
A&A 667, A47 (2022)
https://doi.org/10.1051/0004-6361/202244567
c©M. Baes 2022

Astronomy
&Astrophysics

The Einasto model for dark matter haloes
Maarten Baes

Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium
e-mail: maarten.baes@ugent.be

Received 21 July 2022 / Accepted 5 September 2022

ABSTRACT

Context. The Einasto model has become one of the most popular models for describing the density profile of dark matter haloes.
There have been relatively few comprehensive studies on the dynamical structure of the Einasto model, mainly because only a limited
number of properties can be calculated analytically.
Aims. We want to systematically investigate the photometric and dynamical structure of the family of Einasto models over the entire
model parameter space.
Methods. We used the SpheCow code to explore the properties of the Einasto model. We systematically investigated how the most
important properties change as a function of the Einasto index n. We considered both isotropic models and radially anisotropic models
with an Osipkov-Merritt orbital structure.
Results. We find that all Einasto models with n < 1

2 have a formal isotropic or Osipkov-Merritt distribution function that is negative
in parts of phase space, and hence cannot be supported by such orbital structures. On the other hand, all models with larger values
of n can be supported by an isotropic orbital structure, or by an Osipkov-Merritt anisotropy, as long as the anisotropy radius is larger
than a critical value. This critical anisotropy radius is a decreasing function of n, indicating that less centrally concentrated models
allow for a larger degree of radial anisotropy.
Conclusions. Studies of the structure and dynamics of models for galaxies and dark matter haloes should not be restricted to com-
pletely analytical models. Numerical codes such as SpheCow can help open up the range of models that are systematically investigated.
This applies to the Einasto model discussed here, but also to other proposed models for dark matter haloes, including different exten-
sions to the Einasto model.
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1. Introduction

According to the Λ cold dark matter model, the matter bud-
get of the Universe is dominated by dark matter. Based on
recent Planck-based cosmological model parameter estimates,
about 85% of all matter in the Universe consists of dark matter
(Planck Collaboration VI 2020). Dark matter haloes, the highest
density structures within the cosmic web, contain a large frac-
tion of the dark matter content and most of the baryonic matter
in the Universe. The characterisation of dark matter haloes is
important, and this is usually done by means of their spherically
averaged density profiles.

The most popular model for describing the density pro-
file of dark matter haloes is probably the Navarro, Frenk
& White (NFW) model (Navarro et al. 1997). This model is
characterised by an r−1 power-law behaviour at small radii
and an r−3 power-law slope at large radii. It belongs to
a larger family of double power-law models, characterised
by different asymptotic power laws, r−γ and r−β, at small
and large radii, respectively. Many different members of this
large family have been proposed as models for dark matter
haloes (e.g. Moore et al. 1999; Jing & Suto 2000; Ghigna et al.
2000; Di Cintio et al. 2014; Hague & Wilkinson 2014, 2015;
Dekel et al. 2017). The dynamical and lensing properties of this
set of double power-law models have been explored in quite
some detail (Zhao 1996; Łokas & Mamon 2001; Evans & An
2005; Freundlich et al. 2020; Baes & Camps 2021).

A different model in which the logarithmic density slope
rather than the density itself shows a power-law behaviour was

proposed by Navarro et al. (2004) and Merritt et al. (2005), argu-
ing that this model provided a better fit to the density profile of
high-resolution N-body dark matter haloes than the NFW model.
Models with a power-law logarithmic density slope were origi-
nally introduced by Einasto (1965), and used to model the stellar
distribution in nearby galaxies such as M 31, M 32, and M 87 and
in the Milky Way (Einasto 1969, 1974). The model is currently
generally known as the Einasto model. It has been used exten-
sively to describe simulated dark matter haloes (e.g. Merritt et al.
2006; Gao et al. 2008; Hayashi & White 2008; Springel et al.
2008; Navarro et al. 2010; Lovell et al. 2014; Klypin et al. 2016;
Fielder et al. 2020; Wang et al. 2020) and to fit galaxy rotation
curves (e.g. Chemin et al. 2011; Li et al. 2019; Ghari et al. 2019;
Jiao et al. 2021).

The properties of the Einasto model have been investigated
by a number of authors (Mamon & Łokas 2005; Cardone et al.
2005; Merritt et al. 2006; Mamon et al. 2010; Dhar & Williams
2010; Retana-Montenegro et al. 2012a,b; Dhar 2021), but not
to the same degree as other models such as the double power-
law model. One reason is that relatively few properties of the
Einasto model can be calculated analytically. The density profile
is a simple analytical function, but even simple derived quanti-
ties such as the mass profile or the gravitational potential cannot
be expressed without the use of special transcendental functions.
Projected and lensing properties can only formally be expressed
using very special functions such as the Fox H function. There is
no hope to express more intricate dynamical properties such as
the distribution function or the differential energy distribution as
a closed expression.
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The most comprehensive studies on the family of
Einasto models are those by Cardone et al. (2005) and
Retana-Montenegro et al. (2012a). In the former paper, analyt-
ical expressions for the basic properties are derived and the
observed on-sky properties and the distribution function and dif-
ferential energy distribution for an isotropic and Osipkov-Merritt
orbital structure are calculated numerically and discussed. The
latter paper focuses primarily on the analytical calculations of
the surface density and the lensing properties and on a compari-
son between the Einasto and Sérsic models.

