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We present an infinite density-matrix renormalization group (DMRG) study of an interacting continuum model
of twisted bilayer graphene (tBLG) near the magic angle. Because of the long-range Coulomb interaction and the
large number of orbital degrees of freedom, tBLG is difficult to study with standard DMRG techniques—even
constructing and storing the Hamiltonian already poses a major challenge. To overcome these difficulties, we use
a recently developed compression procedure to obtain a matrix product operator representation of the interacting
tBLG Hamiltonian which we show is both efficient and accurate even when including the spin, valley, and orbital
degrees of freedom. To benchmark our approach, we focus mainly on the spinless, single-valley version of the
problem where, at half filling, we find that the ground state is a nematic semimetal. Remarkably, we find that the
ground state is essentially a k-space Slater determinant, so that Hartree-Fock and DMRG give virtually identical
results for this problem. Our results show that the effects of long-range interactions in magic angle graphene
can be efficiently simulated with DMRG and open up a new route for numerically studying strong correlation
physics in spinful, two-valley tBLG, and other moiré materials in future work.
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I. INTRODUCTION

Magic angle twisted bilayer graphene (tBLG) hosts a
diverse array of correlated insulating and superconducting
phases [1–23]. This rich system has inspired intensive theoret-
ical efforts to understand the origin and mechanism(s) behind
these phases, and a large number of theories have already been
proposed. One way to assess these proposals—especially
when they are not associated with clear experimental
signatures—is numerical calculation. To that end, this work
presents a proof-of-concept density matrix renormalization
group (DMRG) [24] study of a microscopically realistic,
strongly interacting model of tBLG [25] (Fig. 1).

A. Challenges of tBLG numerics

Let us review what makes the tBLG problem so nu-
merically challenging and identify a viable path around the
obstacles. The first obstacle is the separation in scales between
the graphene lattice constant a and the moiré length scale
LM ; at the magic angle LM/a ∼ 1/θM ∼ 50, so the moiré unit
cell contains over 10 000 carbon atoms, and consequently
the superlattice band structure contains NB ∼ 10 000 bands.
Fortunately, various treatments of the band structure [26–29]
(including the Bitzritzer-MacDonald (BM) continuum model
[26] used here) reveal that the flat bands of interest are sep-
arated from the tower of “remote” bands by gaps of order
20 meV–25 meV [see Fig. 2(c)]. Since these gaps are larger
than the Coulomb scale EC = e2

4πε0εr LM
∼ 10 meV–20 meV

(using a relative permittivity εr = 12–6), it is a reasonable
starting point to project the Coulomb interaction V (r) into the

*These two authors contributed equally.

flat bands.1 Each spin and valley of the graphene has two flat
bands, for a total of eight, winning us a reduction from NB =
10 000 ↘ 8. We refer to this as the “interacting Bitzritzer-
MacDonald (IBM) model,” although our method works just as
well for improved continuum models of tBLG which take into
account effects like lattice relaxation. The touching of these
two bands is locally protected by a crucial C2T symmetry
(a 180-degree rotation combined with time reversal), which
distinguishes tBLG from other moiré materials. The Coulomb
scale EC is much larger than the bandwidth t ∼ 5 meV, so
a priori unbiased, strongly-interacting numerical approaches
such as exact diagonalization [32], determinantal quantum
Monte Carlo, or DMRG are required.

Most strongly-interacting approaches proceed from a real
space lattice model, so a natural next step is to construct a
lattice model via 2D Wannier localization of the continuum
Bloch bands. In real space, the density of states of the flat
bands is predominantly located on the AA-stacking regions
of the moiré unit cell, which form a triangular lattice [see
Fig. 2(d)]. So one might hope that the physics is then well
described by an eight-component triangular lattice Hubbard
model. However, there is a topological obstruction which
complicates this approach: The flat bands possess “fragile
topology” which makes their Wannier localization very subtle
[29,33–38]. In particular, the presence of C2T , valley conser-
vation Uv (1), and translation make it impossible to Wannier
localize the flat bands in a manner where Uv (1) and C2T both

1Hartree-Fock studies which include the remote bands do find that
they have a quantitative effect (for example, on the magnitudes of the
symmetry-broken gaps), but there are some discrepancies regarding
their qualitative importance [30,31].
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FIG. 1. Flowchart of our approach to DMRG for tBLG. First
we start from a continuum BM model and add Coulomb interac-
tions, projected to the flat bands to reduce the number of degrees
of freedom down to a manageable level. Second, we perform hybrid
Wannier localization, which maps the model to a cylinder in mixed-
xk space, thereby avoiding a topological obstruction and allowing
all symmetries to act locally. Third, we use a compression proce-
dure to represent the long-range interactions with a reasonable bond
dimension to make DMRG numerically tractable. This allows us to
perform DMRG with all NB = 8 components at moderate cylinder
radius (Ly = 6).

act in a strictly local fashion. This is somewhat analogous to
the obstruction to finding a Wannier basis for a 2D topological
insulator under the requirement that T acts as a permutation
of the orbitals [39].

Two resolutions to the Wannier obstruction issue have
been proposed in the literature. The conceptually simplest
is to include some number of remote bands, at minimum
NB = 8 → 20, which removes the topological obstruction and
allows for a local symmetry action [34]. But from a DMRG
standpoint, a model with 20 orbitals per unit cell, all strongly
interacting, appears to be numerically intractable. The other
approach is to simply ignore the symmetry considerations and
Wannier localize in a basis which hybridizes different valleys
or C2T sectors. In this approach, for example, valley number
conservation Uv (1) becomes slightly nonlocal, and the asso-
ciated charge takes the form QV = ∑

i, j,m,n Qi j
mnĉ†

m,i ĉn, j where
the sum runs over all sites i, j and internal degrees of freedom
m, n. The matrix elements Qi j

mn fall off with distance |ri − r j |
[33]. Intriguingly, the Wannier orbitals then take the shape
of three-lobed “fidget spinners” connecting three nearby AA
regions [33,40,41]. In this basis, the Coulomb interaction
is not dominated by a Un̂2 Hubbard interaction but instead
contains a profusion of all allowed V i jk�

mnopĉ†
m,i ĉ

†
n, j ĉo,k ĉp,� terms

which decay exponentially over a few moiré sites [40–42].

Numerically, however, the interactions must be cut off at some
finite range, which will spuriously break either the Uv (1) or
C2T symmetry due to the nonlocal form they take. This runs
the risk of biasing the results by explicitly breaking a sym-
metry which should be preserved and would require careful
extrapolation of the tails to ensure the correct results. While
not necessarily unworkable (in particular, see Ref. [43]), in
our estimation this approach makes numerical results delicate
to interpret.

Fortunately, DMRG is a 1D algorithm, which allows us
to avoid the construction of 2D Wannier orbitals altogether.
When DMRG is applied to the cylinder geometry, the model
must be in a localized basis along the length of the cylinder, to
ensure favorable entanglement properties, but it does not need
to be in a localized basis around its circumference. Therefore,
we can consider “hybrid” real-space/momentum-space Wan-
nier states which are maximally localized along the length of
the cylinder x but Ty eigenstates around its circumference y
(see Fig. 3). There is no topological obstruction to the con-
struction of hybrid Wannier states, making them an attractive
basis for the flat bands of magic angle graphene, as was also
recognized by the authors of Refs. [25,44–46]. Geometrically,
this defines a model on a cylinder, with real space in the
x direction and k space around the circumference [47]. The
hybrid approach allows the Uv (1), C2T , and translation sym-
metries to all act locally without adding extraneous degrees
of freedom. This is exactly the approach used by Kang and
Vafek in their recent DMRG study of tBLG [25], and it is the
approach we take as well.

The hybrid approach is not without challenge, however,
because upon mapping the orbitals to a 1D fermion chain for
input into the DMRG, the effective Hamiltonian is quite long
ranged. The localization width of the Wannier orbitals is com-
parable to the moiré scale, so all the sites in a single column
of the cylinder are strongly overlapping, generating a panoply
of couplings V i jk�

mnopĉ†
m,i ĉ

†
n, j ĉo,k ĉp,�. Though these decay expo-

nentially with distance, a cylinder with circumference Ly = 6
with both spin and valley has on the order of 850 000 non-
negligible (i.e., above 10−2 meV) matrix elements per unit
cell.

A similar problem is encountered in the context of cylin-
der DMRG for the fractional quantum Hall effect [48] or
finite-DMRG simulations for quantum chemistry problems
[49]. There, as here, it is essential to use tensor network
methods to “compress” the V i jkl as a matrix product oper-
ator (MPO). To do so, we leverage a recent algorithm for
black-box compression of Hamiltonian MPOs with various
optimality properties [50]. We find that for a circumference
Ly = 6 cylinder, the spinless/single-valley problem (NB = 2)
requires an MPO bond dimension of D ∼ 100 for physical
observable to obtain a relative precision of 10−2, while in
the spinful/valleyful NB = 8 case, we estimate the required
bond dimension to be D ∼ 1000. While large, these values are
tractable, especially when exploiting the charge, spin, valley,
and ky quantum numbers.

B. Overview of DMRG results

After presenting details of the interacting tBLG Hamilto-
nian and its MPO compression, we apply our approach in
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FIG. 2. (a) The BM model for bilayer graphene is constructed from two regular graphene Brillouin zones, rotated by ±θ/2. (b) Zoomed
view of (a) showing the mini (or moiré) Brillouin zone. We choose a square mBZ (thick red lines) for numerical convenience. (c) The
band structure of the BM model over the mBZ showing the flat bands (red lines). The interacting BM model is defined by adding Coulomb
interactions to the BM model and projecting to the flat bands. (d) Schematic of the real space moiré unit cell with Bravais lattice vectors L1,2.
(e) The IBM model on a cylinder has Ny discrete momentum cuts at ky values given by Eq. (3), offset by �y.

detail to a “toy” NB = 2 problem in which we keep only valley
K and spin ↑; more physical models are reserved for future
work. When filling one of the two bands, this scenario is
conceptually similar to fillings ν = −3, 3 of tBLG under the
assumption that these fillings are spin and valley polarized.
However, we caution the reader that our results are not a
quantitative prediction for these fillings because the toy model
differs from |ν| = 3 of tBLG by a 4× difference in the mag-
nitude of the Hartree potential generated relative to neutrality.
We’ve made this choice so that we can quantitatively compare
with Refs. [25] prior results; the “physical” |ν| = 3 result,
which differs in some interesting respects, will be presented
in a future work.

Following Ref. [25], we fix θ = 1.05◦ and vary the ratio of
the AA and AB interlayer tunneling hopping strengths w0/w1

from 0 to 0.9. While physically w0/w1 ∼ 0.8 [27,28,41], the
resulting phase diagram is conceptually interesting because
the dominant effect of w0/w1 is to redistribute the Berry cur-
vature of the flatbands, rather than changing their bandwidth,
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FIG. 3. Real space charge density of Wannier orbitals. The or-
bitals are maximally localized in the x direction and periodic along
y, with charge densities concentrated in AA stacked regions. The
Wannier center and the character changes with ky.

revealing that the former is crucial to the physics. As a précis
of our findings,

(1) In agreement with Ref. [25], we find that below a
critical value w0/w1 � 0.8, the ground state spontaneously
breaks the C2T symmetry, forming a quantum anomalous Hall
state (Chern insulator), with C = ±1.

(2) In agreement with Ref. [25], above w0/w1 � 0.8, the
C2T is restored. In this region the DMRG results of Ref. [25]
did not reliably converge, but their mean-field calculations
suggested either a “nematic C2T symmetric semimetal” first
proposed in Ref. [51] or a gapped C2T -symmetry stripe [25].
Our DMRG numerics reliably converge to a state in excellent
agreement with the nematic C2T semimetal, with two band
touchings near the � point.

(3) We analyze the k-space electron correlation func-
tion Pmn(k) = 〈c†

n,kcm,k〉 of the DMRG ground state, which
can be directly compared with Hartree-Fock calculations.
We find that both phases are extremely well captured
by a single k-space Slater determinant (to within ≈1%),
strongly supporting the validity of recent Hartree-Fock studies
[7,10,25,30,31,45,46,51–53].

(4) Finally, we compare the energy of the DMRG ground
state with various competing variational ansatz such as the
C2T -stripe ansatz proposed in Ref. [25]. In agreement with
their result, we find that the nematic semimetal and the C2T
stripe compete at the order of 0.1 meV per unit cell.

The remainder of this work is organized as follows.
Section II introduces our model: an interacting Bistritzer-
MacDonald model, equipped with long range Coulomb
interactions and projected to the flat bands. Section III dis-
cusses how the model may be expressed as a matrix product
operator and both why and how it must be compressed to
perform DMRG. Section IV provides the results of DMRG
calculations and shows that Hartree-Fock accurately captures
the ground state physics in this model. Section V discusses the
nature of the nematic C2T semimetal. We conclude in Sec. VI.
Extensive appendices describe all details needed to reproduce
our results. Appendix A details the IBM model. Appendix B
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deals with the Wannier localization and the gauge choice we
make. Appendix C constructs the precompression MPO: an
infinite MPO with arbitrary long range four-body interactions.
Appendix D provides the algorithm for MPO compression, as
well as rigorous error bounds. Finally, Appendix E explains
the extensive numerical cross checks we performed to ensure
the accuracy of our results.

II. THE IBM MODEL

This section describes the interacting generalization of
the Bistritzer-MacDonald (BM) model we use in this work.
We first briefly recall the BM model and the geometry of
the mini-Brillouin zone (mBZ), then discuss how interactions
are added. We then show how the model can be placed on a
cylindrical geometry and conclude with the symmetries of the
model.

A. Continuum model

Our starting point is the single-particle Bistritzer-
MacDonald (BM) model [26], composed of two layers of
graphene, with relative twist angle θ , coupled together by a
spatially-varying moiré potential. The potential is governed by
two parameters, w0 and w1, which specify the AA/AB inter-
layer tunneling, respectively. DFT calculations which account
for lattice relaxation find that w1 = 109 meV and w0/w1 ≈
0.8 [27,28,41], but here we will treat w0/w1 as an axis of
the phase diagram. We maximize the ratio of band gap to
band width for the flat bands by setting θBM ∼ 1.05◦. Figure 2
details our choice of conventions. In particular, we work with
a rectangular mBZ grid for numerical convenience.

