
Fanpy: A Python Library for Prototyping Multideterminant
Methods in Ab Initio Quantum Chemistry

Taewon D. Kim1,2 M. Richer1 Gabriela Sánchez-Díaz1
Ramón Alain Miranda-Quintana2 Toon Verstraelen3

Farnaz Heidar-Zadeh4 Paul W. Ayers1

March 7, 2023
1Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S-
4L8, Canada
2Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL
32603, USA
3Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052,
Zwijnaarde, Belgium
4Department of Chemistry, Queen’s University, Kingston, Ontario, K7L-3N6, Canada

Abstract

Fanpy is a free and open-source Python library for developing and testing multideterminant
wavefunctions and related ab initio methods in electronic structure theory. The main use of
Fanpy is to quickly prototype new methods by making it easier to convert the mathematical for-
mulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based
on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI)
framework, where multideterminant wavefunctions are represented by their overlaps with Slater
determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz
can be implemented by simply writing a function for evaluating its overlap with an arbitrary
Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction
model, the system’s Hamiltonian, and the choice of objective function are all independent mod-
ules. This modular structure makes it easy for users to mix and match different methods and
for developers to quickly explore new ideas. Fanpy is written purely in Python with standard
dependencies, making it accessible for various operating systems. In addition, it adheres to
principles of modern software development, including comprehensive documentation, extensive
testing, quality assurance, and continuous integration and delivery protocols. This article is
considered to be the official release notes for the Fanpy library.

1 What is Fanpy?
Fanpy is a free, open-source, and cross-platform Python 3 library for ab initio electronic struc-
ture calculations. The key innovative aspect of this library is the adoption of the Flexible Ansatz
for N-electron Configuration Interaction (FANCI) mathematical framework[1]. By adopting this
framework, ab initio electronic structure methods are represented as a collection of four parts, each

1

of which is developed as an independent module of Fanpy: (a) the (multideterminant) wavefunc-
tion model (b) the system Hamiltonian represented by its one- and two-electron integrals (c) an
equation (or system of equations) that is equivalent to the Schrödinger equation, (d) an algorithm
for optimizing the objective function(s). Section 4 details the features of each module, though the
main advantage of Fanpy is that new features can be easily implemented in each module.

In the FANCI framework, a wavefunction is represented by its overlap with a set of reference
states (e.g., Richardson eigenfunctions[2, 3]). In Fanpy, Slater determinants are explicitly used as
the reference states and the wavefunction ansätze of interest are multideterminant wavefunctions
with parameterized coefficients,

|ΨFANCI⟩ =
∑

m∈Sm

f(m, P⃗) |m⟩ (1)

where

|m⟩ = |m1m2 . . .mN−1mN ⟩ = a†m1
a†m2

. . . a†mN−1
a†mN

|⟩ (2)

denotes a Slater determinant, Sm is the set of Slater determinants included in the wavefunction, and
f is a function that determines the coefficient of each Slater determinant, m, using the parameters,
P⃗ . Note that f is simply the overlap of the parameterized wavefunction with the Slater determinant,

f(m, P⃗) = ⟨m|ΨFANCI⟩ (3)

Similarly, the Hamiltonian is expressed in terms of its CI matrix elements,

⟨m|Ĥ|n⟩ = ⟨m|
∑
ij

hija
†
iaj +

1

2

∑
ijkl

gijkla
†
ia

†
jalak|n⟩ (4)

The objective functions supported by Fanpy combine the overlaps and the CI matrix elements to
approximate the Schrödinger equation.

2 About Fanpy
The source code of Fanpy is maintained on GitHub; see https://github.com/theochem/fanpy,
and a comprehensive documentation, including useful tests, scripts, and examples, is hosted on
Read the Docs; see https://fanpy.readthedocs.io/en/latest/index.html. In this article, we
list the key features and capabilities of Fanpy in section 4 to establish its philosophy and framework,
and exemplify them in section 5.

3 Why Fanpy?
Many quantum chemistry packages support computations with multideterminant methods. Most
of these packages (e.g. Gaussian[4] and MolPro[5]) are closed-source, making it nearly impossible
to develop new methods without special permissions. Even for packages whose source code is
available, the code is often monolithic, making it difficult to implement new fundamental methods
without thoroughly understanding nearly the entire code base. Moreover, the low-level code is often