There are several reasons why these studies should be
refined and extended. First of all, they consider only a limited
range in the Einasto parameter, n, focusing on large values.
Inspired by our recent work on the family of Sérsic models
(Baes & Ciotti 2019a), we argue that models with smaller val-
ues of n, which correspond to a sharper transition between the
inner and outer part of the model, can be significantly differ-
ent and deserve the necessary attention. Secondly, a number
of results in the Cardone et al. (2005) study are intriguing. For
example, the authors found that the shape of the differential
energy distribution of the family of Einasto models depends sen-
sitively on n. In the range of small binding energies, it seems
to converge to zero for smaller values of n, as expected. For
the highest values of n they considered, n ≈ 10, the differ-
ential energy distribution seems to diverge at small binding
energies. The authors suggest that this unexpected behaviour
could be the result of numerical problems in their integrations.
Finally, Cardone et al. (2005) discuss anisotropic models with
an Osipkov-Merritt orbital structure, but do not discuss the con-
sistency limits, whereas this is a crucial characteristic for this
kind of dynamical model (e.g. Osipkov 1979; Merritt 1985a;
Carollo et al. 1995; Ciotti & Lanzoni 1997; Baes & Dejonghe
2002).

We have recently released SpheCow, a software tool designed
to numerically explore the dynamical structure of any spherical
model defined by an analytical density profile or surface den-
sity profile (Baes et al. 2021). The code can be used to numer-
ically explore the dynamical structure, under the assumption
of an isotropic or an Osipkov-Merritt anisotropic orbital struc-
ture. SpheCow contains readily usable implementations for many
standard models, including the Plummer, Hernquist, NFW, Sér-
sic, Nuker, and Zhao models. Applications of SpheCow include
a detailed analysis of the families of Nuker and Sérsic models
(Baes 2020; Baes & Ciotti 2019a,b), a study of the consistency
of the double and broken power-law models (Baes & Camps
2021), and the presentation of two new families of models with
sigmoid density slopes (Baes et al. 2021).

In this paper we make use of the capabilities of SpheCow
to fully explore the photometric and dynamical structure of the
family of Einasto models. Throughout this paper we focus on
the results and the interpretation of the findings, rather than on
the derivation of the relevant formulae. For readers less famil-
iar with the construction of spherical dynamical models and the
formulae involved, we refer to the SpheCow presentation paper
(Baes et al. 2021) or to standard stellar dynamics textbooks (e.g.
Binney & Tremaine 2008; Ciotti 2021) for more information.

This paper is organised as follows. In Sect. 2 we introduce
the Einasto model and focus on the dimensionless parameter d
that appears in the formal expression of the density. In Sect. 3
we discuss the basic properties for the full range of the Einasto
parameter, n. In Sect. 4 we investigate the dynamical properties
of the isotropic Einasto models, focusing on the velocity disper-
sions, the distribution function, and the differential energy distri-
bution. In Sect. 5 we discuss anisotropic Einasto models with an

Osipkov-Merritt orbital structure and we particularly investigate
the consistency for different Einasto parameters and anisotropy
radii. In Sect. 6 we discuss and summarise our findings.

2. The Einasto model

2.1. Definition of the model

The Einasto model is characterised by the density profile

ρ(r) =
d3n

4π n Γ(3n)
M
r3

h

exp

−d
(

r
rh

)1/n · (1)

It contains three free parameters: the total mass, M, the half-mass
radius, rh, and the Einasto index, n, that characterises the concen-
tration of the mass distribution. While M and rh can be regarded
as scaling parameters, the Einasto index is the only shape param-
eter that determines the actual shape of the density profile.

We note that there are different parameterisations in the lit-
erature for the Einasto model, with different free parameters. In
the context of dark matter haloes, a popular representation is

ρ(r) = ρ−2 exp

−2n

( r
r−2

)1/n

− 1


 , (2)

where r−2 and ρ−2 represent the radius and the density at
which the logarithmic density slope is equal to −2. For other
conventions and the conversion between them, we refer to
Retana-Montenegro et al. (2012a).

2.2. The dimensionless parameter d

Apart from the free parameters M, rh, and n, expression (1)
contains the parameter d. This is not a free parameter but a
dimensionless constant that depends on n and that is introduced
to guarantee that rh is indeed the half-mass radius. Using the
expression for the cumulative mass profile of the Einasto model
(Retana-Montenegro et al. 2012a), it is straightforward to show
that d can be found as the solution of the equation

Γ(3n, d) =
1
2

Γ(3n), (3)

where Γ(s) and Γ(s, x) are the complete and the upper incom-
plete gamma functions, respectively. This equation can be solved
numerically for any value of n > 0.

Using an asymptotic expansion technique first explored by
Ciotti & Bertin (1999), Retana-Montenegro et al. (2012a) found
the following asymptotic expansion for d, appropriate for the
range n > 1,

d = 3n −
1
3

+
8

1215 n
+

184
229635 n2

+
1048

31000725 n3 −
17557576

1242974068875 n4 + O

(
1
n5

)
· (4)

For small values of n, this expansion obviously does not hold and
it seems an obvious option to use a power-series approximation
for the small n range. We can find inspiration from the study by
Baes & Ciotti (2019a) for the equivalent parameter b for the fam-
ily of Sérsic models. Using a similar argumentation and method-
ology, we find that d tends to zero as n as n approaches zero, but
that dn reaches a finite value in the limit n→ 0,

lim
n→0

dn =
1
3√2
· (5)
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Fig. 1. Dependence of some global and dynamical properties for the
family of Einasto model, explicitly as a function of the Einasto index
and for fixed total mass and half-mass radius. From top to bottom this
figure shows the dimensionless quantity d, the depth of the potential
well, the total potential energy, and the central intrinsic (solid line)
and line-of-sight (dash line) velocity dispersion. The latter two quan-
tities are correspond to an isotropic dynamical structure. The solid lines
correspond to analytical formulae or numerical results calculated out-
side SpheCow, the coloured dots are numerical results calculated with
SpheCow. The colours of the dots correspond to the models shown in
Fig. 2.

