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x(ψ̄ψ)2 and g2
y(ψ̄iγ5ψ)2 interaction terms on a spatial lattice. The continuous

chiral symmetry, which is present in the continuum model when g2
x = g2

y , has a mixed
’t Hooft anomaly with the charge conservation symmetry, which guarantees the existence of
a massless mode. However, the same ’t Hooft anomaly also implies that the continuous
chiral symmetry is broken explicitly in our lattice model. Nevertheless, from numerical
matrix product state simulations we find that for certain parameters of the lattice model,
the continuous chiral symmetry reemerges in the infrared fixed point theory, even at
strong coupling. We argue that, in order to understand this phenomenon, it is crucial
to go beyond mean-field theory (or, equivalently, beyond the leading order term in a
1/N expansion). Interestingly, on the lattice, the chiral Gross-Neveu model appears at
a Landau-forbidden second order phase transition separating two distinct and unrelated
symmetry-breaking orders. We point out the crucial role of two different ’t Hooft anomalies
or Lieb-Schultz-Mattis obstructions for this Landau-forbidden phase transition to occur.
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1 Introduction

Discretizing quantum field theory (QFT) on a lattice in space or spacetime has been a
very successful strategy to study interacting quantum fields using computational methods.
The prevalent approach for the last decades has been to study the partition function of a
quantum field theory, often including interacting gauge fields, on a spacetime lattice using
some kind of Monte Carlo sampling. Indeed, the research field of lattice gauge theory has
been tremendously successful in explaining the hadron masses and various other equilibrium
properties of the standard model [1–3]. More recently, there has been a renewed interest
in quantum fields on a spatial lattice, either for classical simulation using the formalism
of tensor networks, but also for quantum simulation using cold atoms or other discrete or
analogue quantum simulators [4, 5].

While the lattice (both in space and in spacetime) has the advantage of regularizing
the divergences that typically occur as a result of the infinitely many degrees of freedom
in a QFT, it is well known that certain symmetries of the field theory cannot be realized
exactly in the lattice description. The most notorious example is that of chiral symmetry,
which is a continuous U(1) symmetry of the massless Dirac operator in even spacetime
dimensions. Even the discrete Z2 subgroup of the chiral symmetry cannot be implemented
as an on-site symmetry in a local lattice model without causing a doubling of the number
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of Dirac fermions, a result known as (or resulting from) the Nielsen-Ninomiya theorem [6].
By staggering the components of the Dirac spinor, it is possible to remove some of the
doublers (and in particular all of them when only discretizing space in a (1+1)-dimensional
theory) [7]. The staggered model still breaks the full continuous chiral symmetry, but a
single-site shift in the direction of staggering behaves as a discrete chiral transformation
in the low-energy limit. The difficulty of realizing the chiral symmetry on the lattice
is a consequence of the mixed ’t Hooft anomaly [8] between the chiral and charge U(1)
symmetries [9]. Upon gauging the U(1) charge symmetry this ’t Hooft anomaly gives rise
to the Adler-Bell-Jackiw anomaly [10, 11], i.e. after gauging the current associated with the
continuous chiral symmetry is no longer preserved.

In this work, we study the generalized Gross-Neveu (GGN) model in 1+1 dimen-
sions [12]. The GGN model consists of N massless Dirac fermions interacting via two
different interaction terms g2

x(ψ̄ψ)2 and g2
y(ψ̄iγ5ψ)2. When g2

x = g2
y , the interaction terms

preserve the continuous chiral symmetry of the massless Dirac operator. Along this line
with equal couplings, Coleman’s theorem rules out the possibility that the chiral symmetry
is broken spontaneously in (1 + 1)-dimensions. But even despite the absence of Goldstone
modes, the mixed anomaly between the chiral symmetry and the charge conservation
symmetry implies that the theory cannot be trivial in the infrared and must host a massless
mode [8]. Everywhere away from the special line g2

x = g2
y with continuous chiral symmetry,

the remaining discrete chiral symmetry in the GGN Lagrangian is broken spontaneously,
just as in the conventional GN model. The main question we address here is how much
of these features of the continuum GGN model survive after discretizing the theory on a
spatial lattice. Given that many properties of the continuum GGN phase diagram crucially
hinge on the chiral symmetry and its ’t Hooft anomaly, it is a priori not clear that a lattice
discretized model — which breaks the chiral symmetry explicitly due to that same ’t Hooft
anomaly — will reproduce the continuum phase diagram (both at small and large coupling).

Our analysis starts with a mean-field or large-N calculation, which produces two different
phase diagrams for the continuum and the lattice model, but suggests that fluctuations
beyond mean-field theory (or subleading terms in the 1/N expansion) could be able to
remove the apparent discrepancy. A fully unbiased matrix product state simulation for
the N = 2 lattice GGN model confirms this expectation, and produces a phase diagram
which contains a critical line that has the same infrared behaviour as the chiral GN model.
This critical line appears as a Landau-forbidden second order phase transition of the lattice
model which separates two gapped phases with unrelated spontaneously broken discrete
symmetries. We argue that this Landau-forbidden phase transition can occur as a critical
line in the lattice model due to the presence of two different Lieb-Schultz-Mattis (LSM)
obstructions [13–15], which are lattice versions of the continuum ’t Hooft anomalies. One
of these LSM obstructions is related to a lattice version of the mixed ’t Hooft anomaly
between the remaining discrete chiral symmetry and the charge conservation symmetry.
The other LSM obstruction is less well-known, and it relies on a combination of several
different symmetries including charge conjugation and spatial reflection symmetry.

The paper is structured as follows. In the following section, we start by providing a
short review of the (chiral) GN model. More specifically, we highlight some often overlooked
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symmetries of the model and use bosonization to provide a nonperturbative argument for
the existence of a critical line in the phase diagram. In the same section we introduce the
lattice model based on the symmetries that are present in the continuum. Section 3 presents
the mean field solution, which coincides with the large-N limit, for both the continuum
and the lattice model, and discusses its shortcomings. In section 4 we use tensor network
methods to determine the phase diagram of the N = 2 lattice model. The phase diagram
exhibits a critical line between two symmetry broken phases, which we can identify with
the chiral GN QFT in the continuum limit. In section 5, we reinterpret our lattice model
from a condensed matter perspective to further discuss the nature of our critical line in the
context of the LSM theorem. Section 6 summarises our main conclusions.

2 Generalized Gross-Neveu model

We study the generalized Gross-Neveu model [12] with N flavors, which in the continuum
is described by the following action:

S =
∫

dxdt

∑
c

ψ̄ci/∂ψc + g2
x

2N

(∑
c

ψ̄cψc

)2

+
g2
y

2N

(∑
c

ψ̄ciγ5ψc

)2
 , (2.1)

where ψc is the two component Dirac spinor for each of the flavors c = 1, . . . , N . The
matrices γµ satisfy the usual Clifford algebra {γµ, γν} = 2ηµν (we use η = diag(1,−1)) and
are used to define ψ̄c = ψ†cγ

0, /∂ = γµ∂µ, and γ5 = γ0γ1. In the remainder of this section
we review all the symmetries of this action, discuss the phase diagram and re-express the
action in terms of bosonic fields.