2

https://github.com/theochem/fanpy
https://fanpy.readthedocs.io/en/latest/index.html

highly optimized, abstracts away critical components of ab initio methods, and not suitable for
subsequent modification. Such code often remain unchanged for decades, has little documentation,
and rarely follows modern software development principles. Though some packages try to address
this issue, the development of post-Hartree-Fock (post-HF) methods remains difficult. For example,
Psi4Numpy[6] is a collection of Python scripts and Jupyter notebooks that implement several post-
HF methods using Psi4 to generate necessary inputs, such as CI matrices and one- and two-electron
integrals. It is an excellent package for learning about standard quantum chemistry methods or
implementing embellishments of standard methods. However, developing a novel method (e.g.
a new wavefunction ansatz) would likely require all related processes to be implemented in or
interfaced to Psi4, which requires a thorough understanding of the Psi4 package as a whole[7].
The Ghent Quantum Chemistry Package (GQCP) is quite modular, and has a convenient Python
interface that exposes some code features/options, but one must still delve deep into the source code
to construct bespoke wavefunction models or specific active/projection spaces. Fanpy is distinct
from GQCP as it compromises performance (to a great extent) in return for flexibility and ease of
prototyping[8]. In particular, we are aware of no other software that makes it quick and easy to
implement a new objective function and its associated optimization algorithm, implement the action
of the Hamiltonian on a new wavefunction ansatz, and select alternative active and/or projection
spaces.

Due to the difficulty of developing new methods in these legacy codes, we developed our own
Helpful Open-Source Research TOol for N-electron systems (HORTON)[9]. The first two versions
of HORTON were also monolithic, and even wavefunction models that were simple on paper were
difficult to implement. These are resolved in HORTON3 with separate modules for IOData[10] (in-
put/output), Grid (numerical integration), GBasis (Gaussian-basis-set evaluation and integrals),
GOpt (geometry optimization), and Meanfield (self-consistent field calculations). Fanpy is the cor-
related wavefunction module of HORTON3. Pybest is an alternative approach that meets some of
the objectives of Fanpy, based on a (heavily revised, modernized, and extensively extended) version
of HORTON2.[11] Like Fanpy, Pybest supports unconventional wavefunction methods (e.g., various
seniority-zero methods).

Fanpy was envisioned as a development tool for new correlated-wavefunction methods; the goal
is to help researchers quickly implement and test their ideas. Towards this goal, Fanpy is designed
to be modular and general. Its modularity helps to isolate and minimize the amount of code
that needs to be understood, and perhaps modified, to implement a new method. For example,
implementing a new wavefunction ansatz requires modifying only the wavefunction module, and
does not require explicit consideration of how the Hamiltonian will act upon that wavefunction nor
of how the orbitals and parameters within the wavefunction will be optimized. The modules of
Fanpy are designed to be as general as possible, so that features from one module are compatible
with features from the other modules. The compatibility between the modules ensures that any
developed method (e.g. a wavefunction ansatz) can be used in conjunction with the other methods
(e.g. orbital optimization, model Hamiltonians, the projected Schrödinger equation, etc). We
provide comprehensive documentation and examples to further aid the development of new methods
in Fanpy.

4 Features of Fanpy
We display various features of Fanpy by discussing each module and their intended purposes:

3

• The wavefunction module is developed in accordance with the FANCI framework[1]. In the
FANCI framework, the wavefunction is entirely represented by its overlaps with Slater deter-
minants built from orthonormal orbitals. Similarly, each wavefunction in Fanpy is defined by
its parameters and a function that returns an overlap for the given Slater determinant. The
overlap can be provided as a standalone function or defined within a class structure, templated
from an abstract base class. The following wavefunctions have already been implemented:
configuration interaction (CI) with single and double excitations (CISD)[12]; doubly-occupied
configuration interaction (DOCI)[13–16]; full CI[17]; selected CI wavefunctions with a user-
specified set of Slater determinants; antisymmetrized products of geminals (APG)[18–28]; an-
tisymmetrized products of geminals with disjoint orbital sets (APsetG)[29]; antisymmetrized
product of interacting geminals (APIG)[29–57]; antisymmetric product of 1-reference-orbital
interacting geminals (AP1roG; equivalent to pair-coupled-cluster doubles)[58]; antisymmetric
product of rank-two interacting geminals (APr2G)[2]; determinant ratio wavefunctions[1];
antisymmetrized products of tetrets (4-electron wavefunctions)[1]; matrix product states
(MPS)[59]; neural network wavefunctions; coupled-cluster (CC) with arbitrary excitations
(including, but not limited to, CCSD, CCSDT, and CC with seniority-specific excitations)[1,
60–65], geminal coupled-cluster wavefunctions[37–39, 41, 58], generalized CC, and seniority-
increasing CC. We also support these wavefunctions with nonorthogonal orbitals, and linear
combinations of any of the aforementioned wavefunctions.

