. In Section 2.2,
we demonstrated that they cannot be supported by TOM orbital
structures with r, > rr, and the same argumentation goes for, for
example, models with constant anisotropy or a radial Osipkov—
Merritt orbital structure. For the specific case of the uniform density
sphere, this was demonstrated explicitly in Paper 1.

For TOM models with r, = rr, we can start populating the model
with a mix of orbits with r, = r; without immediate problems,
and we can gradually work our way inwards, while attempting to
reproduce both the density and the velocity distribution at each radius.
The examples shown throughout this paper demonstrate that many
truncated spherical density profiles can be generated self-consistently
by a TOM orbital structure with r, = rr.

4.2 The consistency hypothesis

At the end of Section 2.2 we formulated a consistency hypothesis that
states that any truncated density model for which the non-truncated
counterpart can be supported by an ergodic orbital structure, can be
supported by the TOM orbital structure with r, = rr. A number of
reflections on this consistency hypothesis are appropriate.

First of all, we emphasize that this hypothesis remains an hy-
pothesis. We tested its validity by numerically calculating the TOM
distribution functions for a large set of such models, and consistently
obtained the same result. This strengthens our conviction that it
is generally valid, but it is not conclusive evidence. Attempts to
formally proof the positivity of the TOM distribution function, or
more specifically the second term between the square brackets in
equation (16), given the positivity of the ergodic distribution function
of the non-truncated model, did not lead to useful results.

Secondly, it is useful to indicate that our consistency hypothesis
is a sufficient but not a necessary criterion. It is easy to generate
truncated density models that can be supported by a TOM orbital
structure while the non-truncated version cannot be supported by
an ergodic distribution function. A simple example is the uniform
density sphere, which can be supported by a TOM orbital structure
(Paper I). The uniform density sphere is, however, also the truncated
version of any broken power-law model with y = 0, and none
of these models can be supported by an ergodic orbital structure
(Baes & Camps 2021). Interestingly, the TOM orbital structure can
potentially even support truncated density models with a central
hole. It is well known that the density needs to be a monotonically
decreasing function of radius for a model to be supported by an
ergodic distribution function, which can be considered as a special
case of the global density slope—anisotropy inequality (GDSAI;
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Ciotti & Morganti 2009, 2010),
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The GDSALI is shown to be satisfied for all dynamical models with a
separable augmented density for which the central anisotropy Sy < %
(An 2011a, b; Van Hese, Baes & Dejonghe 2011). For the models
with a TOM orbital structure, which belong to this class of models,
the GDSAI becomes

2r?

> =5 (29)
All models with a monotonically decreasing density profile automat-
ically satisfy this criterion, since the right-hand side of this inequality
is always negative. Interestingly, the GDSAI leaves the door open
for models in which y(r) is not necessarily positive over the entire
radial range, including models with a central density hole.

A third and final reflection on the consistency hypothesis is that
not all truncated density models can be supported self-consistently
by a TOM orbital structure. It is easy to generate counter-examples.
For example, Baes (2022b) showed that Einasto models with Einasto
index n < % cannot be supported by an isotropic orbital structure.
These models are created by a very flat density profile at small
radii, followed by a very sharp (but not infinitely sharp) break in
the density profile. If this model is truncated at a sufficiently small
radius, it essentially reduces to the uniform density sphere, which is
compatible with a TOM orbital structure. Truncating it at a radius
beyond the break radius results in a model that cannot be supported

self-consistently by a TOM orbital structure.

4.3 Alternative orbital structures

The TOM orbital structure with r, = rr is a viable option that can
support many, but not all, truncated density profiles. On top of that,
the TOM orbital structure has the very useful characteristic that
the determination of the distribution function is relatively simple: it
can be derived from the density using an Eddington-like inversion
formula involving just a single integral. It is only natural to wonder
whether there are other options that can or should be explored.

The purely circular orbit model is an obvious alternative: since
circular orbits do not pollute the density at smaller radii, circular orbit
models in principle work for all possible density profiles (Richstone
& Tremaine 1984; Binney & Tremaine 2008). There are other, more
general, alternatives, however.