We find that dn is very well fitted by a polynomial approximation
over the interval 0 ≤ n ≤ 1,

dn ≈
1
3√2

+

4∑
k=1

ak nk (6)

with coefficients

a1 = −0.4977745, (7)
a2 = 2.894682, (8)
a3 = −2.369477, (9)
a4 = 1.852409. (10)

The corresponding approximation formula for d,

d ≈

 1
3√2

+

4∑
k=1

ak nk


1/n

, (11)

is characterised by a relative rms error of 4.5×10−4 and an abso-
lute rms error of 4.6 × 10−5 when averaged over the interval
0 ≤ n ≤ 1. The dependence of d as a function of n is shown
in the top panel of Fig. 1.

3. Basic properties

In Fig. 2 we plot a number of basic properties of the family of
Einasto models, as calculated with the SpheCow code, for a range
of values for the Einasto parameter n.

3.1. Density and surface density

Panels a and b show the density and the surface density, respec-
tively. The surface density of the Einasto model cannot be cal-
culated analytically in terms of elementary functions or even
the regular special functions. It is possible to derive an expres-
sion in terms of the Fox H function (Retana-Montenegro et al.
2012a) and various numerical approximations have been pre-
sented (Dhar & Williams 2010; Dhar 2021). Comparing the cor-
responding curves in both panel, it appears that, at first sight,
the density profile and the surface density profile have a qual-
itatively similar behaviour. Both profiles are characterised by
a finite value at the centre and in both cases, the profile has
a smooth curvature (in log-log space) with a slope that gradu-
ally changes from the inner to the outer regions. For large values
of n, the change is very smooth and the transition gets gradually
sharper as n decreases.

The main difference between both profiles is more clearly
visible when we compare the negative logarithmic slopes of both
profiles, defined as

γ(r) = −
d log ρ
d log r

(r), (12)

γp(R) = −
d log Σ

d log R
(R). (13)

These slope profiles are shown in the panels c and d, respectively.
The slope of the density profile is a pure power law over the
entire radial range,

γ(r) =
d
n

(
r
rh

)1/n

, (14)

which is exactly the defining property for the Einasto models
(Cardone et al. 2005). For the surface density profile, this is not
the case: γp(R) behaves as a power law at both small and large
radii, but not over the entire radial range.

These logarithmic slope plots are also useful to investigate
the behaviour of the Einasto model in the limits of very large
and very small Einasto indices. When n becomes very large,
γ(r) becomes very flat, that is, with a slope that is almost uni-
form at all radii. Taking the limit n → ∞ in expression 14,
we have, considering the expansion (Eq. (4)), limn→∞ γ(r) = 3.
The limiting case of the Einasto models for n → ∞ is hence a
scale-free power-law model (Evans 1994), with ρ(r) ∝ r−3. The
corresponding surface density profile is also a pure power law,
Σ(R) ∝ R−2. Unfortunately, scale-free power-law models always
have an infinite total mass, with the mass diverging in the centre
if the power-law slope is larger than or equal to three, and at large
radii if the slope is smaller than or equal to three. In the limit-
ing case of the Einasto model, the mass profile hence diverges at
both small and large radii. This model is represented by the grey
line in panels c and d.

In the other limiting case, corresponding to very small
Einasto indices, we find a model with a constant density at small
radii, an infinitely sharp break in the density profile, and a van-
ishing density beyond that point. We hence end up with a uni-
form density sphere with radius

rmax =
3√
2 rh. (15)
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Fig. 2. Basic properties of the family of Einasto models. We have set M = rh = 1. The different lines in each panel correspond to different values
of n, as indicated in panel a. (a) Density. (b) Surface density. (c) Density slope. (d) Surface density slope. (e) Cumulative mass. (f) Gravitational
potential.

The uniform density sphere is one of the classical models
used in the theory of dynamics (Bisnovatyi-Kogan 1971, 2021;
Polyachenko & Shukhman 1974; Osipkov 1979) and gravita-
tional lensing studies (Clark 1972; Weinberg & Kamionkowski
2002; Suyama et al. 2005). A detailed analysis of the dynamical
properties of the uniform density sphere was recently presented
by Baes (2022). The model is represented as the violet line in
Fig. 2.

3.2. Cumulative mass and potential

Panels e and f show the cumulative mass profile and the grav-
itational potential. As demonstrated by Cardone et al. (2005)
and Retana-Montenegro et al. (2012a), all Einasto models have
a finite mass and a finite potential well. The potential decreases
parabolically at small radii, and in a Keplerian way at large radii.
In these three panels we also over-plotted the profiles for the uni-
form density sphere (Baes 2022). It is clear that the family of

Einasto models nicely converges to the uniform density sphere
as n decreases.

In the second panel of Fig. 1 we explicitly show the depth
of the potential well as a function of the Einasto index n,
for fixed values of the total mass and the half-mass radius.
The coloured dots correspond to the values calculated with
SpheCow, whereas the solid line represents the exact value
(Retana-Montenegro et al. 2012a),

Ψ0 =
GM
rh

1
dn

Γ(3n)
Γ(2n)

· (16)

Interestingly, the depth of the potential well is not a monotonic
function of n for fixed values of the total mass and the half-mass
radius: the minimum value is obtained for n = 0.145.

The third panel of Fig. 1 shows the total potential energy
as a function of n, again for fixed values of M and rh. The
total potential energy of an equilibrium dynamical model is
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Fig. 3. Dynamical properties of the family of Einasto models with an isotropic orbital structure. As in Fig. 2 we have set M = rh = 1, and the
different lines correspond to different values of n, as indicated in panel a. Solid lines correspond to consistent isotropic models, dashed lines to
unphysical dynamical models. (a) Velocity dispersion. (b) LOS velocity dispersion. (c) Distribution function. (d) Differential energy distribution.

an important dynamical quantity, because it sets the equipar-
tition of the total energy budget due to the virial theorem
(Binney & Tremaine 2008), it is one of the ingredients to quan-
tify the 3D concentration of dynamical systems (Spitzer 1969),
and it sets the preferred length scale for Monte Carlo or N-body
simulations (Hénon 1971; Cohn 1979; Heggie & Mathieu 1986).
The solid line in this panel represents the analytical value from
Baes & Ciotti (2019b),

Wtot = −
GM2

rh

1
dn

[
Γ(2n)
Γ(3n)

+
Γ(5n)

2n Γ2(3n) 2F1(2n, 5n; 2n + 1;−1)
]
, (17)

and the SpheCow values perfectly reproduce these analytical val-
ues. The total potential energy is also not a monotonic function
of n: it first gradually increases, or rather becomes less negative,
as n grows. The maximum value is reached at n = 2.17, after
which it grows more negative again.