2.1 Review of the continuum symmetries

In the general case g2
x 6= g2

y 6= 0, the relevant internal symmetries are:1

SU(N) flavor rotation: ψc → Ucc′ψc′ (2.2)
U(1) charge rotation: ψc → eiθψc

ZD2 discrete chiral transformation: ψc → γ5ψc

ZC2 charge conjugation: ψc → γCψ
∗
c ,

where the unitary matrix γC is defined such that γ†Cγ0γC = −(γ0)T and γ†Cγ5γC = (γ5)T.
Besides these internal symmetries, the action naturally has spacetime symmetries, namely
the full Poincaré group, which includes Lorentz transformations, spacetime translations,
spatial reflection and time reversal. From these, we only highlight the reflection symmetry,
which acts as

ZR2 spatial reflection: ψ → γRψ , x→ −x , (2.3)

where γR satisfies γ†Rγ0γR = γ0 and γ†Rγ5γR = −γ5. A typical choice is γR = γ0.
1The various symmetries also interact. Charge conjugation flips the rotation angle of charge U(1) (and

combines with it into an O(2) group) as well as of chiral (axial) rotation. The discrete chiral transformation
also anticommutes with the spatial reflection (toghether they generate the Pauli group).
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Let us now make a particular basis choice, such that the gamma matrices are given by
the Pauli matrices γ5 = σx and γ0 = σy. In this basis we find that γC = 1 and γR = σy. The
bilinears ψ̄ψ and ψ̄iγ5ψ transform respectively as scalar and pseudoscalar quantities with
respect to both reflection and charge conjugation, whereas both or of course pseudoscalars
with respect to the discrete chiral tranformation.

For g2
y = 0, the charge conjugation action C can be extended to a Z⊗N2 symmetry by

applying it to each flavor separately. Furthermore, this Z⊗N2 symmetry can be combined
with the charge U(1) and flavor SU(N) symmetries into a larger O(2N) symmetry, which
can be made manifest by rewriting the complex Dirac fermions ψc in terms of two real
Majorana fermions: ψc = (χ2c−1 + iχ2c)/

√
2, where χ†c = χc and {χc, χc′} = 2δc,c′ . Similarly,

an enhanced O(2N) symmetry is also present when g2
x = 0. This O(2N) group now contains

the DC symmetry action (generating a Z⊗N2 symmetry group when g2
x = 0), and again the

U(1) and SU(N) symmetry groups. The O(2N) symmetry at g2
x = 0 becomes explicit after

rewriting the complex Dirac fermions ψ′c = exp(iπσx/4)ψc in terms of two real Majorana
fermions: ψ′c = (χ′2c−1 + iχ′2c)/

√
2.

Finally, when the two interaction coefficients g2
x and g2

y are equal, the generalized
Gross-Neveu model is known as the ‘chiral Gross-Neveu model’, which can be interpreted
as a (1+1)-dimensional version of the ‘Nambu-Jona-Lasinio’ model [16, 17]. Here the chiral
symmetry becomes continuous, i.e.

UA(1) : ψc → eiθAγ5ψc (2.4)

becomes a symmetry of the action.

2.2 Phase diagram and bosonization

The phase diagram of the generalized Gross-Neveu (GN) model is well-understood2, and
we review it here. First, for g2

y = 0, the action reduces to that of the conventional GN
model. In this case, the interaction leads to dynamical mass generation for the Dirac
fermions, spontaneously breaking the discrete chiral symmetry, which is characterized by
the fact that the vacuum obtains a chiral condensate: 〈ψ̄ψ〉 6= 0. For g2

x = 0, the situation
is analogous to that of the conventional GN model, as we can transform the g2

x and g2
y

interaction terms into each other with a chiral symmetry rotation, where now the chiral
condensate is characterized as 〈ψ̄iγ5ψ〉 6= 0. As long as g2

x 6= g2
y , the IR physics does not

change if we move away from the lines with either g2
x = 0 or g2

y = 0. In particular, for
g2
x > g2

y , the dynamical mass generation is associated with a chiral condensate 〈ψ̄ψ〉 6= 0,
whereas 〈ψ̄iγ5ψ〉 remains zero (and vice versa for g2

x < g2
y).

Along the g2
x = g2

y chiral line, the IR physics drastically changes due to the presence of
the continuous chiral symmetry, which is a proper symmetry at the quantum level, as no
gauge fields are included. The Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem [25–
27] excludes spontaneous breaking of this continuous chiral symmetry, which automatically
implies that both 〈ψ̄ψ〉 = 0 and 〈ψ̄iγ5ψ〉 = 0. However, despite the fact that there is

2The conventional (g2
x = 0 or g2

y = 0) and chiral (g2
x = g2

y) GN models are even integrable, such that the
entire spectrum can be computed exactly — see e.g. refs. [18–24].
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no chiral condensate along the line g2
x = g2

y , the Dirac fermions nevertheless acquire a
dynamically generated mass.

To better understand the mechanism responsible for dynamical mass generation along
(and close to) the line g2

x = g2
y , it is insightful to consider the bosonized version of eq. (2.1)3.

Here, we only consider the N = 2 case, both for simplicity of the presentation and because
this is also the model that we study numerically (for details of the bosonization procedure
for general N , we refer to [32]). Bosonization allows us to map the fermion action to a
theory of two compact bosons φ1 and φ2 with compactification radius 2π. Under this
mapping, the kinetic term becomes

ψ̄1i/∂ψ1 + ψ̄2i/∂ψ2 →
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
, (2.5)

and the chiral transformation ψc → eiθAγ5ψc corresponds to a shift of the scalar fields:
φc → φc + θA. The mappings for fermion bilinears are:ψ̄1ψ1 + ψ̄2ψ2 → − 1

α(cosφ1 + cosφ2)
ψ̄1iγ5ψ1 + ψ̄2iγ5ψ2 → 1

α(sinφ1 + sinφ2) ,
(2.6)

where 1
α is a UV-cutoff. Using these relations, we arrive at the following bosonized action:

S =
∫

d2x
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
+ g2

x

4α2 (cosφ1 + cosφ2)2 +
g2
y

4α2 (sinφ1 + sinφ2)2 (2.7)

=
∫

d2x
1

8π
[
(∂µφ1)2 + (∂µφ2)2

]
+
g2
x + g2

y

4α2 cos(φ1 − φ2)

+
g2
x − g2

y

4α2 cos(φ1 + φ2)
(
1 + cos(φ1 − φ2)

)
.

If we now write the boson fields as φ1 = θ + ϕ and φ2 = θ − ϕ, then the bosonized action
takes on a particularly simple form:

S =
∫

d2x
1

2πK (∂µθ)2 + 1
2πK (∂µϕ)2 +

g2
x + g2

y

4α2 cos(2ϕ)

+
g2
x − g2

y

4α2 cos(2θ)(1 + cos(2ϕ)) , (2.8)

where K = 2. Along the line with continuous chiral symmetry, i.e. when g2
x = g2

y , this
action describes one interacting boson ϕ, which transforms trivially under the chiral U(1)
symmetry, and one free boson θ, which transforms as θ → θ + θA. The scaling dimension of
cos(2ϕ) is equal to K, so this term is marginal at the classical level (recall that K = 2).
However, cos(2ϕ) becomes relevant at the quantum level because the coefficient of the
(∂µϕ)2 term renormalizes to a value (2πKren)−1 with Kren smaller than two (this can be
seen from the Kosterlitz RG equations [33]). As a result, the cos(2ϕ) term causes the ϕ
field to condense.