We now define an interacting Bistritzer-MacDonald (IBM)
model where double-gate screened Coulomb interactions are
added to the single-particle model. As the interactions are
much larger than the spectral width of the flat bands but
smaller than the gap to nearby bands, we expect interactions
to act quite nonperturbatively inside the flat bands and per-
turbatively between separated bands. We therefore project the
interactions to the two flat bands, akin to models of the frac-
tional quantum Hall effect [54]. Our presentation will focus
on a single spin and valley, but their inclusion is conceptually
identical: We promote 2 → 8. Consider a vector of fermions
f †

k = ( f †
1,k, f †

2,k ) running over the two nearly flat bands. The
Hamiltonian is then given by

Ĥ =
∑

k∈mBZ

f †
kh(k) f k + 1

2A

∑
q

Vq : ρqρ−q : . (1)

The single-particle term h(k) contains not only the flat band
energies of the BM model but also band renormalization terms
coming from the interaction with the filled remote bands and
a subtraction to avoid double counting of Coulomb interaction
effects. We refer to Appendix A for more details.

The second term in Eq. (1) corresponds to the dual gate-
screened Coulomb interaction, with A being the sample area
and Vq = e2 tanh(|q|d )/(2εrε0|q|). The screened Coulomb
potential depends on two parameters εr and d , which, respec-
tively, are the relative permittivity and the distance between
the twisted bilayer graphene device and the metallic gates.
While the effective dielectric constant of the typical substrate,

hBN, is εr ≈ 4.4, here we use εr = 12 in order to phenomeno-
logically account for screening from the remote bands of the
tBLG A. This sets the typical interaction energy scale to be
several meV. For the gate distance we choose d = 10 nm to
facilitate comparison with Ref. [25]. The Fourier components
of the flat-band projected charge density operator are given by

ρq =
∑

k∈mBZ

f †
k
q(k) f k+q, (2)

where the 2 × 2 form factor matrices [
q(k)]ab =
〈ψa,k|e−iq·r|ψb,k+q〉 are defined in terms of overlaps between
the Bloch states of the BM model.

The model enjoys several global symmetries: time reversal
followed by in-plane rotation C2T , out-of-plane C2x rota-
tion, and C3 rotation. We will describe their action on the
basis states explicitly below. In summary, the spinless, single-
valley IBM model we have described is a strongly interacting
many-body problem defined in momentum space over the
mini-Brillouin zone.

B. Cylinder model

Our goal is to perform quasi-2D DMRG on Eq. (1).
To this end, we work in an infinite cylinder geometry
of circumference Ny with a mixed real and momentum
space representation of the model. In the momentum space,
this corresponds to having Ny momentum cuts through the
mBZ at

ky/Gy = n + �y/(2π )

Ny
(mod 1), 0 � n � Ny − 1, (3)

where �y is the amount of flux threaded through the cylinder,
which offsets the y momentum as shown in Fig. 2. We will
Fourier transform each of these momentum cuts in the x di-
rection, such that our basis states are hybrid Wannier orbitals,
periodic in the y direction and localized in the x direction.2

We will sometimes call this mixed xk representation.
The choice of real-space basis in the x direction is not

unique, but we choose the basis of maximally localized Wan-
nier orbitals. Using the maximally-localized orbitals ensures
that the interactions are as short ranged as possible and hence
minimizes the range of the interaction terms in the Hamil-
tonian and the entanglement of the ground state. Due to the
relation between maximal Wannier localization and the Bloch
Berry connection Ak, this basis will also make manifest their
topology. We perform the change of basis:

ĉ†
±,kx,ky

:= U±,b(k) f̂ †
b,kx,ky

,

ĉ†
±,n,ky

:=
∫

dkx√
Gx

eik·Rn ĉ†
±,kx,ky

, (4)

where ĉ†
±,n,ky

is the creation operator for the Wannier orbital
for unit cell n in the x direction, Rn = nL1 with L1 the Bravais
lattice vector, and U (k) is a 2 × 2 change-of-basis matrix for
the internal (band index) degrees of freedom. The nontrivial

2A further advantage of this mixed representation over “snaking”
around a real space cylinder is that ky becomes a good quantum
number, reducing the resource cost for a given radius [47,55].
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topology of the tBLG flat bands [29,33–38] is made explicit
in the hybrid Wannier basis by the fact that the states with sub-
scripts ± are constructed from bands with Chern numbers ±1.
We will explain this in more detail below. We choose the inter-
nal rotations U (k) so that the Wannier orbitals are maximally
localized (i.e., their spread in the x direction is minimized).
Since the problem is effectively 1D for each ky cut, we can
employ a well-known algorithm [56] to deterministically cal-
culate the unique U (k) [up to (ky, ±) dependent phases].
Figure 3 shows examples of the Wannier orbitals. One can see
they are localized in the x direction but extended and periodic
in y. The charge density is also not uniform in the y direction
but is concentrated in certain regions corresponding to the AA
region [26]. For later notational convenience, we also define
|w(±, n, ky )〉 = ĉ†

±,n,ky
|0〉. We emphasize that the ± basis is

not the energy eigenbasis of the single-particle Hamiltonian.
In the ± basis with the gauge convention described later, the
k.p expansion of the two band Hamiltonian around K± points
takes the form h(K± + q) ∝ ∓(qx · σx + qy · σy).

A key physical property of Wannier orbitals is their polar-
ization Px(±, ky), which can be derived via modern theory of
polarization [57–60]. They can be thought of as the center of
Wannier orbital inside the zeroth unit cell:

Px(±, ky) = 〈w(±, 0, ky )|x̂|w(±, 0, ky )〉
L1 · e1

, (5)

where we normalize the polarization by the x extent of
the unit cell. The polarization is related to the Berry phase
along each momentum cut via the Wilson loop e2π iPx (ky ) =
ei

∫
Ax (kx,ky )dkx/Gx and is only defined modulo 1 [60]. There-

fore Px returns to itself as ky sweeps across the (mini) BZ.
Furthermore, the Chern number of a band is conveniently
expressed in terms of the total winding of the polarization,
C = ∫

dky
dPx
dky

. In Fig. 4, we plot the polarization versus ky

momentum at various different w0. We make two observa-
tions: First, we see that the polarization of the plus (minus)
band winds from 0 to 1 (0 to −1) as momentum goes from

−0.5 to 0.5. We may therefore identify these bands as hav-
ing Chern numbers ±1—hence our index convention. On the
other hand, the profile of the polarization changes as w0/w1

increases from 0 to 0.85. At w0/w1 = 0, the slope is constant,
and the Wannier orbitals are almost equally spaced in the
x direction, reminiscent of the lowest Landau level of a 2D
electron gas in a magnetic field. At w0/w1 = 0.85, however,
Px is constant for most ky values and suddenly changes around
the � point.

There is a subtle issue relating our convention for polariza-
tion to our choice of gauge for single-particle wave functions
in the mBZ. Since the polarization increases by ±1 as ky

increases by 2π , we must choose a ky where the polariza-
tion wraps around. We pick the convention that the wrapping
Px → Px ± 1 occurs at ky = 0, as shown in Fig. 4. In terms
of the Wannier orbitals, this means that their centers of charge
move continuously with ky, except at ky = 0 where they “exit”
the unit cell and “enter” the neighboring unit cell. In terms of
the momentum space creation operator ĉ†

±.k this corresponds
to a a choice of gauge that is smooth in the upper and lower
halves of the Brillouin zone but discontinuous across ky = 0.
This discontinuity will appear in several figures below.

Finally, let us give the explicit action of global symmetries
on our basis states. We first note the C3 symmetry of the con-
tinuum model is weakly broken by the cylindrical geometry
and is no longer an explicit symmetry of the model. We also
note that for flux values �y �= 0 mod π , the C2x symmetry is
not present.

Similar to Ref. [25], we partially fix the gauge of the flat
band Bloch states such that the symmetries act in a simple way
on the hybrid Wannier orbitals:

TL1 |w(±, n, ky)〉 = |w(±, n + 1, ky )〉
TL2 |w(±, n, ky)〉 = ei2πky |w(±, n, ky )〉

C2T |w(±, n, ky)〉 = |w(∓,−n, ky)〉
C2x |w(±, n, ky)〉 = ∓ie−i2πkyn |w(∓, n,−ky )〉 ,

(6)

where the last equation holds only at C2x symmetric flux val-
ues. The first two definitions are the consequence of Eq. (4),
while the latter two come from demanding the following ac-
tions in momentum space:

C2T ĉ†
±,k(C2T )−1 = σ xKĉ†

±,k,

C2xĉ†
±,kx,ky

(C2x )−1 = σ yĉ†
±,kx,−ky

, (7)

where σ x acts on ± indices, and K is the complex con-
jugation operator. This, together with a continuity criterion
such that the Wannier functions are a smooth function of
ky, fixes the phase ambiguity up to an overall minus sign
(Appendix B).3 Now that we have described the interacting
Bistritzer-MacDonald model in detail, we proceed to discuss
how we will solve for its ground state using DMRG.

3In the absence of C2x symmetry, we use a heuristic such that the
gauge is continuous as a function of �y.

205111-5



TOMOHIRO SOEJIMA et al. PHYSICAL REVIEW B 102, 205111 (2020)

0 200 400 600 800

Bond Dimension D

10−8

10−6

10−4

10−2

Δγz

ε(D)/ε(0)
|1 −F|1/2

δE/EC

0 500 1000 1500 2000 2500 3000

Bond Dimension D

10−4

10−3

10−2

10−1

100

ε(
D

)/
ε(

0)

No Valley, No Spin
Valley, No Spin
Valley, Spin

0 1 2 3 4 5 6 7 8 9

Δx

10−4

10−2

100

R
el

.
E

ne
rg

y
E

rr
.

d = 10 nm
d = 20 nm

0.0

0.5

Δ
E

[m
eV

]

d = 10 nm
d = 20 nm

√
DMRG Error

50% Error

1% Error

(a)

(b)

(c) (d)

FIG. 5. (a) Energy difference between the QAH and the SM ansatz at different gate distances at w0/w1 ∼ 0.8. (b) The relative error in
energy difference between the QAH and SM ansatz. The black dashed lines indicate 50% error and 1% error. (c) Precision of the compressed
MPO as a function of bond dimension for the IBM model with and without spin and valley degrees of freedom. The Hamiltonian is the IBM
model at the chiral limit w0 = 0 with parameters given by Table I. For (b), the cutoff range is reduced to x = 3. (d) Relative precision of MPO
compression as a function of the postcompression bond dimension D. The precision is controlled by ε(D) = (

∑
a=D+1 s2

a )1/2, as described in
Eq. (D28). Here E (D) = E (D = 1000) − E (D) is the energy error in the ground state, F is the fidelity per unit cell between the ground state
at D and the ground state at D = 1000, and γ z is the error in the polarization versus D = 1000, described in Sec. IV. One can see that the
precision improves roughly in proportion to ε, except for |1 − F |1/2, which is limited by the precision of DMRG (black dashed line).

III. MPO COMPRESSION AND DMRG

In this section we consider the practical details of per-
forming infinite DMRG on the IBM model defined in the last
section and the necessity of MPO compression. To perform
infinite DMRG, we must express the Hamiltonian [Eq. (1)] as
an infinite 1D matrix product operator (MPO) whose size D
is called the bond dimension4 [61]. To map from 2D to a 1D
chain, we order the Wannier orbitals |w(±, n, ky)〉 by the posi-
tions Px(±, ky) + n of their Wannier centers. Translation along
L1 simply increments |w(±, n, ky)〉 → |w(±, n + 1, ky )〉, so
the 1D chain is periodic with a unit cell of size NBNy sites
(NB = 8 with spin and valley). Once the MPO is obtained, we
can in principle find its ground state with DMRG.

However, the long-range nature of the Coulomb interaction
complicates matters. Although the screened Coulomb interac-
tion decays exponentially in real space, truncating it at short
range can lead to physically incorrect results. To demonstrate

4The MPO bond dimension is always denoted by D, and χ is
reserved for the MPS bond dimension.

TABLE I. Parameters of the IBM model, DMRG calculation, and
relevant energy scales. See main text for the definition of each entry.

Parameter Value(s)

θBM ∼1.05◦

w1 ∼109 meV
w0/w1 [0, 1]
Gate distance 10 nm
Relative permittivity 12

Ny 6
�y π, π/10
χ �1024
x 10
εMPO <10−2 meV

Kinetic energy scale (t) <1 meV
Interaction energy scale (V ) <10 meV

this, Fig. 5(a) examines the energy of two ground state wave
function ansätze “QAH” and “SMy” as a function of the trun-
cation distance of the interaction x5 (these physical states
are defined and used in Sec. V below). In particular, we exam-
ine the energy difference E = EQAH − ESM in panel (a) and
the relative energy difference in panel (b). The true energy dif-
ference between these states is |E (x → ∞)| ≈ 0.1 meV,
yet the energy difference achieves 0.1 meV precision only at
x � 3. Going from x = 1 → 2, for example, their ener-
gies change by almost 0.1 meV.

More importantly, the relative error in energy difference
(E (x) − E (∞))/E (∞) reaches 1% only at the cutoff
x � 4. This means that in order to resolve closely competing
ground state candidates—which we will encounter in practice
in Sec. II B below—we require a relatively large cutoff x.

Furthermore, the required cutoff is highly dependent on
the model parameters. For example, if we increase the gate
distance to 20 nm, then the screening distance is increased,
and the relative energy gap does not achieve 50% precision
until x ≈ 3 [Fig. 5(b)].6 Together, these results suggest that
premature truncation may lead to physically incorrect results,
and we are forced to retain relatively long-range interactions
in the Hamiltonian.

After mapping to a 1D chain, this means we must keep
track of interactions up to range R = NBNyx orbitals. An
exact representation has an optimal bond dimension which
scales as D = O(R2) (Appendix C). However, this still pro-
duces an MPO of size D ∼ 1 × 104 for x � 4 without spin
and valley, and if we were to add in spin and valley it would
be D ∼ 1 × 105. As the computational complexity of DMRG
increases as O(D2), and D is usually a few hundred at most,
the Hamiltonian for BLG is far too large for DMRG to be

5We define x as the distance between the first and last field
operators along the cylinder.

6Note, however, that larger precompression MPO bond dimension
does not necessarily mean larger postcompression MPO bond di-
mension. The relationship between Hamiltonian parameters and the
postcompression bond dimension is a subject of future work.
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practical. The DMRG results of Ref. [25] considered a sin-
gle spin and valley with interactions truncated at x = 2,
resulting in an MPO of D ∼ 2000 at Ly = 6. But increasing
x, or adding spin and valley, makes the problem impractical.