4. Isotropic dynamical models

The properties described in the previous section only depend on
the spatial distribution of the matter. While the density is a crucial
quantity and usually the first quantity by which dark matter haloes
are described, it does not provide the full dynamical picture. A full
characterisation of an equilibrium dynamical model is contained
within the phase-space distribution function. For any spherical
density profile ρ(r), it is possible to generate many different dis-
tribution functions, depending on the orbital structure of the sys-
tem (e.g. Dejonghe 1986; Binney & Tremaine 2008; Ciotti 2021).

The simplest models are probably ergodic or isotropic dynami-
cal models, that is, models in which the distribution function only
depends on E, the binding energy per unit mass.

4.1. Velocity dispersions

Panels a and b of Fig. 3 show the intrinsic and line-of-
sight velocity dispersion profiles. Cardone et al. (2005) already
showed velocity dispersion profiles for a number of Einasto
models, but their study was limited to values n > 2.5. Their
dispersion profiles all have a strong central depression, but it
is unclear from their Fig. 5 (which is shown in a linear scale)
how these profiles behave at small radii. We find that all Einasto
models have a finite, non-zero central dispersion, in agreement
with the fact that all Einasto models have a finite central den-
sity (Bertin et al. 2002). The solid line in the bottom panel in
Fig. 1 shows how the central velocity dispersion depends on
the Einasto index for fixed total mass and half-mass radius. It
decreases smoothly and monotonically as n increases.

All models with n > 1
2 have a central depression, implying

that the dispersion profile first increases as a function of radius
until a maximum value is reached, and subsequently decreases.
The models with n ≤ 1

2 have a monotonically decreasing disper-
sion profile over the entire radial range. This behaviour is also
in agreement with the expectations (Bertin et al. 2002), as the
density at small radii behaves as

ρ(r) ≈ ρ0

1 − d
(

r
rh

)1/n . (18)

At large radii, the intrinsic velocity dispersion profile is rela-
tively shallow for large n and it becomes gradually steeper as
n decreases.
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Fig. 4. Comparison of the distribution function and differential energy distribution presented by Cardone et al. (2005) (thick lines) with the
corresponding values calculated with SpheCow (thin lines). The different properties are represented in the dimensionless units convention adopted
by Cardone et al. (2005), which differs from the representation adopted in the remainder of this paper.

The line-of-sight velocity dispersion profiles behave in a
very similar way as the intrinsic dispersion profiles. All Einasto
models have a finite, non-zero central line-of-sight velocity dis-
persion, as indicated by the dashed line in the bottom panel
of Fig. 1. At fixed mass and half-mass radius, the central line-
of-sight dispersion decreases smoothly and monotonically as
n decreases, but the decrease is gentler than for the intrinsic dis-
persion. Models with n ≤ 1

2 have a monotonically decreasing
line-of-sight velocity dispersion profile, whereas the profile for
models with n > 1

2 have a central depression.
For any spherical density profile, SpheCow automatically

calculates the total kinetic energy of the corresponding isotropic
dynamical model by numerically integrating the velocity disper-
sion profile,

Ttot = 6π
∫ ∞

0
ρ(r)σ2(r) r2 dr. (19)

For each of the Einasto models considered, we found that the
kinetic energy Ttot and the potential energy Wtot relate as Wtot +
2 Ttot = 0, as required by the virial theorem (Binney & Tremaine
2008).

4.2. Distribution function

Panel c of Fig. 3 shows the isotropic distribution function for the
Einasto models. It is immediately clear that the shape of the dis-
tribution function varies systematically with the Einasto index.
Cardone et al. (2005) mention that the distribution function of
Einasto models is well approximated by a single power law for
a large range of values of the binding energy. We cannot confirm
this, as we find a systematically changing slope of the distribu-
tion function as n decreases. It is worth noting that Cardone et al.
(2005) mention that they have encountered technical problems in
approaching the lower and upper ends of the range for the bind-
ing energy, and therefore they have computed the distribution
function for their models only over a limited range. In the left
panel of Fig. 4 we directly compare the distribution functions
as presented by Cardone et al. (2005) with the SpheCow calcu-
lations, for the same set of Einasto models. We converted the
SpheCow output to the dimensionless units convention adopted
by them, which differs from the representation adopted in the

remainder of this paper1. The results agree very well over most
of the binding energy range, but they clearly deviate at the low-
est binding energies they considered. Over a limited range of
binding energies, the distribution function of the Einasto models
with 2.5 . n . 10 can be approximated by a single power law.
This similarity breaks down when considering a larger range in
binding energies, or when considering a larger range in Einasto
parameters.

A crucial requirement for physical dynamical models is
that the distribution function is positive over the entire phase
space. For spherical models with a given density profile, it
is always possible to formally calculate the isotropic distribu-
tion function f (E) using the well-known Eddington formula
(Binney & Tremaine 2008). However, only when this distribu-
tion function is positive over the entire range of binding ener-
gies 0 < E ≤ Ψ0, the dynamical model is physically consis-
tent and meaningful. This requirement is not always satisfied:
examples of simple density profiles that cannot be supported
by an isotropic velocity distribution include the uniform density
sphere (Zel’dovich et al. 1972; Osipkov 1979; Baes 2022), Sér-
sic models with Sérsic index m < 1

2 (Baes & Ciotti 2019a), bro-
ken power-law models (Du et al. 2020; Baes & Camps 2021),
and double power-law models with sharp transitions (Zhao 1997;
Baes & Camps 2021).