3Note that we are using Abelian bosonization in this work. One can also use non-Abelian bosonization [28–
30], which shows that the chiral GN model is equivalent to a SU(N)1 Wess-Zumino-Witten CFT with a JJ̄

deformation [31].
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In the chiral GN model the compact boson θ is gapless because (1) the chiral U(1)
symmetry forbids terms of the form cos(nθ), and (2) θ can not be disordered by proliferating
vortices (i.e. instantons which change the winding of θ). The reason for the latter is that
the charge current in the presence of a spatially varying θ configuration, relative to the
charge current of the vacuum, is given by the Goldstone-Wilczek formula [34]:

Jµ = 2
2πεµν∂νθ . (2.9)

From this relation we see that the electric charge corresponds to the winding of θ along
the spatial direction: Q =

∫
dx ∂xθ/π. As a consequence, vortices in θ are forbidden by

the charge conservation, i.e. by the U(1) charge symmetry. This is a manifestation of the
‘t Hooft anomaly, which rules out a trivial IR fixed point if both the charge and chiral
U(1) symmetries are to be preserved. We thus arrive at the conclusion that the IR fixed
point of the chiral GN model is a single compact boson. This conformal field theory has a
central charge c = 1, instead of c = 2 as for two free Dirac fermions (g2

x = g2
y = 0). This is

a manifestation of the fact that the fermions have acquired a mass.
When moving away from the line with equal couplings the continuous chiral symmetry

breaks down to the discrete chiral symmetry ZD2 . From eq. (2.8), we see that the effective
action describing the IR physics close to the chiral line is

S =
∫

d2x
1

2πK (∂µθ)2 + δ cos 2θ , (2.10)

where we have introduced δ = (g2
x − g2

y)/4α2 and we have dropped an irrelevant term. The
cos(2θ) term in eq. (2.10) is relevant for the same reason that the cos(2ϕ) discussed above
is relevant (the classical value K = 2 gets renormalized to smaller values if δ 6= 0). In
section 4 we will show that we can recover the IR physics described by (2.10) by simulating
the GGN on the lattice, even though we cannot preserve the chiral symmetry explicitly. As
we will see below, one consequence of the loss of continuous chiral symmetry is that the
relation δ = (g2

x − g2
y)/4α2 no longer holds for the parameters of our lattice model, which

we introduce in the next section. Furthermore, on the lattice there are additional irrelevant
perturbations, such that K is not guaranteed to be equal to 2. However, in section 4 we
will show that K approaches 2 in the continuum limit.

2.3 Lattice model

Let us now introduce the specific lattice discretization of the GGN that we will study. We
use a particular realization of the standard staggered fermion discretization [7, 35], where
the two components of the Dirac fermions are defined to live on neighbouring lattice sites.
The free/kinetic part of the Hamiltonian is obtained by using a symmetric finite difference
approximation for the spatial derivative, and by using the same basis choice (γ5 = σx

and γ0 = σy) as in the previous section. In this way, we arrive at the following kinetic or
hopping term on the lattice:

HK = a−1∑
n

Kn,n+1 (2.11)

= −ia−1∑
c

(
ϕ†c,nϕc,n+1 − ϕ†c,n+1ϕc,n

)
, (2.12)
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where n (c) labels the lattice sites (flavors), a is the lattice constant, and ϕ†c,n and ϕc,n are
fermionic creation and annihilation operators satisfying {ϕ†c,n, ϕ

†
c′,n′} = {ϕc,n, ϕc′,n′} = 0

and {ϕc,n, ϕ†c′,n′} = δc,c′δn,n′ . The kinetic term admits two different mass terms, which,
with our basis choice, are given by

mψ̄ψ → mψ†σyψ → ma(−1)n
(
Kn−1,n −Kn,n+1

2

)
(2.13)

mψ̄iγ5ψ → mψ†σzψ → ma(−1)n (On −On+1) , (2.14)

with On =
∑
c ϕ
†
c,nϕc,n. Note that both mass terms are odd under a translation by one lattice

site, as expected from the fact that a single-site translation should behave as the discrete
chiral transformation in the low-energy limit. The first mass term mψ†σyψ translates
on the lattice to a bond order parameter, which promotes dimerization on even or odd
lattice bonds, whereas the second mass term mψ†σzψ results in a polarization of the lattice
fermions on either the even or odd lattice sites, i.e. it creates an imbalance between the
average occupation of the even and odd lattice sites.

For the discretized interaction terms, we simply take the squares of both possible mass
terms/order parameters. The final lattice Hamiltonian then takes on the following form:

H = a−1∑
n

Kn,n+1 −
g2
x

4N

(
Kn,n+1 −Kn+1,n+2

2

)2

−
g2
y

4N (On −On+1)2

 . (2.15)

This Hamiltonian manifestly preserves the internal U(1), SU(N), ZC2 and ZD2 symmetries
of the continuum model, as well as the spatial translation and reflection symmetries. As
mentioned above, the discrete chiral symmetry of the QFT does not act as an exact internal
symmetry, but can be related to one-site spatial translations T in the low-energy limit.
Regarding the reflection symmetry, it should be noted that the lattice exhibits two possible
reflection transformations, namely across bonds and across sites. From the form of γR in
the reflection in the continuum, it can be noted that it interchanges the two components
of the Dirac spinor. As we are using the staggered formulation, this should amount to
interchanging even and odd sites on the lattice, which corresponds to a bond-centered
reflection. A bond-centered reflection n→ 1− n in itself maps Kn,n+1 to −K−n,−n+1, so
we also need to add a local action, such that the φn operators on neighbouring sites acquire
an opposite sign. A local charge rotation exp(inπ

∑
c φ
†
c,nφc) (which acts as the identity

every second site) accomplishes this goal. Below, we denote with RB this bond centered
reflection, including the additional on-site action. A site-centered reflection (including the
same on-site action) can be interpreted as T RB, or thus as the combination of a discrete
chiral transformation and a reflection.

For our MPS simulations, we further transform the lattice fermion Hamiltonian in
eq. (2.15) into a lattice spin Hamiltonian via a Jordan-Wigner transformation, where each
fermion operator is represented in terms of Pauli matrices as

ϕc,n =

 ∏
n′<n

∏
c′

σzc′,n′

∏
c′<c

σzc′,n

σ−c,n , (2.16)
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where σ− = (σx − iσy)/2, and we have introduced a linear ordering for the different flavors.
In a previous work [35], we have numerically studied the two-flavor version of the lattice
Hamiltonian in eq. (2.15) with g2

y = 0 using MPS. We were able to take the continuum
limit of our numerical results and recover some of the QFT results to very high accuracy,
thus confirming the validity of both our lattice Hamiltonian and our MPS methods.

Before concluding our discussion of the lattice Hamiltonian, let us point out a subtlety
about the O(2N) symmetries which are present in the continuum action when either g2

y = 0
or g2

x = 0. If g2
y = 0, then the full O(2N) symmetry of the continuum model is present

in the lattice Hamiltonian, and acts in a local way. This is possible because the O(2N)
symmetry group contains the C symmetry action, which acts locally in the lattice model,
and generates a Z⊗N2 symmetry by acting on each flavor separately if g2

y = 0. Indeed,
this was the motivation for our basis choice of the gamma matrices, where γC = 1. As
explained in the previous section, the continuum model at g2

x = 0 also possesses an O(2N)
symmetry, where now the Z⊗N2 subgroup is generated by acting with the DC on each flavor
separately. The DC symmetry on the lattice, however, does not act locally as it contains
a discrete chiral symmetry action D, which we discussed above. As a result, there is no
lattice analogue of acting with DC on a single fermion flavor. This implies that the duality
for interchanging gx ↔ gy, which exist in the continuum and is generated by applying a
π/2 chiral rotation, does not exist in the lattice model. Despite this shortcoming of the
discretization, we argue below that our numerical results for N = 2 with both g2

x and g2
y

non-zero agree well with the results expected from the continuum model.

3 Large-N solution

In this section we analyse the GGN model in the large-N limit, where mean-field theory
becomes exact. In order to keep this paper self-contained, we first review the large-N solution
of the continuum model. We compare the solutions of the continuum and lattice theories,
and discuss the implications of the broken continuous chiral symmetry on the lattice.