• The Hamiltonian module contains Hamiltonians commonly used in electronic structure theory.
Similar to the wavefunctions, each Hamiltonian in Fanpy is defined by its representation in
orbital basis set (i.e. one- and two-electron integrals) and a function that returns the integral
of the Hamiltonian with respect to the given Slater determinants. The following Hamiltonians
have already been implemented: the electronic Hamiltonian in the restricted, unrestricted,
and generalized basis; the seniority-zero electronic Hamiltonian[66]; and the Fock operator in
the restricted basis. In addition, the Pariser-Parr-Pople[67–70], Hubbard[70, 71], Hückel[70,
72], Ising[70, 73, 74], Heisenberg[70, 74, 75], and Richardson[76, 77] model Hamiltonians
are available as restricted electronic Hamiltonians through the ModelHamiltonian GitHub
repository[78]. Orbital optimization is available if a function returning the derivative with
respect to orbital rotation parameters is provided. At the moment, only restricted electronic
Hamiltonians support orbital optimization.

• The objective module is responsible for combining the wavefunction and the Hamiltonian
to form an equation or a system of equations that represents the Schrödinger equation. In
Fanpy, the objective function can be the variational optimization of the expectation value of
the energy[79–83], the projected Schrödinger equation[29, 41, 54], or a local energy expression
to be sampled (as in variational quantum Monte Carlo)[84–89].

• The solver module contains algorithms that optimize/solve the equations from the objective
module. It supports optimizers from SciPy[90], which includes constrained/unconstrained lo-
cal/global optimizers for multivariate scalar functions (i.e. energy) and algorithms for solving
nonlinear least-squares problems and for finding roots of a system of nonlinear equations (i.e.,
projected Schrödinger equation). For CI wavefunctions, we also support brute-force eigen-
value decomposition. In addition, Fanpy interfaces to several algorithms for derivative-free
global optimization problems including the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm[91] from pycma[92] and algorithms using decision trees and Bayesian op-
timization from scikit-optimize[93]. At the moment, no in-house optimization algorithms

4

specialized for electronic structure theory problems are included. However, Fanpy’s modular
design makes it easier to develop sophisticated domain-specific optimization algorithms. The
objective module provides high-level control over the parameters involved in the optimization
(e.g., active and frozen parameters) and can be changed dynamically throughout the optimiza-
tion process. These parameters can be saved as a checkpoint throughout the optimization.
(The default is to checkpoint at each function evaluation.) Furthermore, the objective module
provides flexibility to add additional parameters (e.g., model hyperparameters) and to add
nonlinear constraints to the Projected Schrödinger equation.

• The tool module provides various utility functions used throughout the Fanpy package.
Though some tools have specialized uses, the tools for manipulating and generating Slater de-
terminants are used frequently throughout Fanpy. These tools are essential when developing
methods in Fanpy because Slater determinants are the common language of the independent
modules. The slater module provides functions for manipulating Slater determinants and
converting them from one form to another. Within Fanpy, Slater determinants are represented
as a binary number, where the positions of 1’s are the indices of the occupied spin-orbitals.
The slater module can, for example, provide the occupied spin orbital indices from the given
Slater determinant. The sd_list module provides easy ways to generate Slater determinants
of the desired characteristics (e.g. order of excitation from ground state, spin, seniority). This
module is frequently used to construct the projection space by which the objective function
is evaluated. In addition, the tool module provides wrappers to other modules of HORTON3
and other quantum chemistry software, including Gaussian[4], PySCF[94], and Psi4[7]. These
programs can then be used to generate one- and two-electron integrals for Fanpy.

5 Examples
These examples are based on the version 1.0 of Fanpy. Please refer to the Fanpy website for the
latest documentation and examples.

Running a calculation: Fanpy can be used directly as a Python library (e.g., in a script or
Jupyter notebook) or through its command-line utility,

1 fanpy_run_calc -h

For ease of use, fanpy_run_calc provides limited access to Fanpy’s features using sensible
default settings. However, it is recommended to create and execute a Python script/notebook
because it provides a transparent record of the calculation (and its settings) and the full range of
Fanpy’s features. For assistance in creating a Python script, Fanpy provides a command-line tool,
fanpy_make_script. This tool creates a script from the given specifications, which can then be
modified if a desired feature is not covered by the command-line tool.