On a finite system, the MPO can be viewed as a two-sided
MPS and compressed by SVD truncation (this approach is
implemented in the AutoMPO feature of the iTensor library
[62]). However, in the infinite limit we wish to take here, this
naive SVD truncation is unstable and actually destroys the
locality of the Hamiltonian. To avoid this, Ref. [50] developed
a modification of SVD compression which guarantees that the
compressed Hamiltonian remains Hermitian and local in the
thermodynamic limit.

As in finite SVD compression, an intermediate step of the
algorithm produces a singular value spectrum sa, and the bond
dimension can be reduced by discarding the lowest values
of the spectrum. For an appropriate notion of distance this
truncation is optimal, and when applied to a single cut, the

discarded weight ε(D) =
√∑D′

i=D+1 s2
a upper bounds the error

in Ĥ with respect to the Frobenius norm. In Appendix D
we present efficient algorithms for finite-length unit cells and
derive error bounds for various quantities. When exploiting
quantum numbers, the algorithm is capable of compressing
MPOs with bond dimensions 5 × 104 or larger on a cluster
node.

With the bond dimension thus reduced to a reasonable
value, we may perform DMRG. We use the standard TeNPy
library [63], written by one of us, taking full advantage of
symmetries. Careful checks guaranteeing the accuracy and
precision of our code, benchmarks, and other numerical de-
tails are given in Appendix E.

Figure 5 showcases the precision of our DMRG results. We
performed DMRG at the chiral limit w0 = 0 and computed
the relative error in the ground state energy, ground state
fidelity, and expectation values as a function of postcompres-
sion bond dimension D, relative to D = 1000. The relative
precision ε(D)/ε(0) improves quickly with D, dipping below
10−6 by D = 800. In accordance with the error bound on H ,
the ground state energy, wave function, and expectation values
converge quickly as ε → 0.

As a proof of principle, we also performed MPO compres-
sion for the IBM model with spin and valley at Ly = 6 and
w0 = 0. Due to constraints on the size of the uncompressed
MPO we can handle, we chose a cutoff range of x = 3,
which resulted in a D ∼ 35 000 uncompressed MPO. The
singular value spectrum of the MPO is shown in Fig. 5. If
we define F as the fidelity per unit cell7 between the ground
state of the compressed MPO with bond dimension D and
the ground state of the MPO with D = 1000, then we see
from Fig. 5 that in the spinless, single-valley calculation,
ε(D)/ε(0) and |1 − F |1/2 have roughly the same order of
magnitude. Using this fact as a guide, we can estimate the
bond dimension, where |1 − F |1/2 ∼ 10−2 by looking at the
value of ε(D)/ε(0). This gives us bond dimensions D =
{106, 317, 1057} for spinless/single-valley, spinless/valley,

7We define the fidelity per unit cell in the thermodynamic limit as
F = limN→∞ |〈ψN,D|ψN,D=1000〉|2/N , where N is the number of unit
cells.

spin/valley MPO. While still relatively large, such bond
dimensions are tractable with a standard workstation or cluster
node when exploiting quantum numbers.

Of course the IBM model itself is only an approximation
to the physical system, neglecting effects such as lattice relax-
ation, phonons, and twist angle disorder which, though small,
are expected to enter at the 1 meV level. This provides a limit
on the amount of precision which is physically useful. To
be safe, we choose x = 10,8 ε = 10−2 meV, which results
in postcompression bond dimensions of D ≈ 600–1000, de-
pending on the value of w0/w1. In conclusion, we have used
MPO compression to reduce the Hamiltonian to a computa-
tional tractable size, incurring a precision error on the order
of 10−2 meV—three orders of magnitude below the relevant
energy scale of the problem. We now discuss the results of
DMRG and the implications for the ground state physics of
bilayer graphene.

IV. GROUND STATE PHYSICS AT HALF FILLING

In this section we report the results of our DMRG calcu-
lations and discuss the ground state physics of the (spinless,
single valley) IBM model at half filling. We will show there
is a clear transition from a quantum anomalous Hall state at
small w0/w1 to a nematic semimetallic state at large w0/w1.
Furthermore, we will show that these ground states are almost
exactly described by the k-space Slater determinants predicted
by Hartree Fock.

A. Single particle projector and order parameter

We start by defining several crucial observables and or-
der parameters. Because we find the DMRG ground state is
translation invariant, all one-body expectation values can be
obtained from the correlation matrix

P(k) :=
(〈

c†
+,kx,ky

c+,kx,ky

〉 〈
c†
−,kx,ky

c+,kx,ky

〉〈
c†
+,kx,ky

c−,kx,ky

〉 〈
c†
−,kx,ky

c−,kx,ky

〉). (8)

This matrix is a projector when the expectation values are
taken with respect to a Slater determinant, and it is the cen-
tral variational object for k-space Hartree-Fock calculations.
For DMRG in mixed-xk space, we calculate P(k) by Fourier
transforming two-point correlation functions.9

The one-body observables are spanned by the expectation
values of Pauli matrices σ in the ± band space,

γ z(k) := tr[P(k)σ z], (9)

and similarly for γ x, γ y, γ + = γ x + iγ y. We denote mBZ
averages by

γ α := 1

AmBZ

∫
mBZ

d2k γ α (k), (10)

8This gives us an uncompressed bond dimension of order 5 × 104,
close to what would be necessary for spinful/valleyful calculation.

9Explicitly, P(k) is defined for k on a 108 × Ly grid of k points in
the mBZ by computing expectations 〈c†

±,0,ky
c±,n,ky 〉 with respect to

the DMRG ground state on the mixed-xk space cylinder for −53 �
n � 54 and performing a discrete Fourier transform with respect to
L1.
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where AmBZ is the area of the mBZ. We will focus particularly
on γ z—which is an order parameter for C2T and C2x, as
follows from Eq. (6) which implies that γ z(k) = 0 for a C2T
symmetric state, and γ z(C2xk) = −γ z(k) for a C2x symmetric
state.

In the case where the state is indeed a momentum-diagonal
Slater determinant, P(k) acquires several special properties. In
particular, if a momentum mode k is occupied by one electron,
P(k) takes values on the unit sphere and can be parametrized
in spherical coordinates as

P(k) = 1
2 (σ 0 + cos θkσ

z + sin θk cos ϕkσ
x + sin θk sin ϕkσ

y)
(11)

which implies |γ +|2 + |γ z|2 = 1. If the projector respects
C2T and C2x symmetries, then, respectively, θk = π/2 and
ϕk = −ϕC2xk + π at all k. Finally, since P(k) is a pro-
jector for momentum-diagonal Slater determinants, it sat-
isfies SvN(k) := −Tr[P(k) log P(k)] = 0. In general, then,
SvN(k) � 0 measures the deviation of a state from a
translationally-invariant Slater determinant.

B. iDMRG details and parameter choices

Infinite DMRG (iDMRG) calculations were performed us-
ing the open source TeNPy package [63]. The numerical
parameters and physical energy scales of the problem are
summarized in Table I. In particular, we take Ny = 6 and
�y = π as the “default” values. The MPO bond dimension
was compressed down to 600–1000, such that the expected
error is of order 10−2 meV, as described in Sec. II B. To
ensure that iDMRG was converged, we varied the MPS bond
dimension χ between 200 and 1024. We found that DMRG
converged well even at very low bond dimensions, except
near the transition. We also allowed ground states with broken
translation invariance with a doubled unit cell, but we found
a fully translation invariant ground state for all parameters we
tested.

C. Ground state transition and the QAH phase

We performed iDMRG at 44 values of w0/w1 in the range
[0,1]. Figure 6(b) shows that the order parameter γ z is nonzero
for w0/w1 � 0.8 and vanishes for larger values of w0/w1,
signaling a transition from a C2T and C2x broken phase to
a C2T and C2x symmetric phase. For low w0/w1, not only is
C2T broken, but the state is almost perfectly polarized, with
γ z ≈ 1. This implies that the state has a large overlap with the
product state in which all “+” orbitals are occupied:

|QAH〉 ≈
∏
x,ky

ĉ†
+,x,ky

|0〉 . (12)

Since the ± bands carry Chern number C = ±1, this state is
a quantum anomalous Hall (QAH) insulator [31,44,64]. This
approximation is quite good: The QAH state is well described
by a product state plus small corrections, | 〈�0|�QAH〉 | ≈
0.846 per unit cell at w0 = 0. Consequently, the QAH state
has low entanglement entropy (Fig. 6) and DMRG converges
at quite moderate bond dimensions.

Above w0/w1 ≈ 0.8, γ z = 0 and the state instead develops
a large expectation value for γ + = γ x + iγ y. Section V below
is devoted to the large w0/w1 phase, and we will see that it

0.0 0.2 0.4 0.6 0.8

w0/w1

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p
ec

ta
ti

o
n

V
a
lu

es

(b)

γz (HF)

γz (DMRG)

|γ+| (DMRG)

SvN (DMRG)

0

2

4

6

M
a
x

E
E

/
lo

g
(2

)

(a)

QAH SMy

FIG. 6. The phase diagram of the IBM at half filling as a function
of w0/w1. There is a transition from a quantum anomalous Hall
(QAH) phase to a semimetallic (SM) phase at w0/w1 = 0.798 ≈ 0.8,
represented by a yellow star. (a) Entanglement entropy of the DMRG
ground state with hybrid Wannier orbitals ordered according to their
polarization, maximized over all 12 entanglement cuts dividing the
system into left and right halves. (b) Expectation values of various
observables (defined in the text) in the DMRG or Hartree-Fock
(HF) ground states. The polarization in Chern band space γ z is an
order parameter for the transition. Its drop across the transition is
accompanied by a commensurate increase in |γ +|, such that the
DMRG ground state remains close to a Slater determinant. DMRG is
performed at bond dimension χ = 1024, εMPO = 10−2 meV, and is
convergent away from the transition. (Gray shading indicates where
DMRG is not well converged.)

is a nematic semimetal [51], which we refer to as “SMy,” in
reference to the ordering in the x/y plane. First, however, we
analyze a surprising structure in the ground state correlations.

D. The remarkable accuracy of Hartree-Fock

The ground states of the strongly interacting IBM model
are—quite surprisingly—very well described by k-space
Slater determinants. For all values of w0/w1 away from the
transition, the difference between the ground state and a Slater
determinant as quantified by SvN(k) is small. In particular,
Fig. 6 shows that SvN is low in the QAH phase, increases or
diverges near the transition, and is relatively small but growing
in the SMy phase. In the QAH phase this behavior is expected
due to the large overlap with the simple Chern band polarized
Slater determinant Eq. (12).

To provide further evidence that the ground state is essen-
tially a Slater determinant, we compare DMRG results with
Hartree-Fock (HF) calculations. Hartree-Fock determines an
optimal Slater determinant approximation to the ground state
of a many-body problem through a self consistent equation.
Computationally, HF scales only polynomially in the number
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FIG. 7. Comparison of HF and DMRG calculations of ϕk = arg[γ +(k)] ∈ [−π, π ] over the mBZ at w0/w1 = 0.85. (a) HF on a 30 × 29
grid with �y = π . The crosses represent the approximate location of Dirac points. (b) HF on a 30 × 6 grid at �y = π . (c) DMRG correlation
function on a 108 × 6 grid at �y = π . (d) HF on a 30 × 6 grid at �y = π/10. (e) DMRG correlation function on a 108 × 6 grid at �y = π/10.
The horizontal bands in (b)–(d) are centered on the ky cuts used, given by Eq. (3). One can see that the DMRG and HF calculations are virtually
identical. DMRG are performed using χ = 1024. The discontinuity at ky = 0+ is a gauge choice, described in Sec. II B.

of ky cuts (rather than exponentially for DMRG), so it provides
a much cheaper alternative—when it is applicable. When the
ground state of the IBM model is close to a Slater determinant,
the HF ground state should be quite accurate and would have
high overlap with the true ground state. We performed HF
calculations on a Nx × Ny grid in the mBZ; numerical details
of our HF calculations have been reported elsewhere [30].

We find that HF and DMRG results are nearly identical.
The C2T order parameter γ z differs by around 2% (Fig. 6).
Figure 7 shows a side-by-side comparison of the DMRG
and HF predictions for ϕk = arg[γ +(k)] in the SMy phase,
where it completely specifies the Slater determinant because
θ ≡ π/2 is fixed by C2T symmetry [see Eq. (11)]. Panel (a)
shows a high-resolution HF calculation with Nx = 30, Ny =
29, which shows that ϕk ≈ π/2 over most of the mBZ but
winds through 2π for ky cuts that go near the � point. Panels
(b)–(d) demonstrate that the same pattern appears with only
Ny = 6 discrete momentum cuts. Both HF and DMRG pro-
duce a C2x symmetric ϕk and the results obtained from both
methods are almost indistinguishable. Other observables are
similarly accurate in HF. We may therefore use HF to study
large system sizes or observables that are not easily acces-
sible in DMRG. For instance, Koopman’s theorem implies
that the energies of single-fermion excited states are given
by the self-consistent Hartree-Fock spectrum. We found the
Hartree-Fock spectrum at the chiral limit has a gap of order
20 meV, showing the QAH state is gapped. We conclude that
DMRG and HF agree to a remarkable degree and may be used
almost interchangeably in this regime.

V. THE NEMATIC SEMIMETAL

We now show that the large-w0/w1 phase is a nematic
semimetal, first described in Ref. [51], with energetics gov-
erned by the Berry curvature of the flat bands. This is an
altogether different state than the Dirac semimetal which

appears in the noninteracting BM model. Our analysis is based
on combination of DMRG (at Ly = 6) and HF (at Ly ∼ 30),
which agree wherever they can be compared. After establish-
ing the nature of the nematic semimetal, we make contact with
recent ideas in the literature [25,44,51]. Namely, we explain
how the Ginzburg-Landau-like functional for the interband
coherence ϕ proposed in Ref. [51] provides an intuitive de-
scription of the nematic state and the transition, and also
confirm that the stripe state proposed in Ref. [25] is extremely
competitive, with an energy only 0.2 meV/electron above the
DMRG ground state.

A. The large w0/w1 phase is nematic

The large w0/w1 phase is a nematic state which breaks C3

but preserves C2T . C2T requires γ z = 0 but allows for finite
γ x/y, so within the spherical coordinate description of Eq. (11)
the state is characterized by θ = π/2 and an azimuthal an-
gle ϕk. This is clearly visible in Fig. 7(a): Throughout most
of the mBZ, including at the mini-K± points, the state is
γ y ≈ 1 (ϕ ∼ π/2). A state with finite γ x + iγ y at the K±
points breaks C3 symmetry (nematicity) because C3 acts as
C3 = eiπσ z/3 there. This is in contrast to the BM ground
state, which has Dirac nodes at K±: The BM Dirac structure
h(K± + q) ∝ qxσx + qyσy instead causes γ x + iγ y to wind by
+2π .