3.1 Continuum model

The Hamiltonian of the generalized Gross-Neveu model in the continuum is:

H =
∫

dx
(
ψ̄iγx∂xψ −

g2
x

2N (ψ̄ψ)2 −
g2
y

2N (ψ̄iγ5ψ)2
)
, (3.1)

where, as before, ψ is a 2N -component Dirac spinor. In taking the N →∞ limit we can
exploit the monogamy of entanglement to write the ground state as a product state over
the different flavors: |Ψ〉 = |φ〉⊗N (see e.g. ref. [36]). The energy per flavor of such states is
given by:

E

N
=
∫

dx
〈
ψ̄siγ

x∂xψs −
g2
x

2N (ψ̄sψs)2 −
g2
y

2N (ψ̄siγ5ψs)2
〉

− g2
x

2
N − 1
N

〈
ψ̄sψs

〉2
−
g2
y

2
N − 1
N

〈
ψ̄siγ5ψs

〉2
, (3.2)
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where ψs is a 2-component single-flavor Dirac spinor. For sufficiently large N the terms
proportional to the expectation values of the fluctuations, i.e. 〈(ψ̄sψs)2〉 and 〈(ψ̄siγ5ψs)2〉,
can be neglected. Varying the energy with respect to the single-flavor wave function while
using a Lagrange multiplier to ensure normalisation, gives the following eigenvalue problem:∫

dx
(
ψ̄siγ

x∂xψs − g2
xσ ψ̄sψs − g2

yπ ψ̄siγ5ψs
)
|φ〉 = HMF |φ〉 = EMF |φ〉 , (3.3)

where σ and π respectively are the (translationally invariant) expectation values 〈ψ̄sψs〉
and 〈ψ̄siγ5ψs〉, such that these equations have to be solved self-consistently. For now we
can easily diagonalize the effective mean-field Hamiltonian in momentum space and we find
the following single-particle dispersion relation:

εMF(k) = ±
√
k2 + g4

xσ
2 + g4

yπ
2 . (3.4)

The groundstate |Ω〉 of HMF simply corresponds to the filled Dirac sea of the states with
negative energy. We define the effective potential as the energy density of |Ω〉:

Veff(σ, π) = g2
x

2 σ
2 +

g2
y

2 π
2 −

∫ dk
2π

√
k2 + g4

xσ
2 + g4

yπ
2 . (3.5)

Let us now introduce polar coordinates for the order parameters:σ = ρ cos θ
π = ρ sin θ ,

(3.6)

where we have used, not coincidentally, the same notation as in the bosonization formula (2.6).
Indeed, under chiral transformations the θ field from eq. (3.6) transforms identically to the
θ field introduced in eq. (2.8). Using the ρ and θ variables, the effective potential can be
written as

Veff(ρ, θ) = g2

2 ρ
2 + ∆g

2 ρ2 cos 2θ −
∫ dk

2π

√
k2 + (g4 + ∆g2)ρ2 + 2g2∆gρ2 cos 2θ , (3.7)

where g2 = (g2
x + g2

y)/2 and ∆g = (g2
x − g2

y)/2. Minimizing this effective potential (after
introducing a cutoff Λ) is equivalent to solving the mean-field self-consistency equations.
If ∆g 6= 0, and assuming ρ2 6= 0, one finds that the minima of Veff are located at either
θ = 0, π or θ = ±π/2 because Veff depends only on θ via cos 2θ. Using this fact, we find
from minimizing the effective potential with respect to ρ2 that

ρ2 =


4Λ2

g2
x
e−2π/g2

x if g2
x ≥ g2

y

4Λ2

g2
y
e−2π/g2

y if g2
x ≤ g2

y ,
(3.8)

such that σ and π are never simultaneously equal to zero, except when g2
x = g2

y = 0. We
are therefore led to the conclusion that the Dirac fermions acquire a mass for all non-zero
values of the couplings.

A non-zero value for ρ also implies that the chiral symmetry is spontaneously broken.
For the chiral GN model, however, this is an artefact of the large-N limit, as the CHMW
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theorem implies that in 1 + 1 spacetime dimensions fluctuations around mean-field theory
will restore the continuous chiral symmetry at any finite N [37]. However, although the
chiral symmetry is restored beyond mean-field theory, the Dirac fermions nevertheless
remain everywhere gapped. The physical picture is that, at finite N , the field ρ2 = σ2 + π2

retains a non-zero expectation value, thus providing a mass scale for the fermions, while at
the same time, the long-range order for the θ field in mean-field theory is replaced with
quasi-long range or algebraic order at finite N . The effective IR action describing these
fluctuations is exactly the compact boson introduced previously in eq. (2.10).

3.2 Lattice model

Let us next perform the mean-field analysis of our proposed lattice version of GGN model.
Once again we exploit the monogamy of entanglement and calculate the energy of the
groundstate with respect to the states |Ψ〉 = |φ〉⊗N :

〈H〉
N

=
∑
n

〈
kn,n+1

〉
− g2

x

2
〈
σn,n+1,n+2

〉2 − g2
y

2
〈
πn,n+1

〉2
, (3.9)

where we have already neglected terms proportional to expectation values of fluctuations
and introduced the following shorthand notations:

kn,n+1 = −i(ϕ†c,nϕc,n+1 − ϕ†c,n+1ϕc,n) (3.10)

σn,n+1,n+2 = 1
2(kn,n+1 − kn+1,n+2) (3.11)

πn,n+1 = ϕ†c,nϕc,n − ϕ
†
c,n+1ϕc,n+1 . (3.12)

Variation with respect to the single-flavor wave function while using a Lagrange multiplier
to ensure normalisation, gives the following eigenvalue problem∑

n

(
kn,n+1 − g2

x 〈σn,n+1,n+2〉σn,n+1,n+2 − g2
y 〈πn,n+1〉πn,n+1

)
|φ〉 = EMF |φ〉 , (3.13)

similar to what we found in the continuum model. We are interested in states with a two-site
unit cell. Consequently, we diagonalize (3.13) under the conditions that 〈σn,n+1,n+2〉 =
(−1)nσ and 〈πn,n+1〉 = (−1)nπ. The resulting single-particle dispersion relation is very
similar to that obtained for the continuum model in eq. (3.4):

εMF(k) = ±
√

4 sin2 (k/2)+ g4
xσ

2 cos2 (k/2)+ g4
yπ

2 , (3.14)

and leads to the following effective potential for σ and π:

V L
eff(σ, π) = 〈H〉

NsN
= g2

x

2 σ
2 +

g2
y

2 π
2 −

∫ π

−π

dk
2π

√
4 sin2(k/2) + g4

xσ
2 cos2(k/2) + g4

yπ
2 , (3.15)

where Ns is the number of lattice sites. In contrast to the continuum effective potential in
eq. (3.5), the lattice effective potential is never invariant under continuous chiral rotations,
i.e. rotations in the (σ, π) plane. As we will now argue, this has some non-trivial implications.
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Figure 1. (The colorscale and y-axis is the same for all three figures). The effective potential
Veff(σ, π) of the lattice model as a function of σ and π for three different combinations of the coupling
constants. All figures have g2

x = 6.0 but g2
y is taken from 2.6 to 2.8 and finally to 3.2. These

couplings are chosen so that the leftmost figure sits in the bond density wave phase, where the
effective potential has two minima with nonzero σ. The second figure represents the coexistence
region where both order parameters are nonzero. Note that in this coexistence region the effective
potential is close to spherically symmetric even this far away from the continuum limit. Finally, we
show the effective potential for a value of g2

y where the minima are found for nonzero π and the
groundstate has a sublattice-polarized fermion occupation.

Most notably, we will find that the absence of continuous chiral symmetry leads to a different
mean-field phase diagram on the lattice as in the continuum.

For g2
x � g2

y , V L
eff is shown in the left panel of figure 1, where we find two mimima

along the π = 0 axis. Increasing g2
y eventually brings us into a coexistence region where

both σ and π are non-zero, corresponding to four distinct minima in the effective potential
as shown in the central panel of figure 1. Further increasing g2

y gradually moves the four
minima towards the σ = 0 axis and eventually causes them to merge in pairs on said axis.
The resulting mean-field phase diagram is shown in figure 2. In figure 3, we plot both σ
and π along a cut of constant g2

x = 6. This plot clearly shows the coexistence region where
both σ and π are non-zero. Fig. 3 also reveals that both σ and π change continuously as
a function of g2

y , which implies that the coexistence region is bounded by two mean-field
Ising transitions.