It turns out that not all Einasto models can be supported by
an isotropic distribution function. For large values of n, the dis-
tribution function is a strongly increasing function of binding
energy that is positive over the entire range of binding energies,
and it diverges as E approaches Ψ0. As n decreases, f (E) still
increases strongly for small E, but it starts to flatten at interme-
diate binding energies and it subsequently diverges again as E
approaches Ψ0. For n = 1

2 the distribution function no longer
diverges for E → Ψ0, but converges to a finite value. All models
with n < 1

2 have a formal distribution function that increases as
a function of E for small E until a maximum value is reached.
It subsequently decreases and assumes negative values at the
largest binding energy values (this is not visible in the plot
as it uses logarithmic scaling). The particular n = 1

2 model,

1 The original data from Cardone et al. (2005) were retrieved using the
freely available WebPlotDigitizer software (Rohatgi 2020).
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characterised by a Gaussian density profile, is the limiting model
that still allows a positive isotropic distribution function. Any
Einasto model with n < 1

2 can hence not support an isotropic
orbital structure.

This physical inconsistency obviously also accounts for the
limiting case of the uniform density sphere, which corresponds
to n = 0. For this model, the formal isotropic distribution func-
tion can be calculated explicitly. It vanishes for E < ET, it has an
infinitely sharp peak at E = ET, and it is negative for all binding
energies ET < E < Ψ0, where

ET =
2
3

Ψ0 =
1
3√2

GM
rh

. (20)

This is obviously not the distribution function of physically con-
sistent model. For more details we refer to Baes (2022).

4.3. Differential energy distribution

A final important dynamical quantity to consider is the differ-
ential energy distribution. It represents the distribution of the
total mass as a function of binding energy and it has been
argued to be the most fundamental partitioning of an equilibrium
dynamical system (Binney 1982; Efthymiopoulos et al. 2007;
Hjorth & Williams 2010).

Cardone et al. (2005) presented an intriguing result concern-
ing the low binding-energy limit of the differential energy distri-
bution of the Einasto models. They found that N(E) converged
to zero in the limit E → 0 for the smallest value of n they con-
sidered, but that it appeared to diverge for the largest value of
n. They argue that such a diverging differential energy distribu-
tion is possible because the mass density formally vanishes only
at infinity, and it is always possible to find stars at larger and
larger radii with lower and lower binding energies so that N(E)
may diverge in the limit E → 0. In the right panel of Fig. 4 we
overplot the differential energy distribution profiles presented by
Cardone et al. (2005) with the corresponding SpheCow results.
From this plot, it is clear that the differential energy distribution
does not diverge for any Einasto model. The apparent divergence
in the Cardone et al. (2005) differential energy distribution is the
combined result of numerical problems in their integrations at
low binding energies and the limited range of binding energies
considered.

In panel d of Fig. 3 we show the differential energy distribu-
tion for the family of Einasto models covering a wide range of n.
In all cases, N(E) is a function that disappears at both small and
large binding energies with a peak somewhere in the middle. For
large values of n, the differential energy distribution peaks for
small binding energies, indicating that the majority of the stars
or particles are orbiting on loosely bound orbits. As n decreases,
the Einasto models gradually become more centrally concen-
trated and the differential energy distribution becomes narrower
and peaked at gradually larger binding energies. The Gaussian
model n = 1

2 is the critical Einasto model that can still be sup-
ported by an isotropic distribution, and hence for which also the
differential energy distribution is positive over the entire range of
binding energies. For models with smaller values of n, the formal
differential energy distribution is characterised by a strong peak
at relatively large binding energies, but also by negative values at
the largest binding energies. In the limit of the uniform density
sphere, the differential energy distribution is zero for E < ET,
infinitely large for E = ET, and negative for ET < E < Ψ0 (Baes
2022).

As a sanity check on the accuracy of its results, SpheCow
integrates the differential energy distribution over the entire

range of binding energies, which should yield the total mass,∫ Ψ0

0
N(E) dE = M. (21)

A second sanity check consists of calculating the total integrated
binding energy (Baes & Dejonghe 2021), which should relate to
the total kinetic and potential energy as∫ Ψ0

0
N(E)E dE ≡ Btot = 3 Ttot = − 3

2 Wtot. (22)

All isotropic Einasto models, including the physically unaccept-
able models with n < 1

2 , pass these sanity checks.

5. Osipkov-Merritt dynamical models

Isotropy is just one of the possible dynamical structures for
spherical models. A popular alternative option are the Osipkov-
Merritt models (Osipkov 1979; Merritt 1985a), which are char-
acterised by an anisotropy profile that is isotropic in the central
regions and radially anisotropic at large radii. Osipkov-Merritt
models have been explored for many different density pro-
files (e.g. Merritt 1985a,b; Carollo et al. 1995; Ciotti & Lanzoni
1997; Łokas & Mamon 2001; Baes & Dejonghe 2002). This
popularity has two reasons. Firstly, the dynamical structure of
Osipkov-Merritt models can be explored using equations that
are quite similar to the isotropic case. In particular, the distri-
bution function can be calculated using an inversion algorithm
that is similar to the Eddington equation in the isotropic case
(e.g. Binney & Tremaine 2008; Ciotti 2021). Secondly, the idea
of dynamical models with an increasing anisotropy profile are
interesting from a physical point of view. Most numerical N-
body simulations for dark matter haloes are roughly isotropic
in the central regions and radially anisotropic at larger radii
(Taylor & Navarro 2001; Diemand et al. 2004; Ludlow et al.
2011; Lemze et al. 2012; Wojtak et al. 2013; Butsky et al. 2016).