Consequently we denote the large w0/w1 state “SMy.” Pre-
sumably the other C3-rotated versions are not found because
the cylinder geometry weakly breaks the C3 symmetry for
finite Ny.

While the SMy phase is close to a Slater determinant, it
is not a small perturbation to the noninteracting ground state.
To quantify this, Fig. 8(c) shows the trace distance between
the BM ground state projector and the SMy projector over the
mBZ. Around the K± points, the trace distance rotates be-
tween complete agreement and orthogonality, consistent with
the winding of γ + in the BM state versus the fixed γ y ≈ 1
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in SMy. The trace distance also provides us with a gauge
invariant way to identify the nematicity of the phase: The BM
and SMy projectors achieve near complete agreement along
the y axis.

B. C2T protected Dirac points

Near the � point, however, ϕk deviates from ϕ = π/2. We
now show that this is because the SMy phase features two
Dirac points in the vicinity of �, which cause ϕk to wind there.
This behavior is in fact enforced by topological properties
[33,44]. For a generic two band problem in the presence of
C2T , any Wilson loop is quantized: W (C) := i

∫
C A · dk =

nπ with n ∈ Z [65].10 In particular, W (C) = (2n + 1)π if and
only if it encloses a Dirac cone.

This is the well-known topological protection of Dirac
cones. In the case of the single valley BM model, Dirac cones
at the mini K± points have the same chirality W (C) = +π .
Therefore, not only are the Dirac cones locally protected,
but even if they move away from K± they cannot meet and
annihilate, enforcing the existence of either a pair of Dirac
points or quadratic band touching.11

The semimetallic nature of SMy is borne out in both HF
and DMRG numerics. The spectrum of the self-consistent HF
Hamiltonian, shown in Fig. 8(a), has a large ( ≈ 30 meV)
gap across most of the mBZ, except near the � point. The
structure of  near the � point is consistent with two Dirac
points at k± := (kx, ky) ≈ (0,±0.05Gy ) [Fig. 8(b)]. In con-
trast, the BM model is gapless at the K± points but gapped
near �.

DMRG numerics can also detect these nodes, but special
care is required. This is because the allowed momentum cuts,

10The Berry phase is computed for the filled band only.
11Note however that this “global” protection implicitly assumes

translation symmetry: If the unit cell doubles, the bands fold and
the band count doubles. Beyond two bands, W (C) is only defined
modulo π , so Dirac points can meet and annihilate. This mechanism
underlies the C2T stripe phase [25].

Eq. (3), generically avoid k±. To confirm their existence, we
continuously adjust the flux �y through the cylinder [see
Fig. 2(e)] and monitor the behavior of the DMRG ground
state as the allowed momenta pass through the putative Dirac
points. Figure 8(b) shows that the DMRG correlation length
appears to diverge right as the allowed momenta pass through
the location of the Dirac points k± found in HF, consistent
with the gap closing. We conclude that the large w0/w1 phase
is a nematic semimetal: SMy preserves C2T , breaks C3, and
has two Dirac nodes on the y axis near �.

C. Ginzburg-Landau-like description of the SMy phase

There is a very appealing Hartree-Fock picture for why
the Coulomb interactions reconstruct the single particle Dirac
semimetal into the nematic SMy semimetal. When C2T is
preserved, the state is specified entirely by the phase of the
interband coherence ϕk, so the HF energy is a functional
EHF[ϕk]. Reference [51] analytically computed this functional
for the IBM model, Eq. (1), and found that the dominant
contribution takes the form

EHF[ϕk] = EQAH
HF + 1

2

∫
gk(∇kϕk − 2ak)2d2k + · · ·

gk = 1

A

∑
q

Vq q2|
q(k)|2. (13)

Here gk is an EC-scale function independent of ϕk, and EQAH
HF

is the Coulomb energy of the QAH state. Finally, ak is a
U(1) vector potential which encodes the band geometry: Due
to the C2T = σ xK symmetry, the SU(2) Berry connection
of the Bloch states is constrained to take the diagonal form
A(k) = σ zak, reducing it to a U (1) connection.12

We see that the energy is similar to the Ginzburg-Landau
functional for a superconductor in a magnetic field Fk = dak.

12Note that ak here does not have a quantized Wilson loop, unlike
Ak discussed in Sec. V B. This is because ak is defined in terms of
Chern bands, which are not invariant under C2T .
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FIG. 9. (a) The Berry curvature Fk for w0/w1 = 0.85 shows con-
centration at the � point. (b) The k-space “supercurrent” |∇ϕk − 2ak|
is concentrated in the same region as Fk. Both (a) and (b) are calcu-
lated in the units Gx = Gy = 1, ABZ = 1.

This isn’t a coincidence: ∇kϕk can only appear via a gauge-
covariant derivative because ϕk, ak transform as a gauge pair
under a C2T -preserving phase redefinition of the Bloch states,
ĉ±,k → e±iφk ĉ±,k. However, there is no exact U(1) symmetry,
so the small “· · · ” terms we neglect (for example the disper-
sion h) do couple directly to ϕ.

The superconducting analogy can be made more concrete
by applying a particle-hole transformation to only the C = −1
band, so that the coherence ϕ between C = ±1 bands maps
to “superconducting pairing” between two C = 1 bands [44].
The Berry curvature Fk then appears with the same form
as a magnetic field, albeit in k space, similar to how Berry
curvature manifests as a “k-space magnetic field” in the semi-
classical equations of motion for Bloch electrons [66].

If we treat the mBZ as the unit cell, the Chern number
1

2π

∫
Fk d2k = 1 implies that there is one flux quantum per

unit cell. Just like the vortex lattice of a superconductor in a
magnetic field Fk, this forces ϕ to have two vortices per unit
cell. Each vortex (+2π winding) is equivalent to a Dirac point,
so this recovers the topological protection of the Dirac points
discussed earlier. In the BM ground state, the two vortices are
pinned to the K± points, while in the SMy state they lie near
� [Fig. 7(a)].

The vortices lead to an energy penalty relative to the QAH
state, explaining Eq. (13). However, in our case the Berry
curvature Fk is not uniform: Instead, Fk is concentrated near
the � point [Fig. 9(a)]. By analogy to a superconductor in a
nonuniform field, the lowest energy configuration of Eq. (13)
will place the vortices in the region of concentrated Fk, ex-
plaining their shift from K± → �. In Fig. 9(b), we confirm
that ∇kϕk − 2ak ≈ 0 in the region where Fk is small but is
finite near � where Fk is concentrated. Accordingly, most
of the energy penalty comes from near the � point. Increas-
ing w0/w1 makes Fk increasingly concentrated, reducing the
Coulomb penalty of SMy relative to QAH.

The final ingredient driving the finite w0/w1 transition is
the small terms like the dispersion h hidden in “· · · ,” which
slightly prefer the SMy phase.13 As w0/w1 increases, the

13For example, in the SMy phase, ϕk can perturbatively deform to
follow the dispersion h, particularly in the vicinity of �.

TABLE II. Probability that some states are occupied by 0, 1, or
2 electrons in a given unit cell at w0/w1 = 0.85, �y = π , and χ =
1024. Nky is the number of electrons with momentum ky in the unit
cell.

ky − 5
12 − 1

4 − 1
12

1
12

1
4

5
12

p(Nky = 0) 0.021 0.021 0.049 0.049 0.021 0.021
p(Nky = 1) 0.958 0.959 0.902 0.902 0.959 0.958
p(Nky = 2) 0.021 0.021 0.049 0.049 0.021 0.021

Coulomb penalty for the SMy phase decreases due to the
Berry curvature concentration, and these subleading terms
win out. Consequently, while increasing w0/w1 does slightly
increase the bandwidth, its primary effect is actually via the
redistribution of Berry curvature, which enters at the Coulomb
scale (gk ∼ EC).

D. “Thin cylinder” DMRG analysis

The DMRG ground state at Ny = 6 can be approximated
by a particularly simple “thin cylinder” ansatz, provided none
of the momentum cuts cross the region of large Berry cur-
vature near �. We ensure this by taking �y = π and focus
on w0/w1 ≈ 0.85. In this case, the DMRG ground state has
a relatively small particle number fluctuation in the unit cell.
This is because away from �, P(k) varies slowly with kx, so
in the xk space the correlations are local (intra-unit cell).

Table II shows the probability for each momentum mode in
the unit cell to be occupied by 0, 1, or 2 electrons. All modes
have p(Nky = 1) larger than 0.9 and many of them larger than
0.95. This suggests there is a simple “thin-cylinder” ansatz
with no particle number fluctuation per momentum mode:
Following Ref. [25], we define

|�TC〉 =
∏
x,k

(
cos

θ (x, ky)

2
ĉ†
+,x,ky

+ sin
θ (x, ky)

2
eiϕ(x,ky )ĉ†

−,x,ky

)
|0〉 . (14)

It is easy to check that if θ and ϕ are independent of x, these θ

and ϕ correspond to those in Eq. (11). By inspecting Fig. 7(b),
we find θ = π/2 and ϕ = π/2 is a good approximation for
the SMy state14 so long as the momentum cuts are not close
to ky = 0. The fidelity per unit cell of the resulting ansatz
|�SM〉 and the DMRG ground state is F ∼ 0.98—remarkably
accurate for such a simple ansatz. This ansatz also captures
well the behavior of entanglement entropy in Fig. 6: Each
momentum mode contributes a “Bell pair” to entanglement,
making the maximum entanglement 6 log 2 with our choice of
orbital ordering.

We can further motivate the thin-cylinder ansatz from the
polarization Px(±, ky) (Fig. 4). At large w0/w1, Px is close
to 0 for most ky values, and orbitals in one unit cell are well
separated from those in neighboring unit cells. The interaction
therefore strongly couples modes within the same unit cell,
resulting in vanishing number fluctuation per unit cell.

14Taking our different gauge convention into account, this is in
agreement with Ref. [25].
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TABLE III. Energy per electron of various trial states, evaluated
with respect to the IBM Hamiltonian at w0/w1 = 0.85. Here “Dirac”
refers to ground state of the single-particle BM Hamiltonian, and
the parameters for SM and stripe ansätze are described in the text.
We see that the stripe is very close to the DMRG ground state,
and the Dirac state is well separated from the rest, reflecting the
dominant importance of the Coulomb interactions. Note that the
energies are negative because we have subtracted off the q = 0 part
of the Coulomb interaction.

State Energy (meV)

DMRG ground state (SMy) −28.24
QAH ansatz [Eq. (14)] −28.04
SMy ansatz [Eq. (14)] −27.92
C2T - stripe ansatz [Eq. (14)] −28.08
Dirac (BM ground state) −20.62

We also see why the thin-cylinder ansatz breaks down near
the � point: P(k) changes rapidly there [Fig. 7(e)], leading
to inter-unit cell correlations. We stress that the ansatz is thus
a crude approximation to the true HF ground state, since it
fails to capture the complex Berry curvature contribution to
the energy that is dominant near the � point. As Ny → ∞,
the momentum cuts unavoidably approach �, and the thin-
cylinder ansatz will break down.

Finally, we comment on the energy competition between
different candidate ground states. The simple form of the
ansatz enabled Kang and Vafek [25] to put forward another
candidate for the ground state, which breaks translation sym-
metry in the L1 direction in favor of a period-2 stripe state with
screw symmetry C2xTL1 . To crude approximation, this state
corresponds to θ (n, ky) = π/2 and ϕ(n, ky) = (−1)nπ/2 +
π/2 in the parametrization of Eq. (14). In order to test this
ansatz, we computed the energy of the SM ansatz and the
stripe ansatz and compared it to the DMRG ground state
energy (Table III) and the QAH ansatz (θ = 0). We also com-
puted the energy of the ground state of the BM model with
respect to the IBM model to establish the relevant Coulomb
energy scale. We find that the energy of the QAH, SMy, and
the stripe ansatz are within 1/3 meV of the DMRG energy.
While the stripe is not the true ground state for the parameter
values studied here,15 this confirms the assertion in Ref. [25]
that the stripe is a viable candidate in the wider phase diagram.

VI. CONCLUSIONS

In this work we have introduced a method for studying
tBLG (and any other moiré material) using DMRG. Our
method (Fig. 1) starts with the BM model, adds interactions,
and compresses the resulting MPO down to a reasonable size
so that the DMRG is computationally tractable. We carefully
verified the correctness of our approach and showed that it is
sufficiently precise to capture the ground state physics of the
IBM model. To benchmark our approach we focused mostly

15We verify this by initializing the DMRG using the doubled unit
cell stripe ansatz and find the stripe reverts to the SMy phase at
convergence.

on the spinless, single-valley case. However, we showed in
Sec. III that our method can be extended to the spinful,
two-valley case with only moderately greater computational
resources. Therefore we have identified a method to study the
ground state physics of tBLG using DMRG.

Even though the spinless, single-valley model is not strictly
physical, our results have several important conceptual im-
plications for the study of tBLG. Remarkably, we found that
the DMRG ground state is well approximated as a k-space
Slater determinant for all w0/w1. However, we stress that
the ground state nevertheless has no relation to the ground
state of the single-particle BM model: It mixes states very far
from the Fermi surface of the BM Hamiltonian [Fig. 8(c)]. At
least near the magic angle this suggests that weak-coupling
approaches to tBLG, which rely on various details of the
BM Fermi surface, will miss the essential physics. Instead,
the energetics are dominated by the exchange physics of the
Coulomb interaction. As a result, the effective band structure
(as would be computed from the self-consistent Hartree-Fock
Hamiltonian) is entirely different than that of the BM model,
with a width set by EC [Fig. 8(a)]. This is true even in the
large w0/w1 nematic semimetal phase SMy, which may have
some relation to the ν = 0 semimetallic resistance peak found
in experiment.

Furthermore, it is subtle to describe the observed ground
states within a 2D Wannier-localized “Mott insulating” pic-
ture. For small w0/w1 we have a QAH phase: The filled states
have net Chern number, so the projector onto the filled states
cannot be 2D Wannier localized. This is not to say that it is
impossible to find these states within a numerical approach
which starts from 2D Wannier orbitals (which is just a change
of basis), but rather that in such a basis the order would
manifest as a set of coherences 〈c†

i c j〉 between sites rather than
an onsite order parameter. Presumably this would complicate
any mean-field approach which depends on a site-local self
energy.