In the second panel of figure 3 we plot the width of the coexistence region along g2
y as

a function of g2
x. Interestingly, we find that this width becomes extremely narrow for small

couplings. In particular, the width decays exponentially according to ∆g2
y ∝ g2

xe
−2π/g2

x .
This suggests that fluctuations beyond mean-field theory can have a non-trivial effect on
the phase diagram. Generically, the only effect of fluctuations on a continuous mean-field
transition consists of slightly shifting the location of the transition and changing the critical
exponents. Here, however, because we have two mean-field transitions that are exponentially
close to each other in parameter space, it is conceivable that quantum fluctuations can
cause them to merge into a single transition. One reason to expect this is that quantum
fluctuations generically tend to restore the symmetry and thus increase the extent of the
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Figure 2. The value of the order parameters σ (left) and π (right) that minimize the large-N
effective potential V Leff(σ, π) as a function of the two couplings g2

x and g2
y.

2.6 2.8 3.0 3.2

g2
y

0.0

0.2

0.4

0.6

0.8

σ
or
π

0 1 2 3 4 5 6 7

g2
x

0.0

0.2

0.4

0.6

∆
g

2 y
c
r
i
t

Figure 3. The left panel depicts the behavior of the order parameters σ and π throughout the
phase transitions for fixed g2

x = 6. Here we can clearly see that there is a coexistence phase where
both order parameters are nonzero. The right panel plots the width of this coexistence region as a
function of g2

x. The fitted curve is of the form ∆g2
y ∝ g2

x exp(−2π/g2
x).

symmetric (i.e. disordered) phase in favor of the symmetry broken phase. Applied to our
setting, this implies that the two phase boundaries of the coexistence region, which are
already exponentially close in mean-field theory, will be pushed even closer together by the
quantum fluctuations. In the following section, we will simulate the N = 2 GGN model
with MPS and show that the coexistence region indeed disappears in favor of a direct
continuous transition.

To summarize, we have found that, although a large-N or mean-field analysis can be
used to correctly capture the physics of dynamical mass generation in the GN model (both
in the continuum and on the lattice), near the line with continuous chiral symmetry one is
nevertheless forced to go beyond mean-field theory. In the continuum, quantum fluctuations
are necessary to restore the broken continuous chiral symmetry, whereas on the lattice
these same fluctuations are required to merge the two mean-field Ising transitions into
a single c = 1 CFT. It is interesting that even though the quantum fluctuations play a
different physical role in the continuum and on the lattice, they ultimately give rise to the
same physics.

4 Matrix product state simulations at N = 2

This section presents the results of our numerical simulations of the N = 2 GGN model with
tensor networks. We use matrix product states (MPS) [38] as a variational class of states for
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approximating the ground state of the lattice Hamiltonian in eq. (2.15) at different values for
(g2
x, g

2
y). More specifically, we work with infinite MPS with a two-site unit cell and use the

VUMPS algorithm [39] to find a variationally optimal ground-state approximation directly
in the thermodynamic limit. We have explicitly encoded the SU(2)⊗U(1) symmetry into
the MPS tensors, allowing us to reach much higher accuracy.4 The only approximation in
our simulations comes from the finite MPS bond dimension D, which controls the amount
of quantum fluctuations that are taken into account. The bond dimension D corresponds
to a truncation of the Schmidt spectrum at a certain treshold ε along any cut in the MPS.
In our simulations, we set this truncation threshold ε to a fixed value (which indirectly
determines D), extract an effective length scale associated to this truncation [42, 43], and
use this scale to extrapolate our results to the infinite-D limit. We estimate the error on
the extrapolation as the change in its value when the highest bond dimension ground state
is discarded from the extrapolation procedure. For more details concerning the numerical
procedures, we refer to our previous paper, where we applied the same MPS techniques to
the conventional GN model [35].

To get a first rough idea of the location of the phase transition for N = 2 we have
scanned the parameter space using MPS with truncation error of the order ε ≈ 10−4.
The corresponding bond dimensions range from D ∼ 10 for points far from criticality to
D ∼ 120 for points close to criticality. The resulting approximate phase diagram is shown
in figure 4. We clearly find two large different regions characterized by either σ = 〈ψ̄ψ〉 6= 0
and π = 〈ψ̄iγ5ψ〉 = 0 or σ = 0 and π 6= 0. For these low values of the MPS bond dimension,
we also find a small coexistence region, where both expectation values are nonzero, in line
with the lattice mean-field results from the previous section.

Let us now focus on a particular cut g2
y = 0.77− 1.94(g2

x − 1.96), indicated by the full
white line in figure 4, through the phase transition and check whether the two mean-field
Ising transitions and the coexistence region in between survive, or whether these transitions
actually merge into a single continuous transition. In the left/right panel of figure 5 we
respectively show the two order parameters/inverse correlation length (1/ξ) as g2

x is tuned
along the cut. To each of these quantities, we fit a power law and extract a value for the
critical point, resulting in values g2

x = 1.929 (for σ), 1.930 (for π) and 1.929 (for 1/ξ) that
agree reasonably well, thus indicating a direct transition.

To further confirm the scenario of a direct transition, we now try to verify that, close
to the critical line, we recover a compact boson theory in the infrared so that the transition
has central charge c = 1. For compact bosons, the scaling dimensions of operators einθ are
well known (see e.g. ref. [44]), and are given by ∆n = n2K

4 . The scaling dimensions of the
operators relevant to our discussion, i.e. the operator driving the phase transition (cos 2θ) and
the order parameters (cos θ and sin θ), are respectively ∆pert = K and ∆order = K/4. From
this we find that the critical exponents for the correlation length ν and order parameter β are

ν = 1
2−K , β = K

8− 4K . (4.1)

4Our implementation of the MPS algorithms can be found in the Julia package “MPSKit.jl” [40], whereas
the (non-abelian) symmetric tensor operations are performed using the “TensorKit.jl” [41] package.
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Figure 4. The phase diagram as computed with infinite MPS with truncation error ε ≈ 10−4. We
show the expectation value of the σ (left) and π (right) order parameters as a function of g2

x and g2
y.

The full white line indicates the cut that we will analyse in detail below, the dotted lines depict
lines we used to study the scaling of K towards the continuum limit.
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Figure 5. (Left) The extrapolated order parameters σ and π (plotted in orange and blue respectively)
as g2

x and g2
y are tuned to take us trough the transition along g2

y = 0.77− 1.94(g2
x − 1.96). (Right)

The extrapolated inverse correlation length for the same couplings. The highest bond dimensions
used for these simulations are of the order 1100. The continuous lines represent four independent
power-law fits to the numerical data (for σ, π, and for both sides of ξ−1 separately).

Using these relations, we obtain four different estimates for K at the point (g2
x, g

2
y) ≈

(1.93, 0.83), corresponding to the critical exponents ν for both order parameters and two
critical exponents for the correlation length, i.e. one for either side of the phase transition.
The four values for K we obtain in this way are respectively K = 1.351, 1.381, 1.351 and
1.267, and agree reasonably well with each other.

Finally, we note that extracting K via the scaling of the order parameter or correlation
length is numerically very costly due to the fact that we need many data points close to
the transition to accurately fit the critical exponents. Alternatively, we can also obtain
K directly from the two-point function of the operators eiθ = σ+iπ√

σ2+π2 at the critical line,
which at large distances should fall off as

〈eiθ(x)e−iθ(x
′)〉 ∼ 1

|x− x′|K/2
. (4.2)

In the left panel of figure 6 the two-point function of the data point closest to the extrapo-
lated critical coupling (g2

x, g
2
y) ≈ (1.93, 0.83) is shown. The different colors correspond to

decreasing values of the MPS truncation threshold. We have fitted a power law to the data
with the highest bond dimension, and find a value K ≈ 1.257, again consistent with the
previous methods.
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Figure 6. (Left) The two-point correlator of the eiθ field at transition for the data point closest to
the transition i.e. (g2

x, g
2
y) ≈ (1.93, 0.83). The exponent for the fitted decay is K ≈ 1.257 consistent

with all previous estimates. (Right) The logarithmic derivative of the two point function, using a
finite difference estimator of the data in the left panel. For the larger bond dimensions we see a
plateau spanning over roughly 80 sites; the value of this plateau coincides with K. In both figures
the different colors correspond to decreasing values of the MPS truncation threshold, which are
shown on the right.