4.3.1 Tangential Cuddeford orbital structure

One interesting alternative, or rather generalization of the TOM
orbital structure, is what we can refer to as the tangential Cuddeford
(hereafter TC) orbital structure. This orbital structure, presented in
Paper I for the special case of the uniform density sphere, is an
extension of the type of dynamical models proposed by Cuddeford
(1991) to tangentially anisotropies. The TC orbital structure is
characterized by the anisotropy profile

2
mn=m—a—m(2r2>. (30)
re—r
For each choice of the parameter By < 1, models with this orbital
structure are indeed completely tangential at the truncation radius.
The TC orbital structure is clearly a generalization of the TOM one,
which just corresponds to 8y = 0. Models with By < 0 are tangentially
anisotropic in the central regions and systematically get even more
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tangential for increasing radius. Models with By > 0 are radially
anisotropic in the central regions, and they first become isotropic and
subsequently tangentially anisotropic when moving to larger radii.

The distribution function corresponding to the TC orbital structure
has the general form

fE L)y= L7 f.(Q), (€3))

with Q given by equation (9) and f-(Q) a function that can be
obtained from the density using an Eddington-like inversion formula
(see Paper I for details). Whether or not a TC orbital structure is a
viable option for a given truncated density model depends on the
specific shape of the density profile, on the value of the truncation
radius, and on the value of the central anisotropy. In particular,
the central density slope—anisotropy inequality (An & Evans 2006)
needs to be satisfied as a minimum requirement to have a positive
distribution function. For the uniform density sphere, all TC models
with By < 0 are consistent, whereas models with radially anisotropic
central regions (8p > 0) are not, as expected based on the central
density slope—anisotropy inequality and as demonstrated explicitly in
Paper I. A similar consistency analysis can in principle be performed
for other radially truncated models.

4.3.2 Other orbital structures with tangential anisotropy at the
truncation radius

As far as we are aware, the TC orbital structure, with the TOM as
a special case, is the only orbital structure that becomes completely
tangentially anisotropic at the truncation radius and that allows for a
direct calculation of the distribution function using an Eddington-like
inversion formula. It is possible to construct dynamical models with
other, more general anisotropy profiles that become purely tangential,
but in those cases the calculation of the distribution function is far
more involved.

One possible way forward is an approach based on separable
augmented densities. For any given potential-density pair, there are
infinitely many different options to create augmented densities. Each
choice completely determines an independent dynamical model,
and there is a one-to-one correspondence between the augmented
density and the distribution function (Lynden-Bell 1962; Dejonghe
1986; Hunter & Qian 1993). A major advantage of using separable
augmented densities, i.e. functions of the form

A, r) = o(¥)gr), (32)

is that the anisotropy profile of the resulting dynamical model only
depends on the function g in a simple way (e.g. Qian & Hunter 1995),

1 dlng

PO="3 dinr

This characteristic makes it possible to set up models with a preset
density profile and a preset anisotropy profile. In particular, we can
aim at dynamical models that are completely tangential at r = r;
and which might be suitable options for radially truncated models.
Taking inspiration from Baes & Van Hese (2007), we can consider
the function

r\ 2P0 F28N ¢/
g(r) = (7) <1 - rT‘S) ) (34

with parameters By < 1, & > 0, and 6 > 0. The corresponding
anisotropy profile for r < rris

(r). (33)

728
B(r)=po—§ <W> > (35
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which becomes completely tangential at the truncation radius.
Comparing this to the expressions (15) and (30), we see that it reduces
to the TC orbital structure for the special case £ =1 — By and § =
1, and to the TOM orbital structure for f =0and § =§ = 1.

For a given density profile, the calculation of the augmented den-
sity is usually straightforward. The main challenge is the calculation
of the corresponding distribution function. In general, the inver-
sion from augmented density to distribution function involves the
combination of a forward and an inverse Laplace-Mellin transform
(Dejonghe 1986). For the case of separable augmented densities,
the Laplace and Mellin transforms can be separated, but the entire
inversion still remains a significant challenge. One characteristic we
can exploit is that the inversion is a linear operation. If we manage
to expand the factor o(V) in the augmented density (32) as a linear
combination of simpler components,

o(W) = cron(W), (36)
k

and for each component p; (W, r) = o, (V) g(r) we can calculate the
corresponding distribution function Fy(&, L), then we immediately
have the distribution function for the complete model,

fE L)=) aF(E L) (37)
k

This approach has been applied by Van Hese, Baes & Dejonghe
(2009) to construct distribution functions with a general anisotropy
profile for the set of realistic dark matter halo models proposed by
Dehnen & McLaughlin (2005), based on the library of analytical
components set up by Baes & Van Hese (2007). In principle, this
approach can also be followed for the radially truncated density
models considered in this paper if one wants to generate models with
a more general anisotropy profile than the TOM or TC ones.