Taken together, this supports the point of view that tBLG is
more closely related to quantum Hall ferromagnetism, where
symmetry breaking is driven by the combination of band
topology and Coulomb exchange, than it is to the Mott insu-
lating physics of the Hubbard model. But of course in contrast
to quantum Hall systems, tBLG comes with time-reversal
symmetry, making it amenable to superconductivity. Future
work will explore the physics of tBLG upon restoring the spin
and valley degrees of freedom.
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APPENDIX A: INTERACTING
BISTRITZER-MACDONALD MODEL

In this Appendix, we review the interacting BM model
projected into the flat bands. We use the conventions and
definition of h(k) from Supp. Mat. I of Ref. [30].

Let us first consider the Coulomb interaction

ĤC = 1

2

∫
dr

∫
dr′ V (r − r′)ψ†

α (r)ψ†
β (r′)ψβ (r′)ψα (r)

= 1

2A

∑
k,k′,q

Vq ψ
†
α,k+qψ

†
β,k′−q

ψβ,k′ψα,k, (A1)

where A is the sample area, Vq = ∫
drV (r)eiq·r, and α, β are

combined layer-sublattice indices. Summation over repeated
indices is implicit. The Fourier components of the Fermi op-
erators are defined to satisfy the canonical anticommutation
relations:

{ψ†
α,k, ψβ,k′ } = δα,βδk,k′ . (A2)

Next, we relabel the sums over the momenta k and k′ as∑
k

→
∑

k∈mBZ

∑
τ

∑
G

, (A3)

where τ = ± is a valley label, and G are the moiré reciprocal
lattice vectors. We can now approximate the Coulomb inter-
action as

ĤC = 1

2A

∑
τ,τ ′

∑
q

∑
k,k′∈mBZ

∑
G,G′

Vqψ
†
α,τ,G(k + q)ψ†

β,τ ′,G′

×(k′ − q)ψβ,τ ′,G′ (k′)ψα,τ,G(k), (A4)

where ψ
†
α,τ,G(k) = ψ

†
α,k+τK�+G and K� denotes the � point of

the mBZ centered at the K points of the graphene layers. Note
that by definition, ψ

†
α,τ,G(k + G′) = ψ

†
α,τ,G+G′ (k). Equation

(A4) is only an approximation to the complete Coulomb in-
teraction, as intervalley scattering terms have been neglected.
This can be justified because of the long-range nature of the
interaction, which suppresses intervalley scattering by a factor
of order V2K�

/V0.
Next, we perform a unitary transformation to the BM band

basis and define

f †
m,τ,k =

∑
α,G

um,τ ;α,G(k)ψ†
α,τ,G(k), (A5)

where m labels the bands of the single-valley BM model, and
um,τ ;α,G(k) are the periodic part of the Bloch states of the
BM Hamiltonian. Note that f †

m,τ,k+G′ = f †
m,τ,k because the BM

Bloch states satisfy um,τ ;α,G(k + G′) = um,τ ;α,G+G′ (k). With
this definition, Eq. (A4) takes the following form in the BM
band basis:

ĤC = 1

2A

∑
τ,τ ′

∑
q

∑
k,k′∈mBZ

Vq
[

τ

q (k)
]

mn

[

τ ′

−q(k′)
]

m′n′

× f †
m,τ,k+q f †

m′,τ ′,k′−q
fn′,τ ′,k′ fn,τ,k, (A6)

where the sums over band indices are implicit, and the form
factors are given by[


τ
q (k)

]
mn =

∑
α,G

u∗
m,τ ;α,G(k + q)un,τ ;α,G(k). (A7)

In this work, we consider the single-valley model, which
means that we fix all valley labels, i.e., τ = + everywhere.
The single-valley Coulomb interaction is then given by

ĤC,sv = 1

2A

∑
q,k,k′

Vq : [ f †
k+q
q(k) f k][ f †

k′−q

−q(k′) f k′ ] :

(A8)
where 
q(k) = 
+

q (k) and f †
k = f †

+,k is a vector of creation
operators running over the BM bands.

As a final step, we now project ĤC into the subspace where
all remote valence bands are occupied, and all remote conduc-
tion bands are empty. To do that, we first define the following
Hartree Hamiltonian functional:

Ĥh[P(k)] = V0

A

∑
G

[∑
k′

tr(P(k′)
G(k′))

] ∑
k

f †
k
−G(k) f k,

(A9)
where the fermion operators are restricted to the flat bands
and which depends on a general Slater determinant correlation
matrix 〈 f †

m,k fn,k′ 〉 = ∑
G δk+G,k′ [P(k)]nm. We also similarly

define a Fock Hamiltonian functional:

Ĥf [P(k)] = − 1

A

∑
q,k

Vq f †
k
q(k − q)P(k − q)
−q(k) f k,

(A10)
where again the fermion operators are restricted to the flat
bands. With these definitions, one can write the flat-band
projected Coulomb interaction as

ĤC,sv|FB = H̃C,sv + Ĥh[Pr (k)] + Ĥf [Pr (k)], (A11)

where H̃C,sv is obtained from ĤC,sv by simply restricting all
band indices to the flat bands, and Pr (k) is the correlation ma-
trix of the Slater determinant where only the remote valence
bands are filled.

Having obtained the flat-band projected single-valley
Coulomb interaction, we now have to be careful not to double
count certain interaction effects. In particular, the value of
the hopping parameter in the tight-binding model of mono-
layer graphene is chosen to best reproduce the experimentally
observed Dirac velocity. Importantly, this Dirac velocity is
already renormalized by the Coulomb interaction. So if we
want to explicitly add back the complete Coulomb interaction,
we must make sure not to forget to subtract off the renormal-
ization of the dispersion. In practice, this means that we have
to subtract off the following Hartree-Fock Hamiltonian:

Ĥsub = Ĥh[P0(k)] + Ĥf [P0(k)], (A12)
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where P0(k) is the correlation matrix of the charge-neutrality
Slater determinant of two decoupled graphene layers [31]
restricted single spin and valley, expressed in the BM band
basis. The complete projected single-valley BM model thus
takes the form

Ĥ = ĤBM,sv + ĤC,sv|FB − Ĥsub. (A13)

Because the interlayer tunneling is only a small perturbation
compared to the intralayer hopping, it does not significantly
change the remote bands. It thus holds to a very good approx-
imation that

[Pr (k)]mn = [P0(k)]mn for m, n ∈ remote bands. (A14)

Now combining all the single-particle terms in Eq. (A13), one
obtains the matrix h(k) defined in Eq. (1). The remaining in-
teraction Hamiltonian of Eq. (A13) is then exactly the second
term of Eq. (1).

Finally, let us also comment on the value of the dielectric
constant εr that we use for the projected model. The dielectric
constant of the unprojected model is determined by the insu-
lating hexagonal boron-nitride (hBN) substrate. In particular,
it is given by the geometric mean of the dielectric constants
of hBN parallel and orthogonal to the atomic plane: εhBN =√

ε⊥ε‖ ≈ 4.4. When we restrict to the flat bands we have to
take into account that the filled remote bands which have been
projected out act as another insulating background, whose
polarization will also contribute to the dielectric constant.
We phenomologically incorporate this effect by screening the
Coulomb potential with the static RPA polarization of eight
Dirac cones at neutrality. In doing so, we ignore the small
interlayer tunneling terms (whose effect on the remote bands
is expected to be small), and we overcount a small contribu-
tion coming from the states in the flat bands themselves. The
polarization bubble of Dirac fermions in monolayer graphene
was calculated in Ref. [67]. Using the results from that paper,
we obtain a dielectric constant εr = εhBN + ND ∗ 0.73 ≈ 10.3,
where ND = 8 is the number of Dirac cones. This gives an
order-of-magnitude estimate for the dielectric constant of the
projected model. Given the many approximations used in
deriving this estimate, it is safest to assume that the true
dielectric constant lies somewhere in the interval εr ∼ 6–12.

We also note that the effective gate distance d appearing
in Vq = e2

4πεq tanh(qd ) is modified by the anisotropy of the
substrate dielectric constant. Specifically, if dg is the physical

distance to the gate, then d =
√

ε⊥
ε‖

dg, due to the bending of

field lines in an anisotropic substrate.

APPENDIX B: WANNIER LOCALIZATION, GAUGE
FIXING, AND SYMMETRIZATION

In this section, we list several invariants enforced by the
maximal localization of Wannier orbitals and gauge fixing.
We also comment on the difference between our gauge choice
and the gauge choice in Ref. [25], and how we can map states
from one gauge to another.

We denote the periodic part of momentum space orbitals
c†
±,k by |u±(kx, ky)〉. We define 2 × 2 overlap matrix as

Oαβ (k, k′) = 〈uα (k)|uβ (k′)〉 . (B1)

For each overlap matrix O, we define unitary overlap matrix Õ
by the unitary part of the polar decomposition of O. Wannier
localization [56] guarantees that the unitary overlap matrix in
the kx direction is always given by

Õαβ (k, k + kx ) = δαβeiPx (α,ky ), (B2)

where kx is the unit of discretization in the x direction.
Physically, this corresponds to choosing constant Ax = Px/Gx.

Wannier localization fixes relative phases within each ky

mode. To fix relative phases between different ky modes, we
demand a continuity criterion in the ky direction. One natural
choice is to demand the unitary overlap matrix in the y direc-
tion be the identity matrix:

Õαβ (k, k + ky) = δαβ, (B3)

where the x component of k is some fixed kx0. The condi-
tion notably does not wraparound the mBZ: The mode near
ky/Gy = 0.5 and the mode near ky/Gy = −0.5 are not subject
to the continuity condition with each other.

This leaves us with a global U (1) × U (1) phase ambiguity.
Fortunately, the Wannier localization and continuity condi-
tions are compatible with the symmetry requirements

C2T |u±(k)〉 = |u∓(k)〉 ,

C2x |u±(k)〉 = ∓i |u∓(−k)〉 , (B4)

which fixes the gauge up to an overall minus sign.
We note that the gauge fixing condition is different from

Ref. [25] on two accounts: We use a different continuity
criterion, and we fix C2x to act as σy rather than σx. The latter
is easy to account for by a eiπσx/4 rotation, which maps σy to
σx, but there is no guarantee that the gauge is the same even
after such rotation.

Luckily, in the case of Ly = 6,�y = π,w0 = 0.185,
eiπσx/4 rotation maps our ground state ansatz in Sec. V D to
their ground state ansatz, suggesting our gauge choice is the
same up to the rotation. In particular, this means we can go
from their parametrization to our parametrization simply by
changing ϕ → ϕ + π/2. We make use of this fact when we
write down the stripe ansatz in our gauge.

APPENDIX C: AN UNCOMPRESSED MPO FOR BLG

This Appendix details the construction of the uncom-
pressed infinite MPO for bilayer graphene. More concretely,
we show how to construct an iMPO which encodes arbitrary
four-fermion interactions up to range R.16 Schematically, what
is the iMPO for the Hamiltonian

Ĥ =
∑

i j

ti jc
†
i c j +

∑
Vi jk�c†

i c†
j ckc�, (C1)

for arbitrary interactions t and V ?
We proceed in several stages. First we provide a straight-

forward construction of such an MPO of size D = O(R3).
However, this gives an iMPO which is too large to even

16For the construction of finite MPO for interacting fermions, as is
relevant to quantum chemistry applications, we refer the reader to
Ref. [49].

205111-14



EFFICIENT SIMULATION OF MOIRÉ MATERIALS … PHYSICAL REVIEW B 102, 205111 (2020)

FIG. 10. A straightforward but rather inefficient MPO for Ĥsimple.

begin compressing (D ≈ 8 000 000 for our standard Hamil-
tonian parameters). Second, therefore, we provide a more
efficient MPO which represents the same operator at size
D = O(R2), which will give D ≈ 100 000—small enough to
be compressed.

1. A straightforward MPO construction

This section will give a relatively straightforward way to
construct an MPO for a long-range four-fermion Hamiltonian.
For simplicity, we restrict ourselves to a 1D spin chain of
spinless fermions and no internal degrees of freedom and
construct a iMPO representation for a class of “toy” four-body
Hamiltonians

Ĥsimple =
∑

i< j<k<�

Vi jk�c†
i c†

j ckc� (C2)

with |i − j|, | j − k|, |k − �| � R.17 In particular, we have im-
posed the artificial properties that H contains only terms of the
form c†c†cc (which makes this non-Hermitian) is completely
translationally invariant and has i < j < k < � with strict in-
equalities. These restrictions will be lifted below.

i j k �

r1 r2 r3

Let us work in the finite state machine picture for the
iMPO. For convenience, define r1 = j − i, r2 = k − j, r3 =
� − k. As 0 < r1, r2, r3 � R, our operator can have up to R3

terms. For each one, we must first place a c†, then place r1 − 1
identity operators 1̂, then place another c†, and so on. To
encode these into the finite state machine, we make a unique
path for each term from the initial to final nodes, as shown
in Fig. 10. For each term in the Hamiltonian, there is an
edge Vr1r2r3 from the initial node (i) to node (r1, r2, r3). After
that, there is a unique path from node (r1, r2, r3) to node ( f ).
The nodes are labeled by the distances to nonidentity nodes
that have yet to be placed. In each column, the path simply
“counts down” in the first index, until it reaches 1. At that site

17This is slightly different from how we implemented x cutoff
for BLG, where we demanded � − i < R. This will only change the
complexity by a constant factor, so we stick to the simpler cutoff.

a nonidentity onsite operator is placed, and the path goes on to
the next column. As a matrix, the operation of counting down
is encoded by a “skipping matrix,” with identities on the first
superdiagonal:

Ŝ =

⎛⎜⎜⎜⎜⎝
0 1̂

0 1̂
. . .

. . .

0 1̂

0

⎞⎟⎟⎟⎟⎠.

We therefore adopt a concise diagrammatic notation where
rectangular nodes represent nodes that count down, as shown
in Fig. 11. In this notation, Ŝi acts on a node as18

Ŝi(Ô[ri...]) = (Ô[ri − 1...]). (C3)

We will use this notation below. We also note that some
transitions are deterministic, in the sense that the next node
is fully specified by the current node [e.g., (2, r2, r3) →
(1, r2, r3)]. On the other hand, the transition from the ini-
tial node is highly branching, giving rise to the R3 different
terms in the Hamiltonian. We show such highly branching
transitions in the figure by double arrows, while deterministic
transitions are shown by single solid arrows.