In order to make the algebraic decay more clear from the MPS data, in the right panel
of figure 6 we show the logarithmic derivative of the two-point function, i.e.

η(x) := −2
d
(
log |〈eiθ(0)e−iθ(x)〉|

)
d log x , (4.3)

where again the different colored points correspond to increasing bond dimensions. For
the smallest bond dimensions η(x) is monotonically decreasing, corresponding to faster
than algebraic decay. However, for the larger bond dimensions we can clearly identify
a range where η(x) is constant, corresponding to a range of algebraic decay; the value
for K can now simply be read off as the value of η(x) at the plateau. We estimate the
error for K by considering the standard deviation σK away from the plateau value ηp, i.e.
σ2
K = 〈(η(x)− ηp)2〉, calculated using the data points near the centre of the plateau. Using

the plateau in η(x) obtained at the largest bond dimensions, we find K = 1.3944± 0.0006.
Note that the value for K extracted from η(x) (K = 1.394) is slightly different from the
value we previously obtained via the direct fit in the leftmost plot of figure 6 (K = 1.257).
The value obtained from η(x) is less prone to fitting errors, and it also agrees better with
the previous estimates for K based on the scaling behaviour of the order parameters and
the correlation length.

Finally, to establish a critical continuum limit we need to study the running of K as
we move towards g2

x = g2
y = 0 along the critical line. To do this, we studied four additional

cuts g2
y = 1.47 − 1.65(g2

x − 6.25), g2
y = 0.81 − (g2

x − 0.81), g2
y = 0.49 − (g2

x − 0.49) and
g2
y = 0.42− (g2

x − 0.42), indicated by the dotted white lines in figure 4. For these cuts, we
first estimate the position of the critical point from low bond dimension MPS calculations
of the order parameters, and then estimate K by identifying the plateaus at the transition
point. These plateaus, and the respective estimates for K, are shown in figure 7 and
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Figure 7. The logarithmic derivative of the two-point function for various points (g2
x, g

2
y) ≈

(6.22, 1.52) top-left, (1.05, 0.57) top-right, (0.56, 0.42) bottom-left and (0.47, 0.37) bottom-right, close
to the phase transition. The dotted lines indicate the value of the plateau and the corresponding
extrapolated value of K. The bond dimensions used in these simulations range up to 2500 for the
g2
x ≈ 0.47 point. The color coding is the same as in figure 6.
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Figure 8. The running Luttinger parameter K as a function of the coupling g2
x. We also show

the error measure σK as defined in the text. The dotted line indicates the expected continuum
behaviour and for sufficiently small couplings we see a clear trend towards this line.

figure 8 respectively. For sufficiently small values of (g2
x, g

2
y) we find a clear trend towards

K = 2, indicating that the continuum limit of our lattice model along the critical line is
consistent with the bosonized QFT description of the chiral Gross-Neveu model discussed
in section 2.2.
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5 The chiral GN model as a Landau-forbidden phase transition

In the previous section, we have shown that we can recover the behavior of the continuum
GGN model at N = 2 on the lattice, despite the absence of an exact microscopic continuous
chiral symmetry. In this section, we will interpret this result from a condensed matter point
of view, and discuss the connection to Landau-forbidden phase transitions.

We will again focus on the region of parameter space close to where we recover the chiral
GN model. The IR physics is then described by the compact boson action in eq. (2.10).
The discrete symmetries of the GGN model that act non-trivially on the compact boson θ,
as discussed in section 2.1, are:

ZD2 : θ → θ + π (5.1)
ZC2 : θ → −θ (5.2)
ZR2 : θ → −θ. (5.3)

The value of K in eq. (2.10) is such that the cos 2θ operator is relevant, which means that
the IR fixed point is indeed a compact boson only when δ = 0. For δ > 0, the cosine term
will pin θ to either π/2 or −π/2, such that ZD2 , ZC2 and ZR2 are all spontaneously broken.
However, for δ > 0 the ground states are still symmetric under the products DR and DC
(which act non-trivially on θ). For δ < 0, the cosine term will pin θ to either 0 or π, in
which case ZD2 is spontaneously broken, but ZC2 and ZR2 are preserved.

On the lattice, the reflection operator R corresponds to a bond-centered reflection RB
(which also includes an on-site action), as discussed in section 2.3. The DR symmetry, on
the other hand, is realized on the lattice as a site-centered reflection RS , i.e. the reflection
center now coincides with a lattice site. These two different reflection operators are related
by RS = T RB, where T is the translation operator, which is consistent with the fact
that the latter implements the discrete chiral symmetry on the lattice. The bond-centered
reflection symmetry RB is broken when δ > 0 (π = 〈ψ̄iγ5ψ〉 6= 0), and is preserved when
δ < 0 (σ = 〈ψ̄ψ〉 6= 0). For the site-centered inversion symmetry, the converse is true, i.e.
RS is preserved when δ > 0, and broken when δ < 0. That the two different gapped phases
indeed respect either the bond- or site-centered reflection symmetry can also be understood
intuitively from the fixed-point, i.e. zero correlation length, representatives of these two
phases. This is shown schematically in figure 9.

The above discussion brings us to the interesting conclusion that the chiral GN model
can be interpreted as a continuous phase transition between two gapped phases which break
different global symmetries. According to the standard Landau theory of phase transitions,
such a continuous transition should be a fine-tuned or multi-critical point, which can only
be realized by tuning two independent relevant parameters to zero. Here, we find that
this is not the case, and we can go between the two symmetry-broken phases via a single
continuous transition, by tuning a single parameter. A natural question is thus what is
special about our model that makes a direct transition generic and not fine-tuned. As we
will now argue, it is the ‘t Hooft anomaly which places the GGN model outside the standard
Landau theory.
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a)

b)

c)

Figure 9. A cartoon picture of zero correlation length representatives of the two symmetry broken
phases. a) represents the two charge density waves that occur for large g2

y (π 6= 0). Full/empty
dots represent filled/empty sites. b) represents the two different ground states with bond order for
large g2

x (σ 6= 0). The connected dots represent the dimerized states (|10〉+ |01〉)/
√

2 in the fermion
occupation basis. c) represents a kink in the σ condensate. Imposing inversion symmetry around
the central site automatically breaks all possible inversion symmetries around bonds, which ensures
that any such defect nucleates a non-zero value of the π order parameter.

On the lattice, the ‘t Hooft anomaly between the ZD2 and the U(1) charge symmetry is
known as the ‘Lieb-Schultz-Mattis’ (LSM) theorem [13–15]. It states that at half-filling,
the lattice Hamiltonian can only be gapped if either the charge U(1) or the translation
symmetry is broken. Note that in our case, with N = 2 flavors of fermions per site, half
filling actually implies that we have one unit of charge per lattice site. We thus also need
to invoke the SU(2) flavor symmetry to argue that the average charge is 1/2 per flavor per
site. The LSM theorem then states that a gapped ground state implies that either charge,
flavor or translation symmetry are broken. In 1 + 1 dimensions, we know from the CHMW
theorem that the continuous charge and flavor symmetries cannot be broken spontaneously,
so every gapped phase must necessarily break translation symmetry. Let us now assume
that we are in a gapped phase where RS is broken. A general mechanism to restore the
RS symmetry is to condense the kink or domain wall excitations. However, because of the
relation RS = T RB, and from the fact that T must be broken, we conclude that restoring
the RS symmetry must necessarily imply that we break the RB symmetry (assuming that
we transition to a gapped phase). This means that condensing the kink excitations must
simultaneously restore the RS symmetry, and break the RB symmetry. We thus conclude
that the ‘t Hooft anomaly must endow the kink excitations with a special property that
their condensation triggers the spontaneous breaking of RB. In figure 10, we plot the
large-N mean-field solution for the ground state of the lattice model with twisted boundary
conditions, such that the ground state contains a single kink in the σ order parameter.
Near the center of the kink, we see that the π order parameter becomes non-zero, such
that condensing these kinks will induce a uniform non-zero value for the π order parameter,
signaling a spontaneous breaking of RB.