For any spherical density profile, SpheCow generates a fam-
ily of Osipkov-Merritt models and calculates the most important
dynamical quantities. Osipkov-Merritt models are characterised
by an additional free parameter ra, known as the anisotropy
radius. For r � ra the orbital structure is isotropic, for r � ra
radial orbits are dominant. For ra → ∞ the Osipkov-Merritt
models reduce to the isotropic models, for ra = 0 the model
only contains radial orbits.

In Fig. 5 we show a number of dynamical properties of an
Einasto model assuming an Osipkov-Merritt orbital structure
for different values of the anisotropy radius ra. We selected the
Einasto model with n = 2, but the analysis does not depend
on this particular choice, and qualitatively the same results are
obtained for any other value of n (at least for n > 1

2 ).

5.1. Velocity dispersions

Panels a and b of Fig. 5 show the radial and tangential veloc-
ity dispersion profiles. In the limit ra → ∞ the Osipkov-Merritt
orbital structure turns into an isotropic dynamical structure, and
the radial and tangential velocity dispersion profiles are identical
to the velocity dispersion profile of the isotropic model presented
in panel a of Fig. 3. For increasingly small ra, the orbital struc-
ture changes from isotropic in the centre to radial at increasing
smaller radii. This results in a radial velocity dispersion profile
that increases with decreasing ra at all radii. The behaviour of
the tangential velocity dispersion profile is slightly more com-
plex: when ra decreases, the tangential velocity dispersion at
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Fig. 5. Dynamical properties of the n = 2 Einasto model with an Osipkov-Merritt anisotropic orbital structure. All lines correspond to an Einasto
model with exactly the same density profile with M = rh = 1 and n = 2, but with a different value for the anisotropy radius ra, as indicated in
panel a. Solid lines are consistent dynamical models, dashed lines are unphysical dynamical models. The critical value for the anisotropy radius
for this specific Einasto model is (ra)c = 0.2313 (see Table 1). (a) Radial velocity dispersion. (b) Tangential velocity dispersion. (c) LOS velocity
dispersion. (d) Distribution function.

large radii decreases strongly, as the outer regions become more
and more dominated by radial orbits and devoid of circular-like
orbits. At small radii, however, the tangential velocity dispersion
increases in a similar way as the radial velocity dispersion, as the
region inside the anisotropy radius remains roughly isotropic.
In all cases, the radial and tangential velocity dispersion at the
centre is finite and non-zero, as in the case of the isotropic
model.

The line-of-sight velocity dispersion profile, presented in
panel c, follows the same behaviour as a function of ra as
the tangential velocity dispersion profile. At small projected
radii, the component of the velocity ellipsoid that dominates
along the line of sight is the radial component and the line-
of-sight velocity dispersion increases with decreasing ra. At
large projected radii, the tangential component of the veloc-
ity ellipsoid dominates in the direction of the line of sight and
the line-of-sight velocity dispersion is a decreasing function of
decreasing ra.

Also for the Osipkov-Merritt orbital structure, SpheCow
numerically calculates the total kinetic energy by integrating the
velocity dispersion profiles,

Ttot = 2π
∫ ∞

0
ρ(r)

[
σ2

r (r) + σ2
θ(r) + σ2

φ(r)
]

r2 dr. (23)

For any member of our family of Einasto models, we find that
the total kinetic energy is independent of ra, in agreement with
the virial theorem.

5.2. Distribution function

Whether the velocity dispersion profiles discussed in the previ-
ous subsection are physically meaningful depends on whether
the distribution function is positive over the entire phase space.
Osipkov-Merritt models have a distribution function that is ellip-
soidal in velocity space. More specifically, it can be written as
f (Q) with

Q = E −
L2

2r2
a
, (24)

where L is the angular momentum per unit mass. The distribution
function f (Q) for our set of n = 2 Einasto models is shown in
panel d of Fig. 5.

For ra → ∞, Q reduces to the binding energy E and the
Osipkov-Merritt distribution function reduces to the isotropic
distribution function, which is a positive and monotonically
increasing function of binding energy, as already demonstrated
in the previous section. As ra decreases, the distribution function
does not change in the large Q limit (Q . Ψ0), which corre-
sponds to the isotropic central regions. In the small Q regime,
the distribution function does change with decreasing ra: due
to an increase in the number of weakly bound radial orbits at
large radii, f (Q) gradually increases with decreasing ra. When
ra becomes small enough, the distribution function is no longer
a monotonically increasing function of Q, but shows a local min-
imum (see for example the ra = 0.25 model in Fig. 5). When ra
decreases below a critical value (ra)c, the depression in the distri-
bution function becomes so deep that it reaches negative values.
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Fig. 6. Critical anisotropy radius (ra)c as a function of the Einasto
index n. Models with ra > (ra)c have a positive Osipkov-Merritt dis-
tribution function, the models below or to the left of the green line are
inconsistent.

Table 1. Critical anisotropy radius (ra)c for a number of Einasto models
with index n.

n (ra)c

0.5 1.2453
0.6 0.8391
0.7 0.6931
0.8 0.5993
1 0.4778
2 0.2313
3 0.1367
4 0.0862
6 0.0372
8 0.0168
∞ 0

At this point, the Osipkov-Merritt model is no longer physical.
Any model with ra < (ra)c is physically inconsistent. For the
Einasto n = 2 model presented in Fig. 5, the critical value is
(ra)c = 0.2313.

The fact that a critical limiting value (ra)c exists is log-
ical, given that a completely radial orbital distribution func-
tion can only be sustained by models with a density profile at
least as steep as r−2 at all radii (Richstone & Tremaine 1984;
Ciotti & Pellegrini 1992). A similar behaviour for the distribu-
tion function for Osipkov-Merritt models as a function of ra has
been noted for other models, such as the Plummer model (Merritt
1985a), the γ-models (Carollo et al. 1995), and the Sérsic mod-
els (Ciotti & Lanzoni 1997).