4.3.3 Purely radial orbital structure

Up to now we have focused on orbital structures that become
completely tangential at the truncation radius as candidates to support
truncated density models. There is, however, another possibility:
orbital structures that are completely radial at the truncation radius.
The simplest example of an orbital structure with this characteristic
is the one in which only purely radial orbits are populated. For
a purely radial orbital structure, the distribution function has the
form

FE, L) =8(L) fraa(©), (33)

inwhich f,4(€) can be obtained from the density using an Eddington-
like inversion formula that only involves a single differential (e.g.
Richstone & Tremaine 1984; Oldham & Evans 2016; Ciotti & Ziaee
Lorzad 2018). In fact, the purely radial orbital structure can be
considered as a special limiting case of the TC orbital structure
for By — 1.

The idea that a purely radial orbital structure can support a
truncated density model is illustrated by the example of the truncated
singular isothermal sphere, which has the density profile

=M o ) 39
p) = G Ol 1) (39)

This simple model can be supported self-consistently by a purely
radial orbital structure, as demonstrated by Fridman & Polyachenko
(1984). Interestingly, the truncated singular isothermal sphere can
be supported by the purely radial (8 = 1) and the purely circular (8
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= —00) orbital structure, but not by any constant anisotropy model
with —oo < B < 1, including the ergodic model (8 = 0).

4.4 Connection to real dynamical systems

The study presented here is primarily a theoretical study on the
existence and consistency of radially truncated dynamical models.
In this subsection, we discuss two aspects of our models in relation
to real dynamical systems.

4.4.1 The TOM dynamical structure

We have demonstrated in this paper that many spherical density
profiles with a discontinuous radial truncation can be supported self-
consistently by a TOM orbital structure. It remains to be seen whether
such a TOM orbital structure can be representative for the orbital
structure of real dynamical systems.

Observed galaxy clusters and simulated dark matter haloes tend
to have an anisotropy profile that is roughly isotropic at the central
and mildly to significantly radial at larger radii (Taylor & Navarro
2001; Diemand, Moore & Stadel 2004; Ludlow et al. 2011; Lemze
et al. 2012; Wojtak, Gottlober & Klypin 2013; Butsky et al. 2016;
Svensmark et al. 2021). The anisotropy profiles of observed galaxies
show a larger variety. A detailed study of the internal kinematics of
161 passive galaxies by Santucci et al. (2022) showed a variety
of anisotropies, with flatter galaxies on average more tangential
and more massive and round galaxies more radially anisotropic.
Estimates of the anisotropy of galaxies at large radii based on the
orbits of globular clusters also vary widely, from mildly radially
anisotropic for the Milky Way (Gaia Collaboration 2018) and
NGC 5846 (Napolitano et al. 2014) to roughly isotropic for M87
(Zhu et al. 2014) to significantly tangential for NGC 1407 (Spitler
et al. 2012). It needs to be added that these different estimates are
often subject to significant systematic uncertainties.

The radially truncated models and the TOM orbital structure
discussed in this paper might be most relevant in the context of
globular clusters. Using detailed N-body simulations, Baumgardt
& Makino (2003) and Sollima et al. (2015) argue that globular
clusters are nearly isotropic in the inner regions, but that their outer
parts rapidly become tangentially anisotropic. Vesperini et al. (2014)
found a similar orbital structure for simulated isolated globular
clusters: an inner isotropic core, followed by a region of increasing
radial anisotropy. For clusters evolving in an external tidal field,
however, they found that the tangential anisotropy peaks in the
cluster intermediate regions and then progressively decreases, with
the cluster outermost regions being characterized by isotropy or a
mild tangential anisotropy. Bianchini, Sills & Miholics (2017) found
an even larger diversity in the orbital structure of their simulated
globular clusters: at small radii, all globular clusters tend to be
isotropic, but they can be either radially or tangentially anisotropy
in the intermediate and outer regions, with the velocity anisotropy
primarily depending on the strength of the tidal field cumulatively
experienced by a cluster.