Finally, let us comment on the role of the ZC2 symmetry. It turns out that there is a
further ‘t Hooft anomaly, i.e. a LSM obstruction on the lattice, between the charge and
flavor symmetries, the C symmetry, and the RS symmetry. As we show in the appendix, a
ground state of a local and gapped Hamiltonian with an average charge of 1/2 per flavor and
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σ
or
π

Figure 10. A site-dependent solution of the large-N self-consistency equations with antiperiodic
boundary conditions for σ (blue), the orange points indicate the π order parameter. The couplings
are g2

x = 6.0 and g2
y = 2.3 ie. in bond ordered phase but close to the transition. Note that the

expectation value of π becomes nonzero near the domain wall in σ.

per site cannot be invariant under site-centered reflection symmetry. Because the charge
and flavor symmetries cannot be broken due to the CHMW theorem, it thus follows that the
ZC2 symmetry must be broken in the gapped phase which preserves RS , i.e. when δ > 0 such
that π = 〈ψ̄iγ5ψ〉 6= 0. We thus again arrive at the conclusion that kink condensation in
the C-broken (and also RB-broken) phase, which restores the charge conjugation symmetry,
must necessarily induce RS breaking if we are to transition to a gapped phase.

The above discussion of course does not imply that in the presence of the ‘t Hooft
anomalies, there is necessarily a direct continuous transition between a gapped phase with
broken RS symmetry and a gapped phase with broken RB symmetry. It is always possible
to have 1) an intermediate region of coexistence where both symmetries are broken, 2) an
intermediate gapless region where both symmetries are restored, or 3) a first order transition
between the two phases. The ‘t Hooft anomalies only provide us with a mechanism to
explain why a direct continuous transition, if it occurs, is not fine-tuned. This is similar to
how the Lieb-Schultz-Mattis theorem is used to motivate the ‘deconfined quantum critical
points’ [45, 46], which are a special type of Landau-forbidden continuous phase transitions
in 2 + 1-dimensional lattice spin models [47].

6 Conclusion

In this work we have studied the GGN model on the lattice. In discretizing the GGN model,
particular attention was paid to maintaining the maximal amount of global symmetries
of the continuum theory. The lattice model used here only fails to preserve the O(2N)
symmetry along the line with g2

x = 0, and the continuous chiral symmetry, which is present
when g2

x = g2
y . The latter symmetry has a ’t Hooft anomaly, and plays a crucial role in

determining the phase diagram of the continuum model. In large-N or mean-field theory, we
found that the broken continuous chiral symmetry results in a coexistence region where both
〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 are non-zero. Interestingly, the width of this coexistence region decreases
exponentially with the couplings. To go beyond mean-field theory, we have simulated the
N = 2 lattice GGN model with MPS. We found that the effect of quantum fluctuations
beyond mean-field theory is to remove the coexistence region completely, and replace it with
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a single continuous transition between the phase with 〈ψ̄ψ〉 6= 0 and 〈ψ̄iγ5ψ〉 = 0, and the
phase with 〈ψ̄ψ〉 = 0 and 〈ψ̄iγ5ψ〉 6= 0. The critical line is described by a single compact
boson CFT, which is the IR fixed point of the chiral GN model. Although on the lattice
the critical line is no longer a straight line under 45◦ in the g2

x− g2
y plane (as is the line with

continuous chiral symmetry in the continuum model), we found from our MPS simulations
that the scaling behaviour of the chiral condensates 〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 away from the
critical line is the same as that predicted by the continuum theory. We have also interpreted
the lattice phase diagram from a condensed matter perspective, and explained how the
chiral GN model can be recognized as a ‘Landau-forbidden’ phase transition (similar to the
deconfined quantum critical point in 2+1 dimensions) which is not fine-tuned because of the
presence of two different ‘t Hooft anomalies, or Lieb-Schultz-Mattis theorems on the lattice.

This type of continuous transition has been discussed before in the condensed matter
literature. Indeed, on the lattice the chiral condensates 〈ψ̄ψ〉 and 〈ψ̄iγ5ψ〉 are the order
parameters for respectively a bond order density wave or a ‘Valence Bond State’ (VBS) and
a ‘Charge Density Wave’ (CDW). The VBS breaks the site-centered reflection symmetry,
but preserves the bond-centered reflection and charge-conjugation symmetries. For the
CDW, the situation is reversed, i.e. it preserves the site-centered reflection symmetry, but
breaks the bond-centered reflection and charge-conjugation symmetries. Haldane has found
a similar transition in a study of the phase diagram of the antiferromagnetic XXZ chain
with next-nearest-neighbour interactions [48] (in the spin language, the CDW corresponds
to antiferromagnetic or Néel order). This model is closely related to the N = 1 GGN model,
and it was recently discussed in more detail and generalized in ref. [49]. In ref. [50], the
authors studied the phase diagram of the one-dimensional half-filled Hubbard model with
an additional nearest-neighbour repulsive interaction using quantum Monte Carlo, and
again evidence for a direct continuous transition between a VBS and CDW was found.
Because the authors of [50] considered spinful fermions, their Hubbard model is closely
related to the N = 2 GGN model, although the two interaction terms used in ref. [50] are
different from the ones we obtained here by directly discretizing the continuum GGN model.
Another place where a direct continuous transition between VBS and CDW phases has been
found (again using quantum Monte Carlo) is the Su-Schrieffer-Heeger model [51]. This is a
model of fermions hopping on a chain coupled to phonons, and its connections to the GN
model were discussed early on in ref. [52]. The work presented here makes the connection
between the continuous VBS-CDW transition and the GGN model more explicit, as we
start by directly discretizing the continuum action of the GGN model. In contrast to the
above mentioned previous studies of the VBS-CDW transition, we have also emphasized the
importance of two different Lieb-Schultz-Mattis theorems for obtaining a direct continuous
transition. Recently, the authors of ref. [53] have constructed a spin Hamiltonian which
was shown [54] to exhibit a direct continuous transition between a VBS phase and an Ising
ferromagnet phase. The different Lieb-Schultz-Mattis theorems present in this spin model
and their importance for the Landau-forbidden phase transition were also discussed in great
detail [53].

In the future, it will be interesting to generalize our numerical results to the GGN model
with an odd number of Majorana fermions, in which case the kinks bind an odd number of
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Majorana zero modes [55] and transform as isospinors under the SO(Ñ) symmetry group,
where Ñ counts the number of Majorana fermions [56]. To simulate these kinks with MPS,
one can make use of the results of ref. [57], where it was explained how Majorana zero modes
are realized in tensor network states. Another interesting direction is of course to generalize
our results to 2+1 dimensional systems, where discretizing a continuum theory with ‘t Hooft
anomalies might provide a route to construct lattice models with a deconfined quantum
critical point. Such a construction is highly desirable, as there is currently no conclusive
proof for the existence of a direct phase transition between two different symmetry-broken
phases in 2+1 dimensions, despite an impressive numerical effort [58–70].

Acknowledgments

We acknowledge valuable discussions with Erez Zohar, Mike Zaletel, and Bram Vanhecke.
This work has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreements No
715861 (ERQUAF)), and from Research Foundation Flanders (FWO) via grant GOE1520N
and postdoctoral fellowships of LV and NB.