Overall, this construction requires C1(R) := R3 + R2 +
R + 2 nodes. This is already somewhat efficient, as multiple
terms will partially reuse the same paths. For instance, the
paths through the state machine for V5,r2,r3 and V6,r2,r3 will be
the same after the first few edges. To add other types of terms,
such as cc†cc† or ccc†c†, one must duplicate all these nodes,
giving 4C1(R) nodes. For bilayer graphene, we use a unit
cell of size 12 and interaction cutoff of 10 unit cells, giving
D = 6 970 088 just for the four-body terms. This makes the
O(D3) compression algorithm impractical, so we must seek a
more efficient way to encode the MPO.

2. An efficient MPO construction

We now describe a more efficient way to encode the
uncompressed MPO and give explicit state machines for two-
body, three-body, and four-body interaction terms. The key
idea is to place the coefficient Vr1r2r3 in the middle of the path
rather than at the beginning.

Figure 11 (bottom) shows the more efficient construction
of the MPO for the same operator as before, Eq. (C2). Let us
unpack how it works. For each term Vr1r2r3 c†c†cc, we start at
node (i), jump to the node (ĉ†[1]) by placing c†, then “count
up” to r1, at which point we place the onsite operator Vr1r2r3 c†.
The state machine then “counts down” for distance r2, places
a c operator, counts down for distance r3, places a second c,
and reaches the final node.

To distinguish “count up” skipping matrix and “count
down” skipping matrix, we introduced “transposed skipping

matrix” Ŝ
T
i such that

Ŝ
T
i (Ô[ri...]) = (Ô[ri + 1...]). (C4)

18This is slight abuse of notation, since it doesn’t convey that Ŝi

places an identity operator upon the transition.
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FIG. 11. (Top) Definition of the compact state machine notation. This is the same state machine as in Fig. 10 but where columns have
been replaced by rectangular nodes. Rectangular nodes label the onsite operators that are yet to be placed, as well as the distances to them.
The first rectangle contains R3 nodes, the second contains R2, and the third contains R. The self-loop Ŝ means one should place an identity 1̂

and decrement the first index of the node. (Bottom) Another MPO which represents the same Hamiltonian with only D = O(R2) nodes instead
of O(R3). Rectangular nodes to the right of the branching arrow are labeled similarly to the top, while the rectangular node to the left of the
branching arrow is labeled by which operator it has already picked up and the distance to it.

The advantage over the previous method is that, instead of
having a unique path for each term in the Hamiltonian, many
of the paths are partially shared. For example the terms Vr15r3

and Vr17r3 will share the same first r1 and last r3 steps in their
path through the state machine. This means that instead of
requiring columns of sizes R3, R2, and R, we instead only need
R, R2, and R, which is vastly more efficient. Another way to
see this is to observe when the highly-branching transitions
occur. In this more efficient algorithm, branching occurs be-
tween ĉ† to ĉ†ĉ†), thereby reducing the number of paths to
keep track of to R2. Of course, one could continue to further
optimize the layout of the state machine, but we do not need
a generic or completely optimal solution to this problem, only
one that will render the BLG Hamiltonian small enough to fit
in memory to be compressed.

Now that we have described the technique for writing down
a sufficient efficient MPO construction, we will relax the arti-
ficial assumptions. Let us first relax the assumption that only
c†c†cc terms appear. In general, we will have a Hamiltonian
of the form

H = Hhop + Hint = Hhop + H2 + H3 + H4

Hhop =
∑
i< j

Ṽ ċc
i j c†

i c j +
∑
i< j

Ṽ cċ
i j cic

†
j

H2 =
∑
i< j

Ṽ nn
i j nin j

H3 =
∑

i< j<k

Ṽ ċnc
i jk c†

i n jck + Ṽ nċc
i jk nic

†
j ck + Ṽ ċcn

i jk c†
i c jnk

+ Ṽ ncċ
i jk nic jc

†
k + Ṽ cnċ

i jk cin jc
†
k + Ṽ cċn

i jk cic
†
j nk

H4 =
∑

i< j<k<�

Ṽ ċċcc
i jk� c†

i c†
j ckc� + Ṽ ċcċc

i jk� c†
i c jc

†
kc�

+ Ṽ ċccċ
i jk� c†

i c jckc†
� + Ṽ ccċċ

i jk� cic jc
†
kc†

�

+ Ṽ cċcċ
i jk� cic

†
j ckc†

� + Ṽ cċċc
i jk� cic

†
j c

†
kc�, (C5)

with all two-body, three-body, and four-body interactions in-
volving c†, c, and n operators, and c† is represented by ċ for

concision. We can make this representation more amenable
to finite state machine description by mapping Ṽi jkl to Vr0r1r2r3

such that Vi( j−i)(k− j)(�−k) = Ṽi jkl (see Fig. 12). By combining
all of these, one can generate the full Hamiltonian Eq. (C5)
with D(R) = 4R2 + 6R + 2 nodes. In practice, then, the spin-
less, single-valley BLG Hamiltonian on a cylinder with six
momentum cuts (i.e., a unit cell of 12 sites) and interactions
of range 10 unit cells is size D ≈ 58 000 before compression.

APPENDIX D: COMPRESSION OF INFINITE MPOS WITH
GENERAL UNIT CELLS

This Appendix will present an algorithm for compressing
infinite matrix product operators (iMPOs) with nontrivial unit
cells, a generalization of Ref. [50]. The main application
for these algorithms to compress the Hamiltonian for bilayer
graphene down to a sufficiently small bond dimension that
DMRG may be performed easily, while retaining sufficient
precision to determine its physical properties. However, as the
technique may be of independent interest, we will keep our
discussion sufficiently general that the results apply to any
iMPO that shows up in 2D DMRG.

Let us briefly review the context in which this algorithm
is useful. Suppose that you have a Hamiltonian Ĥ for a 2D
system and wish to find the ground state with DMRG [24,68].
A standard technique is to use a ‘thin cylinder’ geometry of
circumference Ny sites and length Nx → ∞. One then chooses
a linear (1D) ordering for the sites on the cylinder by wrapping
around in a helical pattern. This effectively reduces the prob-
lem to a 1D chain but at a cost: Interactions at distance r in 2D
can be as far as Ny × r in 1D. Furthermore, the resource cost
grows hugely, as the matrix product state (MPS) bond dimen-
sion needed to accurately capture a 2D area law state grows
as χ ∼ eNy [68]. In practice, therefore, 2D DMRG is often
limited to around Ny = 6 − 12, even with bond dimensions of
χ ∼ 10 000 or more. For sufficiently long-range interactions
in 2D, however, the bottleneck is not the MPS bond dimension
but rather the MPO bond dimension needed to encode the
Hamiltonian. For example, long-range four-body interactions
of range R result in iMPOs of bond dimension D ∼ R2 (see
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FIG. 12. Finite state machines for constructing the two-body,
three-body, and four-body interactions of Eq. (C5). The notation is
the same as in Fig. 11: Boxes stand for collections of many nodes
with 1 � ri � R. For concision, the operator c† is represented by ċ
in superscripts. Note that some of the nodes can be reused among
two, three, and four-body paths. We have suppressed the r0 index for
clarity on the initial node and for the V coefficients; this shows the
case of unit cell of size N = 1.

Appendix C), and hence DMRG scales as D2 ∼ R4, which
becomes quickly impractical. The algorithms given below

allow one to proceed by finding the best approximation for
the iMPO of bond dimension D′ < D. For many physical
Hamiltonians, this compression incurs only a minor penalty
(say 10−4) in the precision of the eventual ground state. In
the case of the single-valley IBM model we have used in this
paper, the bond dimension may be reduced by a factor of 103,
vastly improving the speed of DMRG.

The rest of this Appendix is organized as follows. We
first give an overview of iMPO compression in the case
without unit cells to set notation. We then discuss how an
iMPO may be “topologically ordered,” how this vastly speeds
up compression, and present a practical compression algo-
rithm. Afterwards we examine the properties of compressed
Hamiltonians: Under reasonable assumptions (1) Hermiticity
is retained, (2) the fidelity of the compressed ground state
versus the true ground state is high, and (3) their ground state
energy and expectations values are accurate.

1. Lightning review of iMPO compression

We briefly review the notion of iMPO compression from
Ref. [50]. It is well known that the optimal way to compress
a 1D matrix product state is to perform a Schmidt decom-
position and drop the smallest singular values (see Ref. [69]
or [63] for a review). For iMPOs, we employ the same basic
technique with a few modifications to preserve the locality of
the operator.

We first present the algorithm in terms of (nonmatrix prod-
uct) local operators. Consider a local operator Ĥ on an infinite
1D chain. We can split Ĥ into left and right halves at some
bond:

Ĥ = ĤL1̂R + 1̂LĤR +
D∑

a,b=1

ĥa
LMab̂hb

R, (D1)

where a subscript L or R means the operator is supported
entirely on the left or right half, respectively, and the matrix M
keeps track of the terms which straddle the cut. This decom-
position is not unique; we have the freedom to apply arbitrary
unitaries on the left and right. We can take advantage of this
freedom to put Ĥ into almost-Schmidt form

Ĥ = ĤL1̂R + 1̂LĤR +
D∑

a=1

Ôa
LsaÔa

R, (D2)

where both {Ôa
L} and {Ôa

R} are orthonormal collections under
the scaled Frobenius norm

〈A, B〉 := Tr[Â†B̂]/Tr[I], (D3)

and where s1 � s2 � · · · � sD � 0 are referred to as the sin-
gular values.19 We further require that the operators Ôa

L,R

are identity free, i.e., 〈̂1L,R, Ôa
L,R〉 = 0 ∀a. The compressed

operator is then simply the truncation of the sum to the largest

19We note that the singular values resulting from an almost-Schmidt
decomposition and a true Schmidt decomposition are slightly differ-
ent. Their relation is described in Sec. 8 of Ref. [50].
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D′ < D singular values

Ĥ ′ := ĤL1̂R + 1̂LĤR +
D′∑

a=1

Ôa
LsaÔa

R. (D4)

One can show that Ĥ ′ is the best approximation to Ĥ with only
D′ ‘terms’ straddling the cut [50]. Furthermore, as we shall see
below, the accuracy of the approximation is controlled by the
truncated singular value weight

ε2(D′) :=
D∑

a=D′+1

s2
a. (D5)

To compute almost-Schmidt forms and compress opera-
tors, we work in the framework of matrix-product operators.
We now recall their definitions to set notation and a few es-
sential properties. Suppose we have a space of onsite operators
with an orthonormal basis {̂1, Ô2, . . . , Ôd} where 〈Ôα, Ôβ〉 =
δαβ is an inner product.20 Any translation-invariant operator,
with unit cell of size N , can be written as21

Ĥ = · · · [Ŵ (1)Ŵ (2) · · ·Ŵ (N )][Ŵ (1) · · ·Ŵ (N )] · · · , (D6)

where each Ŵ (n) = ∑d
α=1[W (n)]αÔα is an operator-valued

matrix of size D(n) × D(n+1). We require each Ŵ (n) to have
blocks of size (1, D(n) − 2, 1) × (1, D(n+1) − 2, 1)

Ŵ =
⎛⎝ 1̂ ĉ d̂

Â b̂
1̂

⎞⎠. (D7)

This ensures that each operator is a sum of terms that are
the identity far enough to the left or right—a physical and
mathematical necessity for a local operator.

An MPO is said to be in left-canonical form if all but the
last column of each Ŵ (n) are mutually orthonormal:22

D−1∑
a=1

〈
Ŵ (n)

ab ,Ŵ (n)
ac

〉 = δbc, ∀n ∈ Z/NZ, 1 � b, c � D − 1.

(D8)
Similarly, an MPO is right-canonical if all the rows except the
first are mutually orthonormal.

The representation (D6) is not unique, which is a manifes-
tation of gauge freedom. Two MPOs {Ŵ (n)} and {Ŵ (n)′ } are
gauge equivalent if there exist gauge matrices {Gn} such that

Gn−1Ŵ
(n)′ = Ŵ (n)Gn, n ∈ Z/NZ. (D9)

So long as Ĥ is sufficiently local, one can show [50] there
exists a gauge where the Ŵ (n)’s are left canonical (and another
gauge for right canonical). Now that we have set definitions,
the next section describes the compression algorithm for unit
cell MPOs.

20For example, a spin- 1
2 chain has an onsite basis of the Pauli

matrices {1̂, X̂ , Ŷ , Ẑ}.
21This is notation for multiplication along the virtual indices:

[Ŵ (1)Ŵ (2)]ac := ∑D(2)

b=1 [W (1)]αab[W (2)]βbcÔα ⊗ Ôβ .
22More explicitly, if

∑d
α=1

∑D−1
a=1 [W (n)]α∗

ab [W (n)]αac = δbc for each
Ŵ (n).

2. The unit cell compression algorithm

The rough idea of the compression algorithm for unit cell
MPOs {Ŵ (n)} is as follows.

(1) Compute the right-canonical form {Ŵ (n)
R }.

(2) Find the gauge transform {Gn} needed to transform to
left-canonical form {Ŵ (n)

L }.
(3) Take the SVD decomposition of the gauge transfor-

mation matrix: Gn = UnSnV †
n and absorb the unitaries into

the Ŵ ’s. This realizes the almost-Schmidt decomposition of
Eq. (D2).

(4) Truncate the number of singular values in Sn from D(n)

to D(n)′ and correspondingly reduce the bond dimensions of
the Ŵ ’s, producing the compressed Hamiltonian.

The rest of this section is devoted to showing the correct-
ness of this procedure and filling in the details. It turns out that
the most subtle part by far is canonicalization—the algorithm
for putting an MPO into left/right canonical form. We there-
fore delay the discussion of canonicalization to Appendix D 3
below and for now simply assume it can be done.

We specialize to the case of N = 2 sites in the unit cell
for concision, as larger unit cells are a direct generalization.
Suppose that

Rn−1Ŵ
n

R = Ŵ (n)Rn (D10)

is a gauge transformation so that the Ŵ (n)
R ’s are right canoni-

cal. Then

Ĥ = · · ·Ŵ (1)Ŵ (2)Ŵ (1)Ŵ (2) · · · (D11)

= · · ·Ŵ (1)
R Ŵ (2)

R Ŵ (1)
R Ŵ (2)

R · · · (D12)

by introducing R2 at ∞ and sweeping to the right. We can then
impose a further gauge transformation to make the first row of
each Ŵ (n)

R simultaneously identity free. This is done by

R′
n :=

⎛⎝1 tn 0
0 I 0
0 0 1

⎞⎠, (D13)

where the 1 × (D(n) − 2)-dimensional vectors tn are chosen
such that 0 = c(n)

0 + tn − tn+1A(n)
0 where A(n)

0 and c(n)
0 are the

1̂ components of Å(n) and c(n), respectively.(
c(1)

0 · · · c(N )
0

)

= (t1 · · · tN )

⎛⎜⎜⎜⎝
I · · · −A(n)

0
−A(1)

0 I
. . .

. . .