Detailed observations and dynamical models for nearby globular
clusters also show a range of orbital structures. The best-fitting
Schwarzschild orbit-superposition model for @ Cen by van de Ven
et al. (2006) is close to isotropic in the inner regions and becomes
increasingly tangentially anisotropic in the outer regions. In a study of
nine inner Milky Way globular clusters, Cohen et al. (2021) found that
most of their clusters are isotropic even out to their half-light radii,
while NGC 6380 was found to be tangentially anisotropic beyond its
half-light radius.
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4.4.2 Sharp versus smooth truncation

The goal of this series of papers is to study the existence of self-
consistent dynamical models with a preset density distribution with
a finite extent. In this paper, we focused on such models created
by truncating smooth infinite-extent models abruptly at a truncation
radius. This results in models with a sharp and discontinuous density
truncation, with p(r) # 0 as r — rr. Such a discontinuous density
truncation is the simplest mathematical construction to generate a
truncation, but it is probably not so realistic when considering real
dynamical systems. Instead of a sharp and discontinuous truncation
one could consider a more gradual truncation; this can be realized by
replacing the Heaviside step function in equation (1) by a continuous
function that smoothly tends to zero for » — r; and leaves the density
profile unaffected for r < rp. This makes the mathematics of the
problem significantly more complex, but one might wonder how it
would affect the conclusions of this work.

One of the immediate consequences of a discontinuous density
truncation is that such models can never be supported by an ergodic
orbital structure, as demonstrated mathematically in Section 2.1
and discussed in Section 4.1. Based on expression (6) one would
be inclined to argue that, for p; = 0, the negativity of the ergodic
distribution function for £ — &; is no longer a certainty, and thus that
smoothly truncated models with an ergodic orbital structure might
be consistent.

This situation reminds of the consistency analysis of the family of
broken power-law models, in which the density is a combination of
two pure power laws merged the break radius (Du et al. 2020). Baes
& Camps (2021) demonstrated that broken power-law models can
never be supported by an ergodic orbital structure, because the sharp
break in the density profile at the break radius forces the ergodic
distribution function to be negative at binding energies just beyond
& = W(ry). Instead of the infinitely sharp density break that is a
defining property of the double power-law models, one can consider
amore gradual transition between the two power laws. This yields the
family of double power-law models (Zhao 1996), where an additional
parameter controls the smoothness of the transition between the inner
and outer power-law density profile. For sufficiently soft transitions,
these double power-law models can be supported by an ergodic
orbital distribution. For sufficiently sharp transitions, however, we
encounter the same situation as for the broken power-law models:
the distribution function is negative for £ 2 &, and the ergodic model
is inconsistent.

This case suggests that the replacement of the infinitely sharp
truncation by a more gentle one, with a truncated but continuous
density profile as a result, could result in a situation where consistent
ergodic orbital structures are possible as long as the truncation is
sufficiently soft. For truncations that are sufficiently sharp, one may
expect the ergodic distribution function, and constant-anisotropy dis-
tribution functions, to remain inconsistent. An in-depth investigation
is beyond the scope of this paper.

5 SUMMARY

This paper is the second in a series on the search for and the discussion
of self-consistent dynamical models with a finite extent. In the first
paper of this series (Paper I), we performed an in-depth study of the
uniform density sphere, the simplest model with a radially truncated
density profile. By explicitly calculating the phase-space distribution
function, we demonstrated that the uniform density sphere cannot be
supported by an ergodic, constant anisotropy, or radial Osipkov—
Merritt orbital structure. On the other hand, we showed that it can be
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supported by a TOM orbital structure, and more generally, by a TC
orbital structure as long as the central anisotropy is not radial. In this
second paper, our ambition was to investigate in a more systematic
way by which orbital structures radially truncated density models
can be supported.