A Lieb-Schultz-Mattis obstructions from charge and flavor symmetries,
charge conjugation and site-reflection symmetry

In this appendix we show that there exists a Lieb-Schultz-Mattis (LSM) obstruction (i.e.
a ‘t Hooft anomaly on the lattice) in the presence of charge, flavor, C and RS symmetry.
In particular, we will show that there cannot exist a quantum state which simultaneously
satisfies the following two properties: 1) it is the ground state of a local and gapped
Hamiltonian describing a quantum many-body system on a one-dimensional lattice, and 2)
it respects all the symmetries mentioned above. To show this, we will rely on the fact that
the ground state of every local Hamiltonian with an energy gap can be approximated by an
injective5 finite-bond dimension MPS to arbitrary precision [71, 72]. So, it remains to prove
that there cannot exist an injective MPS which respects the charge and flavor symmetries,
the charge conjugation symmetry and the site-centered reflection symmetry. Our proof will
make heavy use of the ‘fundamental theorem of MPS’ [73], which allows us to express the
global symmetry properties of MPS’s in terms of local conditions on the constituent tensors.

Recall that the gapped phases of interest in this work break translation over a single
lattice site (which is the lattice version of the discrete chiral symmetry, so it must be broken
in the gapped phases). Because our system has a two-site unit cell, we need two different
rank-three tensors [A1]iαβ and [A2]iαβ to construct the MPS (we call i the physical index of
the MPS tensor, and α and β the virtual indices). Concretely, the MPS’s we are interested

5The injectivity property is a technical condition on MPS tensors which we only mention for completeness
in this work — we will not define it in detail. It suffices to mention that the injectivity condition is physically
equivalent to the requirement that the MPS is not a macroscopic superposition or a so-called ‘cat state’.
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in take the form

|ψ〉 = lim
L→∞

∑
{ij}
〈v|Ai11 A

i2
2 A

i3
1 A

i4
2 · · ·A

i2L−1
1 Ai2L

2 |v〉|i1, i2, i3, i4, · · · , i2L−1, i2L〉 , (A.1)

where the states |ij〉 are a basis for the local Hilbert space on site j. For injective MPS, the
effect of the choice of boundary vector |v〉 decays exponentially away from the edge, such
that in the limit L→∞, the state is independent of |v〉.

We now use the fact that we can combine the total charge U(1) and flavor SU(2)
symmetry in order to apply separate U(1) transformations on the two flavors (i.e. the total
charge combined with the diagonal elements from SU(2)). We henceforth refer to this as
the charge and flavor U(1) symmetries. The fundamental theorem now implies that an
injective MPS of the form in eq. (A.1) can only be invariant under the charge and flavor
U(1) symmetry if the following relations hold [73, 74]:∑

j

[
Uc(θ)

]
ij A

j
1 = eiq1θV (θ)Ai1Ṽ (θ)† (A.2)

∑
j

[
Uc(θ)

]
ij A

j
2 = eiq2θṼ (θ)Ai2V (θ)† , (A.3)

where Uc(θ) is the local unitary symmetry action corresponding to a U(1) rotation over
an angle θ on flavor c, and V (θ) and Ṽ (θ) are invertible matrices acting on the virtual
indices, which without loss of generality can be taken to be unitary matrices [73]. It is
straightforward to see that eqs. (A.2) and (A.3) are sufficient for the MPS in eq. (A.1) to be
invariant under the U(1) symmetries. The fact that these local conditions are also necessary
is not obvious, but has been proven rigorously in the MPS literature [73, 74].

Similarly, the fundamental theorem also implies that the MPS in eq. (A.1) is invariant
under the charge conjugation and site-centered reflection symmetries iff the following
relations are true [73, 74]: ∑

j

[MC ]ij A
j
1 = (−1)n1CAi1C̃

† (A.4)

∑
j

[MC ]ij A
j
2 = (−1)n2C̃Ai2C

† (A.5)

∑
j

[
M1
R

]
ij

[
Aj1

]T
= (−1)m1RAi1R̃

−1 (A.6)

∑
j

[
M2
R

]
ij

[
Aj2

]T
= (−1)m2R̃Ai2R

−1 , (A.7)

where ni,mi ∈ {0, 1}, and MC and M i
R are the local unitary matrices respectively imple-

menting the charge conjugation symmetry and site-centered reflection symmetry on the
physical indices; for our specific model the on-site action depends on the site (even or odd).
Furthermore, the site-centered reflection also transposes the MPS matrices as a result of
the reordering of the lattice sites. The matrices C, C̃, R and R̃ are invertible, and C and
C̃ can without loss of generality be taken to be unitary.
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To start our proof, we first note that the U(1) symmetries and the charge conjugation
satisfy the following commutation relation:

MCUc(θ) = eiθUc(−θ)MC (A.8)

Using this relation, we can evaluate
∑
j

[
MCU(θ)

]
ij A

j
1 and

∑
j

[
MCU(θ)

]
ij A

j
2 in two

different ways. The first way gives us

∑
j

[
MCU(θ)

]
ij A

j
1 = (−1)n1eiq1θ

(
V (θ)C

)
Ai1

(
Ṽ (θ)C̃

)†
(A.9)

∑
j

[
MCU(θ)

]
ij A

j
2 = (−1)n2eiq2θ

(
Ṽ (θ)C̃

)
Ai2
(
V (θ)C

)† (A.10)

The second way of evaluating this expression leads to

∑
j

[
MCU(θ)

]
ij A

j
1 = (−1)n1ei(1−q1)θ (CV (−θ)

)
Ai1

(
C̃Ṽ (−θ)

)†
(A.11)

∑
j

[
MCU(θ)

]
ij A

j
2 = (−1)n2ei(1−q2)θ

(
C̃Ṽ (−θ)

)
Ai2
(
CV (−θ)

)† (A.12)

For injective MPS, equating (A.9) and (A.10) with (A.11) and (A.12), tells us that the
following conditions must hold:

V (θ)C = eiqθCV (−θ) (A.13)
Ṽ (θ)C̃ = eiq̃θC̃Ṽ (−θ) (A.14)

q1 = 1− q + q̃

2 (A.15)

q2 = 1 + q − q̃
2 (A.16)

At this point, we find it convenient to fix the phase of the matrices V (θ) and Ṽ (θ) by
redefining them as e−iqθ/2V (θ)→ V (θ) and e−iq̃θ/2Ṽ (θ)→ Ṽ (θ) (note that this also implies
q1 + q/2− q̃/2→ q1 and q2 − q/2 + q̃/2→ q2), such that the above equations become

V (θ)C = CV (−θ) (A.17)
Ṽ (θ)C̃ = C̃Ṽ (−θ) (A.18)

q1 = q2 = 1
2 (A.19)

From these relations, we conclude that one of two situations is realized. Either V (θ) contains
integer charges 0 and {Q,−Q} (Q ∈ N+) and Ṽ (θ) contains half odd-integer charge pairs
{q/2,−q/2} (q ∈ 2N + 1), or V (θ) contains half odd-integer charge pairs and Ṽ (θ) contains
integer charges.

For the final step in our proof we use that the reflection and U(1) symmetries commute:

MRUc(θ) = Uc(θ)MR , (A.20)
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and evaluate
∑
j

[
Uc(θ)MR

]
ij

[
Aj1

]T
in two different ways, similarly as before. Equating the

two different outcomes now produces the following relations:

RV (θ) = eiQRθṼ ∗(θ)R (A.21)
R̃Ṽ (θ) = eiQRθV ∗(θ)R̃ (A.22)

These equations imply that the charges of V (θ) are equal, up to a permutation, to the
charges of Ṽ (θ) shifted by QR. If such a QR exists, then from our considerations above
it follows that it should be a half odd-integer. However, it is not hard to see that the
integer charges 0 and {Q,−Q} cannot be obtained by shifting the half odd-integer charges
{q/2,−q/2} by some overall half odd-integer (provided that there are a finite number of
charges, i.e. provided that the MPS bond dimension is finite). So we have arrived at an
inconsistency, from which we conclude that there cannot exist an MPS which is invariant
under all the symmetries.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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