−A(n−1)
0 I

⎞⎟⎟⎟⎠.

(D14)

In practice, one should solve this by imposing the identity
free condition column by column. For each new column, this
requires solving a linear equation of size N . Using the same
technique from Eq. (71) of Ref. [50], the total operation can
be performed in O(ND2) operations.

Imposing this gauge we may assume Ŵ (n)
R has no identity

components in its first row. This implies that the first column
of Ŵ (n)

R is already orthogonal to all the other columns, such
that the gauge transformation to the left-canonical form can
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Algorithm 1 Unit Cell iMPO Compression.

Require: {Ŵ (n)} is a first-order (see Ref. [50]) unit cell iMPO.
1: procedure UNITCELLCOMPRESS(Ŵ (n), η) � Cutoff η

2: Ŵ (n)
R ← RIGHTCAN[Ŵ (n)]

3: Ŵ (n)
R ← R′

n−1Ŵ
(n)

R R′−1
n so that ĉ(n)

0 = 0 � Use
tn from Eq. (D14).

4: Ŵ (n)
L ,Cn ← LEFTCAN[Ŵ (n)

R ]
5: (Un, Sn,V †

n ) ← SVD[Cn]
6: Q̂(n), P̂(n) ← U †

n−1Ŵ
(n)

L Un,V †
n−1ŴRV

7: D(n) ← maxa{1 � a � D(n)] : S(n)
aa > η} �

Defines the projector Pn.
8: Q̂(n) ← P †

n−1Q̂nPn

9: Sn ← P †
n S(n)Pn

10: P̂(n) ← P †
n−1P̂(n)Pn

11: return Q̂(n)

be written as

Cn−1Ŵ
(n)

R = Ŵ (n)
L Cn, (D15)

with block-diagonal gauge transformation matrices Cn =
diag(1 Cn 1). Putting in a C2 matrix at −∞ and sweeping it
to the center, we arrive at a mixed canonical form

Ĥ = · · ·Ŵ (1)
L Ŵ (2)

L C2Ŵ
(1)

R Ŵ (2)
R · · · (D16)

= · · ·Ŵ (2)
L Ŵ (1)

L C1Ŵ
(2)

R Ŵ (1)
R · · · . (D17)

As Cn are block diagonal, we can compute their SVD’s

Cn = UnSnV
†

n (D18)

which will also be block diagonal. Define

Q̂(n) := U †
n−1Ŵ

(n)
L Un (D19)

P̂(n) := V †
n−1Ŵ

(n)
R Vn (D20)

for n ∈ Z/NZ. Then, since UnU †
n = I = VnV †

n , we have

Ĥ = · · · Q̂(1)Q̂(2)S2P̂(1)P̂(2) · · · (D21)

= · · · Q̂(2)Q̂(1)S1P̂(2)P̂(1) · · · (D22)

which is analogous to the center-canonical form for MPS. The
center bond can be swept back and forth via the gauge relation

Sn−1P̂(n) = Q̂(n)Sn, n ∈ Z/NZ. (D23)

To see how compression works, we adopt the technique of
assuming that the operator can be represented exactly by an
MPO of lower bond dimension, i.e., that a number of the sin-
gular values vanish exactly. Finding the lower bond dimension
MPO uses the same algorithm as compression when the small
singular values are truncated, so this shows the correctness of
the algorithm.

Thus we assume, temporarily, that only D(n)′ of the D(n)

singular values of Sn are nonzero. Hence there are projection
operators Pn from bond dimension D(n) to bond dimension
D(n)′ with PnP †

n a projector and P †
n Pn = I1+χ (n)′ +1 and

Sn = SnPnP
†
n = PnS′

nP
†
n = PnP

†
n SN , (D24)

where S′
n is the projected diagonal matrix of nonzero singular

values.
We can then introduce pairs of projectors on each bond:

Ĥ = · · · Q̂(1)Q̂(2)S2P2P
†
2 P̂(1)P̂(2) · · ·

= · · · Q̂(1)S1P̂(2)P2P
†
2 P̂(1)P̂(2) · · ·

= · · · Q̂(1)S1P1P
†
1 P̂(2)P2P

†
2 P̂(1)P̂(2) · · ·

= · · ·P †
2 Q̂(1)P1P

†
1 P̂(2)P2S′

2P
†
2 P̂(1)P1P

†
1 P̂(2)P2 · · ·

= · · ·P †
1 Q̂(2)P2P

†
2 P̂(1)P1S′

1P
†
1 P̂(2)P2P

†
2 P̂(1)P1 · · · (D25)

It is now clear how to define a new representation for Ĥ with
a reduced bond dimension:

P̂(n)′ := P †
n−1P̂(n)Pn (D26)

Q̂(n)′ := P †
n−1Q̂(n)Pn (D27)

whereupon

Ĥ = · · · Q̂(1)′Q̂(2)′S2P̂(1)′ P̂(2)′ · · · (D28)

is a representation of Ĥ with lower bond dimension. If we
now relax the requirement that the truncated singular values
were exactly zero, the strict equality of the new representation
becomes approximate.

3. Canonicalization & topological sorting for unit cell MPOs

In this section we provide the “missing link” needed to
complete the compression procedure: a canonicalization al-
gorithm. Any unit cell MPO (UCMPO) can be put into left
or right canonical form using QR iteration [50] with cost
O(ND3). As many as 40 iterations can be necessary to reach
high precision, making this quite slow in practice. However,
the MPOs for Hamiltonians in DMRG have a special property,
a “topological ordering,” which enables canonicalization to be
performed with cost O(ND3) but without iteration. For large
MPOs such as the one for BLG with D ∼ 100 000, this is
a crucial speed-up. We first define a “topological ordering,”
then provide the canonicalization algorithm and a proof of its
correctness and runtime. We conclude the section with a few
remarks on practical implementation details.

An MPO can be thought of as a finite state machine (FSM)
for placing onsite operators in a certain order [70]. For MPOs
with N tensors in a unit cell, the FSM gains an additional
structure: The FSM has N parts, with the nodes of part n
corresponding to the bond between Ŵ (n−1) and Ŵ (n) and edges
between parts n − 1 and n corresponding to tensor elements
Ŵ (n)

ab . See Fig. 13 for an example.
When one writes down an (non-unit-cell) MPO Ŵ for a

Hamiltonian “by hand,” then the MPO generally has a special
structure: Ŵ is upper triangular as a matrix. In Ref. [50], the
upper triangular structure was shown to permit a fast canon-
icalization algorithm. However, this does not immediately
generalize to a unit cell MPO, for a simple reason: If a unit
cell MPO {Ŵ (n)} has bond dimensions D(1), D(2) . . . D(n), not
all equal, then the matrices are rectangular and cannot all be
upper triangular. To find a good generalization of triangularity,
we must look to the finite state machine.
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FIG. 13. An example of the finite state machine for an MPO with
unit cell size 4. One onsite operator is placed for each arrow, and
the arrows wrap around from right to left. Each gray box represents
the data stored in one tensor. The UCMPO has bond dimension
(D4, D1, D2, D3) = (5, 4, 4, 5) and is loop free. The blue numbers
are a (nonunique) topological ordering for the nodes.

A UCMPO {Ŵ (n)}N
n=1 is said to be loop free if its finite

state machine contains no loops after the initial and final
nodes are removed from the graph. For N = 1, then an upper-
triangular MPO is always loops free, and a loop-free MPO
is always upper-triangular (up to permutation). We stress that
both the upper triangular and loop free conditions are gauge
dependent. Furthermore, for any N , if each Ŵ (n) is square
and upper-triangular, then the UCMPO is loop free. The con-
verse is almost true as well; any loop free UCMPO is an
upper-triangular MPO “in disguise.” To see this, we need a
definition, which will be at the heart of this section.

Definition 1. A topological ordering for a UCMPO
{Ŵ (n)}N

n=1 is an ordering of the nodes of the FSM (excluding
the initial and final nodes)

O = {(a1, n1) ≺ (a2, n2) ≺ · · · ≺ (aD, nD)} (D29)

such that

Ŵ (n)
ab = 0 whenever (a, n) � (b, n + 1), (D30)

where n ∈ Z/NZ indexes the bonds (explicitly, bond n + 1
connects Ŵ (n) to Ŵ (n+1)), a ∈ N indexes the node within the
bond, and D = ∑

n D(n) is the total number of nodes.
If an MPO is loop free, then its finite state machine (exclud-

ing the initial and final nodes) is a directed acyclic graph and
thus contains at least one topological ordering. This is easily
computed by Kahn’s algorithm (a standard result in graph
theory) with cost linear in the number of nodes plus edges in
the FSM. With this, we can show that loop free UCMPOs are
upper triangular ones “in disguise” and then use this ordering
as the basis for an efficient canonicalization algorithm.

Lemma 1. Suppose {Ŵ (n)}N
n=1 is a loop free MPO. Then, by

inserting rows and columns of zeros and permuting the rows

Algorithm 2 Unit Cell iMPO (Left) Canonicalization.

Require: {Ŵ (n)}N
n=1 is a loop free UCMPO.

1: procedure UNITCELLLEFTCANONICALŴ (n), η

2: O = KAHN’SALGORITHM[FSM[{Ŵ (n)}]]
3: for (b, n + 1) ∈ O do
4: P ← {a : O � (a, n + 1) ≺ (b, n + 1)}
5: ra ← ∑

c 〈Ŵca,Ŵcb〉 , ∀a ∈ P
6: R ← IDn , Rab ← ra, ∀a ∈ P
7: Ŵ (n) ← Ŵ (n)R, Ŵ (n+1) ← R−1Ŵ (n+1)

8: R ← IDn , Rbb ← (
∑

c 〈Ŵ (n)
cb ,Ŵ (n)

cb 〉)
−1/2

9: Ŵ (n) ← Ŵ (n)R, Ŵ (n+1) ← R−1Ŵ (n+1)

10: return {Ŵ (n)}

and columns of the matrices (which is a gauge transform),
{Ŵ (n)} can be made upper triangular.

Proof. Suppose the bond dimension of Ŵ (n) is D(n) on the
left and D(n+1) on the right, with D = ∑

n D(n). Let O be a
topological ordering for {Ŵ (n)} of the form (D29). Define a
gauge matrix Pn of dimension D(n) × D with matrix elements

[Pn]b,i =
{

1 if (b, n + 1) = Oi

0 otherwise. (D31)

This “blows up” Ŵ (n) on the right to bond dimension D >

D(n+1) by inserting zeros and puts the indices into topolog-
ical order. One can check that P †

n Pn = ID(n+1) , so we may
define Ŵ (n)′ := P †

n−1Ŵ
(n)Pn of size D × D (which obeys

Pn−1Ŵ (n)′ = Ŵ (n)Pn, making it a gauge transformation).
The new MPO Ŵ (n)′ is upper triangular. To see this, take

i � j. Then either Ŵ (n)′
i j = W (n)

ab for Oi = (a, n) and Oj =
(b, n + 1), or Ŵ (n)′

i j = 0. But Oi = (a, n) � (b, n + 1) = Oj ,

so W (n)
ab = 0 regardless. Therefore Ŵ (n)′ is upper triangular.�

We present the algorithm for (left) canonicalization of loop
free UCMPOs in Algorithm 2. We now prove its correctness,
then analyze its cost.

Proposition 1. Suppose {Ŵ (n)}N
n=1 is loop free. The output

of Algorithm 2 is a left canonical UCMPO.
Proof. The main idea is to iterate over the columns of

{Ŵ (n)} in topological order, orthogonalizing each column
against all the previous ones as in Gram-Schmidt.

Let O be a topological order for the nodes as in (D29).
As each Ŵ (n) has the form (D7), the first column of each is
already orthonormal. We proceed by induction. Suppose that
we have orthogonalized columns up to (d, n + 1) ∈ O. Then
for (a, m), (b, m) ≺ (d, n + 1),∑

c

〈
Ŵ (m)

ca ,Ŵ (m)
cb

〉 = δab. (D32)

Let the predecessor nodes be P := {(a, n + 1) : (a, n + 1) ≺
(d, n + 1)} and for each (a, n), define the inner products with
all previous columns as

ra :=
∑

c

〈
Ŵ (n)

ca ,Ŵ (n)
cd

〉
, (D33a)

R := ID(n+1 −
∑
a∈P

raead , (D33b)
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where ead is the elementary matrix where entry ad is 1 and
the rest are zero: (ead )i j = δaiδd j . Here R is only nonidentity
in column d , and it performs elementary column operations
when acting to the left and elementary row operations acting
to the right. In particular, we have chosen it to perform one
Gram-Schmidt step, orthogonalizing column d against pre-
vious columns of Ŵ (n). It is easy to invert R, R−1 = ID(n) +∑

a∈P raead , so we can cast this Gram-Schmidt step as a gauge
transform with a single nonidentity gauge matrix:

Ŵ (n)′ := Ŵ (n)R, (D34a)

Ŵ (n+1)′ := R−1Ŵ (n+1). (D34b)

We then have two things to show: (i) that this gauge
transform really does orthogonalize column d of Ŵ (n) against
previous columns and (ii) that the gauge transform does not
ruin the orthogonality condition of Eq. (D32). Both are easy
computations.

For (i), the effect of R acting on Ŵ (n) on the right is to add
column c to column d with coefficient rc:

Ŵ (n)R = Ŵ (n) −
∑
c∈P

rcŴ
(n)ecd .

The matrix Ŵ (n)ecd is the matrix with only column d nonzero
and whose values are those from column c of Ŵ (n). Let Ŵ:,a

denote the ath column vector of Ŵ , as usual. Then〈
Ŵ (n)

:,a , [Ŵ (n)ecd ]:,d
〉 = 〈

Ŵ (n)
:,a ,Ŵ (n)

:,c

〉 = δac

by (D32). Therefore, for any (a, n) ≺ (d, n),〈
Ŵ (n)′

:,a ,Ŵ (n)′
:,d

〉 = 〈
Ŵ (n)

:a ,Ŵ (n)
:d

〉 − ∑
c∈P

rc
〈
Ŵ (n)

:,a , [Ŵ (n)ecd ]:,d
〉

= ra −
∑
c∈P

rcδca = 0.

Therefore column d of Ŵ (n) is orthogonal to each previous
column.

For (ii), the effect of R−1 acting to the left on Ŵ (n+1) is to
add row d to row c with coefficient rc:

Ŵ (n+1)′ = Ŵ (n+1) +
∑
c∈P

rc

∑
e

(
Ŵ (n+1)

de

)
ece =: Ŵ + δŴ .