The first conclusion of this paper is that no radially truncated
spherical model with a density discontinuity at the truncation radius
can be supported by an ergodic orbital structure. This can be shown
explicitly in a relatively straightforward way by calculating the
ergodic distribution function. The same conclusion accounts for all
constant anisotropy or Osipkov—Merritt orbital structures: none of
these orbital structures can support a radially truncated model with
a density discontinuity.

Our second conclusion is that the TOM orbital structure with r, =
rr is capable of self-consistently supporting a large set of truncated
density models. We formulate a consistency hypothesis: if a spherical
density model can be supported self-consistently by an ergodic orbital
structure, then the model that is radially truncated at r = r; can be
supported self-consistently by a TOM orbital structure with r, = 7.
The validity of this consistency hypothesis is not formally proven,
but it is corroborated by an extensive suite of numerical tests.

These results can be understood by considering a dynamical
models as a superposition of orbits. The combination of a sharp
density truncation and the requirement of velocity isotropy at the
break radius can only be realized by an infinite number of orbits with
binding energy &, which generates a mass density excess at smaller
radii that can only be compensated by orbits with negative weights.
The result is a negative, and thus non-physical ergodic phase-space
distribution function.

These conclusions demonstrate that the uniform density is not
a special case, but rather a typical example of a truncated density
model. We hope this paper is another step towards a broader
understanding of the dynamical structure of models with a finite
extent.
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APPENDIX: TOM ORBITAL STRUCTURE IN
SPHECOW

For the numerical calculation of the dynamical structure of an
arbitrary spherical model under the assumption of a TOM orbital
distribution, we needed to implement the relevant formulae in SPHE-
cow. The TOM orbital structure is characterized by an anisotropy
parameter r,, and it is only physically meaningful for spherical
density profiles with a finite extent and with r, > rr. In the remainder
of this section, it is assumed that the density profile p(r) satisfies this
condition. It is also assumed that the first and second derivatives of
the density have been implemented, or that they can be computed
from the surface density and its derivatives.

The radial velocity dispersion is most easily obtained as the
solution of the Jeans equation, which becomes for the TOM orbital
structure (Merritt 1985; Mamon & Fokas 2005a),

1 fa GM(u)d
o2(r) = %/, Q(”)u# (A1)
with
r2
o(r) = (1 - 7) p(r). (A2)
ra

The tangential velocity dispersion is
ol (r) = 2[1 = B(N]a7(r), (A3)

with the anisotropy profile S(r) given by expression (8). The general
expression for the projected velocity dispersion for an anistropic
spherical model is (Binney & Mamon 1982; Dejonghe 1987)

p(u) crrz(u) udu

N

o) RZ
Z(R)o (R) = 2/R {1 - ﬂ(u)}
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which becomes for the TOM orbital structure,

2 —u? + R\ pu)oX(u)udu
2(R)oX(R) =2 . - : A5
(R)o,(R) /R < p— ) e (A5)
An equivalent expression, which eliminates one level of quadrature,
can be obtained by substituting expression (A1) in this expression and
changing the order of integration (Mamon & Lokas 2005b; Agnello
et al. 2014; Ciotti 2021). The result is

" w(u, R) p(u) GM(u)du

S(R)o(R) = / 3 (A6)
R u
with
P2 — 2
wiu, R) = (r; - Rz) (A7)
2r2 — R? u>— R R*u®—R?
X | —== arctanh + .
\J/r} — R? r2 — R? r2 —u?

The TOM distribution function is obtained using equation (10). We
recast this expression to a form that is more suitable for numerical
integration,

f0= [ o) g [" S }
_Zﬁﬂz GMo QO — V(ry) r(Q)\/m ’

(A8)
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with

_ r? p , 2 dmp@r)r?
A(r)_GM(r) {Q (")+Q(")(;—W)] (A9)

Finally, for the pseudo-differential energy distribution (Cuddeford
1991; Baes et al. 2021), i.e. the distribution of mass as a function of
0O, we have

N(Q) = f(Q)g(Q), (A10)
with g(Q) a pseudo-density-of-states function,

r(Q) 2\ !
2(0) = 16f2n2/ (1 - “—2) VY@ — Quldu. (Al
0 I

a

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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