In Table 1 we list numerical values for (ra)c for a number
of Einasto models and in Fig. 6 we graphically show the depen-
dence of (ra)c on n. In Sect. 4.2 we showed that the Gaussian
model n = 1

2 is the limiting model that can still be supported
by an isotropic distribution function. Since any isotropic model
with n < 1

2 is inconsistent, the same obviously accounts for an
Osipkov-Merritt orbital structure, which is even more demand-
ing in terms of consistency. For the limiting case, the Gaussian
model, we find (ra)c = 1.2453. So the Gaussian model n = 1

2
does not only support isotropic dynamical models, but also a
range of anisotropic Osipkov-Merritt models, as long as the
anisotropy radius is large enough. When n increases, (ra)c
decreases roughly exponentially, implying that Einasto models

with larger Einasto indices can support more extreme radially
anisotropic models. A similar systematic behaviour is found for
the related set of Sérsic models by Ciotti & Lanzoni (1997). In
Sect. 3.1 we discussed that the Einasto model reduces to a pure
power-law model with a density profile proportional to r−3 in the
limit n→ ∞. This model can in principle support a purely radial
orbital structure, so we formally find limn→∞(ra)c = 0.

6. Discussion

The Einasto model has become one of the most popular mod-
els to describe the density profile of dark matter haloes (e.g.
Merritt et al. 2006; Gao et al. 2008; Hayashi & White 2008;
Springel et al. 2008; Navarro et al. 2010; Lovell et al. 2014;
Klypin et al. 2016; Fielder et al. 2020; Wang et al. 2020). This
popularity demands a thorough investigation of the intrinsic and
dynamical properties of this model. Up to now there have been
relatively few comprehensive studies on the dynamical structure
of the Einasto model, mainly because only a limited number of
properties can be calculated analytically.

In this paper we have used of the capabilities of the SpheCow
code (Baes et al. 2021) to numerically explore the photometric
and dynamical structure of the family of Einasto models, cover-
ing the entire range of Einasto indices. Our main results are the
following:

– We present a new fitting formula for the dimensionless
parameter d that appears in the formal expression for the
density profile of the Einasto model. This expression is valid
for small n and it complements the asymptotic expression
derived by Retana-Montenegro et al. (2012a) for large n.

– Not all Einasto models can be supported by an isotropic
distribution function. For n > 1

2 the distribution function
is an increasing function of binding energy that is positive
over the entire range of binding energies and that diverges
as E → Ψ0. For n = 1

2 , the distribution function converges
to a finite value in the high binding-energy limit. All mod-
els with n < 1

2 have a formal isotropic distribution func-
tion that becomes negative at the highest binding energies
and hence cannot be supported by an isotropic orbital struc-
ture. The same accounts the limiting case n → 0, the uni-
form density sphere, as already found by previous studies
(Zel’dovich et al. 1972; Osipkov 1979; Baes 2022).

– The differential energy distribution for all isotropic Einasto
models converges to zero in the low binding-energy limit. We
can confirm that the intriguing apparent divergence reported
by Cardone et al. (2005) is the result of numerical problems
in their integrations at low binding energies and the limited
range of binding energies considered.

– For each Einasto model with n > 1
2 , a family of anisotropic

dynamical models with a radial Osipkov-Merritt orbital
structure can be considered. We find a critical value (ra)c for
each value of n that corresponds to the minimum anisotropy
radius for the Osipkov-Merritt dynamical model to remain
consistent: for smaller values of ra the formal distribution
function reaches negative values. Since Einasto models with
large n are less centrally concentrated than models with
small n, the critical anisotropy radius is a decreasing func-
tion of n.

We double-checked the results of our SpheCow calculations
through comparisons with analytical results where available, by
performing numerical integrations of the distribution function
and the differential energy distribution, and by checking the gen-
eral energy relations for dynamical systems (Baes & Dejonghe
2021).
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This paper demonstrates that studies of the structure and
dynamics of models for galaxies and dark matter haloes should
not be restricted to completely analytical models. There is only
a fairly restricted set of models in which properties such as the
potential, velocity dispersion, and distribution function can be
calculated analytically. While these have their obvious benefits,
it would be a shame to concentrate on these models alone only
because they have analytical properties. The present study shows
that numerical codes such as SpheCow can help to open up the
range of models that are thoroughly and systematically investi-
gated.

In relation to this point, it is interesting to note that the
Einasto model is not the ultimate model proposed to describe
the spherically averaged density profile of dark matter haloes. In
the past two years alone, at least three extensions of the Einasto
models have been proposed.

– Lazar et al. (2020) proposed a modification of the standard
Einasto profile to account for the effects of baryonic feed-
back on the dark matter density profile. The presence of
baryons and the corresponding galaxy evolution physics can
have various effects on dark matter density profiles: the cen-
tral dark matter density can be boosted as a result of baryons
clustering at the centre of the halo, or it can be decreased due
to stellar or active galactic nucleus energy feedback, or by
dynamical friction from accretion events. The core-Einasto
profile proposed by Lazar et al. (2020) extends the standard
Einasto model with one additional free parameter, a core
radius. They demonstrate that this new model describes the
spherically averaged density profiles of dark matter haloes
from the FIRE-2 simulations (Hopkins et al. 2018) very well.
In particular, they demonstrate that this new core-Einasto
profile provides a superior fit to the density of the models
than the core-NFW model by Peñarrubia et al. (2012), which
has the same number of parameters.

– A second generalisation of the standard Einasto profile was
proposed by Fielder et al. (2020). Using a set of zoom-in
simulations (Wu et al. 2013; Mao et al. 2015), they inves-
tigated the density profiles of the smooth components of
dark matter haloes by excluding mass contained within sub-
haloes. They found that the smooth halo density profiles dif-
fer substantially from the conventional halo density profile,
and in particular found a more rapid decline at large radii.
Their generalised Einasto model has the density profile of
the Einasto model modified by an additional power-law fac-
tor. They find that this generalised Einasto profile provides
a better fit to the density profiles of both Milky Way-mass
and cluster-mass haloes than a standard Einasto or an NFW
profile.