Take (a, n + 1), (b, n + 1) ≺ (d, n). Then

[δŴ ]:,a =
∑
c∈P

rc
(
Ŵ (n+1)

da

)
eca = 0

since Ŵ (n+1)
da = 0 as (d, n) � (a, n + 1) by (D30), and simi-

larly [δŴ ]:,b = 0. Therefore,〈
Ŵ (n+1)′

:,a ,Ŵ (n+1)′
:,b

〉 = 〈Ŵ:,a + δŴ:,a,Ŵ:,b + δŴ:,b〉
= 〈Ŵ:,a,Ŵ:,b〉 + 0 = δab,

so the induction hypothesis (D32) holds for {Ŵ (n)′ }.
As the gauge transform R adds previous columns to column

d of Ŵ (n) and adds row d of Ŵ (n+1) to previous rows, the
transformed UCMPO is also loop free. Thus after this gauge
transform, column d of Ŵ (n)′ is orthogonal to all previous
columns and all of the structure of the UCMPO is preserved.

A similar, simpler gauge transform

R = ID(n+1) +
(∑

c

〈
Ŵ (n)′

cd ,Ŵ (n)′
cd

〉)−1/2

edd

can then be used to normalize column d of Ŵ (n)′ . Repeating
the previous arguments, one can show that this similarly does
not disrupt the orthogonality of Ŵ (n+1)′ or the loop free condi-
tion. Therefore we have made one more column orthonormal
to the previous ones, completing the proof. �

Algorithm 2 is quite efficient, with cost that scales as
O(

∑
n[D(n)]3). This is somewhat surprising, as it seems we

are doing a total of D = ∑
n Dn gauge transformations, each

of which is a matrix multiplication. However, the R matrices
are particularly simple: They only differ from the iden-
tity in a single column. The transformations Ŵ (n)′ = Ŵ (n)R
and Ŵ (n+1)′ = RŴ (n+1) to orthogonalize a column may be
performed with rank-1 matrix updates whose cost is only
O([D(n)]2). Similarly, the gauge transform to normalize a
column, which simply scales a row or column, costs only
O(D(n) ). As we must iterate over every column of every tensor,
the total cost is then O(

∑
n[D(n)]3). However, each iteration

requires only elementary matrix operations, for which highly
optimized libraries are available, and a low constant factor
on the algorithm. One can also employ these algorithms with
charge-conserving MPOs, which vastly decreases the runtime
in practice.

4. Properties of compressed Hamiltonians

We now show that compressed Hamiltonians are accurate
approximations to the original Hamiltonian. This will give us
guarantees that the (ground state) physics we are interested
in is unchanged by compression. In fact, just as with matrix
product states, the error is controlled by the weight of the
truncated singular values. We demonstrate three properties of
the compressed Hamiltonian H ′ when we truncate a single
bond:

ĤBLG → Ĥ ′(ε) (D35)

where Ĥ ′ satisfies the following:
(1) Ĥ ′ is Hermitian.
(2) The ground state energy is accurate: δE � 42ε.
(3) Observables are accurate:  〈Ô〉 � 43

E ||Ô||ε.
(4) The ground state wave function is accurate: |1 − F | �

44

E2 ε
2.

We reiterate that these are local bounds, corresponding to
truncating a single bond. It is reasonable to expect that these
results can be generalized to global bounds which apply when
all bonds are truncated simultaneously, just as they can for
matrix product states. However, such generalizations are often
highly technical and therefore beyond the scope of this work.
As a practical matter, Fig. 5 demonstrates that the global errors
in the ground state energy, fidelity, and expectation values are
small and decrease as ε(D) → 0.

a. Compressed Hamiltonians are Hermitian

All Hamiltonians in quantum mechanics are Hermitian. We
now show that Hermiticity is preserved by dropping singular
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values of a Hamiltonian. There is just one caveat: If the spec-
trum contains a set of degenerate singular values, then one
must drop either all of them or none of them:

Proposition 2. Let Ĥ be a Hermitian operator with the
following almost-Schmidt form:

Ĥ = ĤL1̂R + 1̂LĤR +
Ns∑

a=1

Da∑
i=1

Ôa,i
L saÔa,i

R , (D36)

where a labels degenerate singular values, Ns is the number
of distinct singular values, and Da is the degeneracy of the
ath Schmidt value. Then, for any subset A ⊂ {1, 2, ..., Ns},
the compressed operator

Ĥ ′ = ĤL1̂R + 1̂LĤR +
∑
a∈A

Da∑
i=1

Ôa,i
L saÔa,i

R (D37)

is Hermitian.
For concision, we sketch the proof. Due to the orthonor-

mality condition, ĤL1̂R, 1̂LĤR, and
∑Ns

a=1

∑Da
i Ôa,i

L saÔa,i
R

must be independently Hermitian. This implies∑Ns
a=1

∑Da
i Ôa,i

L saÔa,i
R = ∑Ns

a=1

∑Da
i (Ôa,i

L )†sa(Ôa,i
R )†. Note

that both the LHS and the RHS of this equation can be
regarded as a singular value decomposition in operator
space. It follows from the uniqueness of singular value
decomposition that

∑Da
i Ôa,i

L saÔa,i
R = ∑Da

i (Ôa,i
L )†sa(Ôa,i

R )†

for any a. The proposition follows. In practice, this means
that one should always drop singular values by imposing a
minimum value to retain rather than a maximum number.

We note that this result readily generalizes to a case when
we truncate all bonds at the same time. To see this, we note
that the proof above shows the action of Hermitian conjuga-
tion commutes with the singular value matrix. Then, just like
in the case of symmetric MPS, singular values can be dropped
without ruining Hermiticity.

b. Compressed Hamiltonians are accurate

The accuracy of a compressed Hamiltonian is controlled by
the weight of the truncated singular values in almost-Schmidt
form, Eq. (D5). Conceptually, one should think of truncation
as introducing a small perturbation to the Hamiltonian. If the
truncated weight is small, then the perturbation is small, and
its effects to the ground state energy, the fidelity, and other
observables are also small.

To quantify these effects, we employ the sup norm, an
operator norm well suited for ground state properties. If Ĥ
is an operator, then its sup norm ||Ĥ || is given by

||Ĥ ||2 := sup
|ψ〉

〈ψ |ĤĤ |ψ〉
〈ψ |ψ〉 . (D38)

As the sup norm is extensive, we work with the sup norm
per unit cell, so that it is finite. We first quote a result from
Ref. [50]: The change in the ground state energy is small under
truncation.

Proposition 3 (Proposition 5 of Ref. [50]). Suppose Ĥ is a
k-body Hamiltonian with onsite dimension d .23 If Ĥ is com-

23E.g., d = 4 for spin- 1
2 ’s or spinless fermions.

pressed from bond dimension D to Ĥ ′ with D′ with truncated
weight

ε2 :=
D′∑

a=D+1

s2
a, (D39)

then the change in the ground state energy is bounded by

δE � ||Ĥ − Ĥ ′|| � d
k
2 ε. (D40)

In practice, the singular values for a Hamiltonian fall off
quite quickly—often exponentially, or as a power law at
worse. So retaining only a small number of singular values
can produce a highly accurate approximation for the ground
state energy.

It is natural to assume that if the ground state energy
is accurate, then the other ground state properties—such as
expectation values of observables and even the entire ground
state wave function—are accurate as well. Unfortunately,
there is a rare but severe failure of this assumption. Near a
first-order phase transition, a tiny perturbation to a Hamilto-
nian can push the system across the phase transition, changing
the properties of the ground state in a discontinuous manner
(except for the energy). However, as long as the competing
states have large energy difference away from the transition,
this will only cause infinitesimal shift of critical parameters.
We can therefore understand the generic case by simply as-
suming we are far from a phase transition and the ground state
changes continuously.

To do this, we work in first order perturbation theory. Sup-
pose Ĥ is a k-body Hamiltonian with a unique ground state
with gap E . Suppose we write Ĥ = Ĥ ′ + δĤ with truncated
weight ε2 as in (D39) and consider an observable of interest
Ô. Then we can write the new ground state as

|E0(δ)′〉 = |E0〉 + |δE0〉 + O(ε2),

|δE0〉 =
∑
λ �=0

〈Eλ|δĤ |E0〉
Eλ − E0

|Eλ〉 .

Then

O := | 〈E0(δ)′|Ô|E0(δ)′〉 − 〈E0|Ô|E0〉 |
= 2|Re 〈E0|Ô|δE0〉 | + O(ε2),

so

| 〈E0|Ô|δE0〉 | �
∣∣∣∣∣∑
λ �=0

〈E0|δĤ |Eλ〉 〈Eλ|Ô|E0〉
Eλ − E0

∣∣∣∣∣
� 1

E

∣∣∣∣∣∑
λ �=0

〈E0|Ô|Eλ〉 〈Eλ|δĤ |E0〉
∣∣∣∣∣

� 1

E
|〈E0|ÔδĤ |E0〉 − 〈E0|Ô|E0〉 〈E0|δĤ |E0〉|

� 2

E
||Ô|| · ||δĤ ||,

where we have used
∑

λ �=0 |Eλ〉 〈Eλ| = I − |E0〉 〈E0| and sub-
multiplicativity of the norm. Using (D40), the change in the
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TABLE IV. Energy of |ψkin〉 per momentum per band at Ny = 2,
w0/w1 = 0.825, d = 30 nm. MPO compression was performed with
singular value truncation cutoff at 10−3 meV. The energy difference
is calculated against the k space result.

k space xk space MPO

Ekin (meV) −69.099 −69.095 −69.095
Eint (meV) 32.263 32.257 32.257
Ekin (meV) 4.2 × 10−3 4.2 × 10−3

Eint (meV) 7.0 × 10−3 6.4 × 10−3

expectation value is bounded by

O � 4d
k
2

E
||Ô|| ε. (D41)

We may therefore conclude that the error in expectation values
should be small, provided that the uncompressed Hamilto-
nian is sufficiently far from a first-order phase transition. The
condition of a gapped ground state may be relaxed, in which
case the error will be controlled by the matrix elements of Ô
between the ground state and low-lying excited states.

c. Compressed Hamiltonians have high fidelity

We have now seen that the ground state energy and ex-
pectation values of observables are accurately captured by
the approximate, compressed Hamiltonian. In fact, the entire
ground state wave function |E ′

0〉 of Ĥ ′ is very close to the
original ground state wave function |E0〉 of Ĥ . This allows
us to use structural properties of |ψ ′〉, such as its correlation
length as a function of MPS bond dimension, as an accurate
stand-in for the true ones and use them to, e.g., diagnose the
scaling properties of phase transitions.

To see this, we again work in perturbation theory, this
time to second order. Let Ĥ = Ĥ ′ + δĤ and take the same
assumptions as above. Then we write

|E0(δ)′〉 = |E0〉 + |δE0〉 + |δ2E0〉 + O(ε3),

so

〈E0|E0(δ)′〉 = 1 + 0 − 1

2

∑
λ �=0

〈E0|δĤ |Eλ〉 〈Eλ|δĤ |E0〉
(Eλ − E0)2

.

By the same argument as above the error in the ground state
fidelity is bounded as

|1 − 〈ψ ′|ψ〉| � dk

E2
ε2. (D42)

In conclusion, we have now seen that the compressed MPOs
should accurately reproduce the true ground state physics
and provided error bounds on the precision. This justifies
our use of compressed Hamiltonians to study twisted bilayer
graphene.

APPENDIX E: NUMERICAL CROSS CHECKS

In addition to the analytic error bounds from the previous
section, we also performed extensive numerical checks to ver-
ify that our computations were correct in practice as well as in
principle. As mentioned above, we used the standard TeNPy

library [63], written by one of us, for all DMRG calculations.
The MPO compression code was carefully verified by unit
testing, benchmarking, and a variety of cross-checks. The
two primary cross-checks, which we now describe, verify the
accuracy of the compression algorithm and the accuracy of
the transformations between the various representations of the
Hamiltonian.

1. Gauge transform verification

It is crucial that the compression algorithm is not only pre-
cise, as we have shown in previous sections, but also accurate.
That is, the output of the implementation of the compression
algorithm is indeed the compressed MPO described analyt-
ically. To verify this, we use the fact that Algorithm 1 is a
gauge transformation, up until the truncation step. This gauge
transformation obeys gauge relations given in Sec. D 3, and
reproduced here for convenience:

Rn−1Ŵ
n

R = Ŵ (n)Rn,

Cn−1Ŵ
(n)

R = Ŵ (n)
L Cn,

Sn−1P̂(n) = Q̂(n)Sn. (E1)

Due to the large number of small matrix elements, many
indexing errors and other accuracy problems only manifest
as small errors in the gauge relations. We therefore verified
the gauge relations to precision 10−13, nearly the floating
point limit. Together with checks for canonicality of ŴR,L,
this constitutes a sufficient check for the correctness of the
algorithmic implementation.

2. Cross checks for tBLG Hamiltonian

In order to perform HF and DMRG calculations, one needs
to represent the Hamiltonian in a variety of ways, as shown
in Fig. 1, and it is imperative to make sure there is no error
when we transform one representation to another. This section
reviews a list of numerical checks we performed to guarantee
correctness.

We first start from the momentum space representation,
which is suitable for HF calculations. This interaction is
specified by Vq, together with the form factors 
q. This repre-
sentation can be Wannier localized (i.e., Fourier transformed)
to obtain the mixed-xk space representation for iDMRG. Fi-
nally we use the mixed-xk space representation to construct an
MPO, and compress it down to a smaller bond dimension. The
first transformation is a unitary transformation, and is in prin-
ciple exact up to numerical precision, whereas the precision
of the compression is limited by MPO singular value cutoff.

In order to check if these transformations are accurate, we
calculate a physical observable using each representation. The
kinetic part Hkin of the BM Hamiltonian h(k) is gapped for a
wide range of parameters for small Ny, and the ground state
|ψkin〉 is easy to calculate in each representation. Therefore,
we can easily evaluate the following energies in momentum
space, mixed-xk space, and DMRG.

Ekin = 〈ψkin| Hkin |ψkin〉
Eint = 〈ψkin| Hint |ψkin〉 , (E2)
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where Hkin and Hint are the kinetic and interaction part of
the Hamiltonian, respectively. The comparison for Ny = 2 is
shown in Table IV. We see that the energy error is very small.
We further check that these errors decrease as the accuracy

of each calculation is increased (e.g., by increasing the cutoff
range for MPO creation). We may conclude that the transfor-
mations between Hamiltonian representations are sufficiently
accurate.
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