– Based on the observation that dark matter haloes are not
steady-state objects, but contain both orbiting and infalling
components, Diemer (2022a) dynamically split the particles
in dark matter halo simulations into orbiting and infalling
components and analysed their density separate profiles. In
a follow-up paper, Diemer (2022b) proposed a generalisa-
tion of the Einasto model, dubbed the truncated Einasto
profile, to describe the orbiting term. This generalisation
contains five rather than three free parameters. When fix-
ing two of the five parameters, the resulting three-parameter
model on average fits the density profile of individual
dark matter haloes better than the three-parameter Einasto
profile.

Since SpheCow only requires an analytical density profile or sur-
face density profile as a starting point, these extensions to the
Einasto model are in principle easy to investigate in more detail.

We invite colleagues to use and extend the publicly available
SpheCow code for such investigations.
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2685
Moore, B., Quinn, T., Governato, F., Stadel, J., & Lake, G. 1999, MNRAS, 310,

1147
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Navarro, J. F., Hayashi, E., Power, C., et al. 2004, MNRAS, 349, 1039
Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21
Osipkov, L. P. 1979, Pisma v Astronomicheskii Zhurnal, 5, 77
Peñarrubia, J., Pontzen, A., Walker, M. G., & Koposov, S. E. 2012, ApJ, 759,

L42
Planck Collaboration VI. 2020, A&A, 641, A6
Polyachenko, V. L., & Shukhman, I. G. 1974, Sov. Astron., 17, 460
Retana-Montenegro, E., van Hese, E., Gentile, G., Baes, M., & Frutos-Alfaro, F.

2012a, A&A, 540, A70

Retana-Montenegro, E., Frutos-Alfaro, F., & Baes, M. 2012b, A&A, 546, A32
Richstone, D. O., & Tremaine, S. 1984, ApJ, 286, 27
Rohatgi, A. 2020, Webplotdigitizer: Version 4.4, https://automeris.io/
WebPlotDigitizer

Spitzer, L., Jr. 1969, ApJ, 158, L139
Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685
Suyama, T., Takahashi, R., & Michikoshi, S. 2005, Phys. Rev. D, 72, 043001
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
Wang, J., Bose, S., Frenk, C. S., et al. 2020, Nature, 585, 39
Weinberg, N. N., & Kamionkowski, M. 2002, MNRAS, 337, 1269
Wojtak, R., Gottlöber, S., & Klypin, A. 2013, MNRAS, 434, 1576
Wu, H.-Y., Hahn, O., Wechsler, R. H., Mao, Y.-Y., & Behroozi, P. S. 2013, ApJ,

763, 70
Zel’dovich, Y. B., Polyachenko, V. L., Fridman, A. M., & Shukhman, I. G. 1972,

Preprint Inst. Zemn. Magnet. Ionosf. Rasprostr. Radiovolm Sibir. Otd. Akad.
Nauk. SSSR, 7

Zhao, H. 1996, MNRAS, 278, 488
Zhao, H. 1997, MNRAS, 287, 525

A47, page 11 of 11

http://linker.aanda.org/10.1051/0004-6361/202244567/62
http://linker.aanda.org/10.1051/0004-6361/202244567/63
http://linker.aanda.org/10.1051/0004-6361/202244567/64
http://linker.aanda.org/10.1051/0004-6361/202244567/65
http://linker.aanda.org/10.1051/0004-6361/202244567/66
http://linker.aanda.org/10.1051/0004-6361/202244567/66
http://linker.aanda.org/10.1051/0004-6361/202244567/67
http://linker.aanda.org/10.1051/0004-6361/202244567/67
http://linker.aanda.org/10.1051/0004-6361/202244567/68
http://linker.aanda.org/10.1051/0004-6361/202244567/69
http://linker.aanda.org/10.1051/0004-6361/202244567/70
http://linker.aanda.org/10.1051/0004-6361/202244567/71
http://linker.aanda.org/10.1051/0004-6361/202244567/72
http://linker.aanda.org/10.1051/0004-6361/202244567/72
http://linker.aanda.org/10.1051/0004-6361/202244567/73
http://linker.aanda.org/10.1051/0004-6361/202244567/74
http://linker.aanda.org/10.1051/0004-6361/202244567/75
http://linker.aanda.org/10.1051/0004-6361/202244567/76
http://linker.aanda.org/10.1051/0004-6361/202244567/77
http://linker.aanda.org/10.1051/0004-6361/202244567/78
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
http://linker.aanda.org/10.1051/0004-6361/202244567/79
http://linker.aanda.org/10.1051/0004-6361/202244567/80
http://linker.aanda.org/10.1051/0004-6361/202244567/81
http://linker.aanda.org/10.1051/0004-6361/202244567/82
http://linker.aanda.org/10.1051/0004-6361/202244567/83
http://linker.aanda.org/10.1051/0004-6361/202244567/84
http://linker.aanda.org/10.1051/0004-6361/202244567/85
http://linker.aanda.org/10.1051/0004-6361/202244567/86
http://linker.aanda.org/10.1051/0004-6361/202244567/86
http://linker.aanda.org/10.1051/0004-6361/202244567/87
http://linker.aanda.org/10.1051/0004-6361/202244567/87
http://linker.aanda.org/10.1051/0004-6361/202244567/88
http://linker.aanda.org/10.1051/0004-6361/202244567/89

	Introduction
	The Einasto model
	Definition of the model
	The dimensionless parameter d

	Basic properties
	Density and surface density
	Cumulative mass and potential

	Isotropic dynamical models
	Velocity dispersions
	Distribution function
	Differential energy distribution

	Osipkov-Merritt dynamical models
	Velocity dispersions
	Distribution function

	Discussion
	References