The following Python script gives an example of AP1roG calculation for oxygen molecule in a
double zeta basis set:

1 import numpy as np
2 from fanpy.wfn.geminal.ap1rog import AP1roG

5

3 from fanpy.ham.restricted_chemical import RestrictedMolecularHamiltonian
4 from fanpy.eqn.projected import ProjectedSchrodinger
5 from fanpy.solver.system import least_squares
6 from fanpy.tools.sd_list import sd_list
7

8 nelec = 16
9

10 # Hamiltonian
11 oneint = np.load('one_oxygen.npy')
12 twoint = np.load('two_oxygen.npy')
13 ham = RestrictedMolecularHamiltonian(oneint, twoint)
14

15 # Wavefunction
16 wfn = AP1roG(nelec, ham.nspin)
17

18 # Projection space of first and second order excitation
19 pspace = sd_list(nelec, ham.nspin, exc_orders=[2], seniority=0)
20

21 # Projected Schrodinger Equation
22 eqns = ProjectedSchrodinger(wfn, ham, pspace=pspace)
23

24 # Solve
25 results = least_squares(eqns)
26 print('AP1roG electronic energy (Hartree):', results['energy'])

Since Fanpy targets post-HF methods, the orbitals (and the corresponding system specific infor-
mation) must be provided in the form of one- and two-electron integrals. The one- and two-electron
integrals must be provided as two- and four-dimensional numpy arrays, respectively, whose indices
are in the same order as the integrals in the physicists’ notation. To generate the integrals from
a single-determinant calculation, Fanpy provides wrappers for HORTON, PySCF, and Psi4 via the
fanpy.tools.wrapper module. The Gaussian .fchk file can be converted into .npy file using the
HORTON wrapper, which will also compute the required one- and two-electron integrals.

Implementing a wavefunction: New wavefunctions can be implemented in Fanpy by making
a subclass of the wavefunction base class or by providing the overlap function to a utility function.
The subclass requires the method get_overlap to be defined.

As a simple example, recall that expansion of a Slater determinant of nonorthogonal orbitals in
orthogonal Slater determinants is given by:

|Ψ⟩ =
N∏
i=1

2K∑
j

Cija
†
j |θ⟩

=
∑
m

|C(m)|− |m⟩
(5)

6

In Fanpy, this corresponds to:

1 import numpy as np
2 from fanpy.wfn.base import BaseWavefunction
3 from fanpy.tools.slater import occ_indices
4

5 class NonorthogonalSlaterDeterminant(BaseWavefunction):
6 def get_overlap(self, sd, deriv=None):
7 # get indices of the occupied spin orbitals
8 occs = occ_indices(sd)
9 # reshape the parameters

10 # NOTE: parameters are stored as a one-dimensional array by default
11 params = self.params.reshape(self.nelec, self.nspin)
12 # compute the overlap
13 if deriv is None:
14 return np.linalg.det(params[:, occs])
15

16 # compute the derivative of the overlap
17 output = np.zeros(params.shape)
18 for deriv_row in range(self.nelec):
19 for j, deriv_col in enumerate(occs):
20 # compute the sign associated with Laplace formula
21 sign = (-1)**(deriv_row + j)
22 # get rows and columns with the appropriate row/column removed
23 row_inds = np.arange(self.nelec)
24 row_inds = row_inds[row_inds != deriv_row]
25 col_inds = occs[occs != deriv_col]
26 # compute minors (determinant after removing row and column)
27 minor = np.linalg.det(params[row_inds[:, None], col_inds[None, :]])
28 output[deriv_row, deriv_col] = sign * minor
29 # derivative is returned as a flattened array
30 # deriv contains the indices of the parameters with respect to which
31 # the overlap is derivatized
32 return output.ravel()[deriv]

The method get_overlap returns the overlap of the given Slater determinant when deriv=None
and returns its gradient with respect to the parameters specified by deriv otherwise (deriv is a
one-dimensional numpy array of parameter indices). Further details on the API of get_overlap
are provided in the online documentation. Unlike the wavefunctions already implemented in Fanpy,
this wavefunction does not have default initial parameters, which means that they must be supplied
when instantiating the wavefunction. For example, the following code block shows how to initialize
to the ground-state (orthogonal) Slater determinant.

7

1 from fanpy.tools.slater import ground, occ_indices
2

3 # get indices of the HF ground state
4 ground_indices = occ_indices(ground(16, 36))
5 # initial parameters (only contain the occupied orbitals in HF ground state)
6 init_params = np.zeros((16, 36))
7 init_params[np.arange(16), ground_indices] = 1
8

9 wfn = NonorthogonalSlaterDeterminant(16, 36)
10 # assign parameters
11 wfn.assign_params(init_params)

Alternatively, the wavefunction can be constructed using the utility function: wfn_factory.

1 import numpy as np
2 from fanpy.wfn.utils import wfn_factory
3

4 def olp(sd, params):
5 occs = occ_indices(sd)
6 # NOTE: Since the only information available come from the arguments sd and
7 # params, additional information that would otherwise be stored as
8 # instance's attributes and properties must be explicitly defined
9 nelc = 16

10 nspin = 36
11 # reshape the parameters
12 params = params.reshape(nelec, nspin)
13 return np.linalg.det(params[:, occs])
14

15 def olp_deriv(sd, params):
16 occs = occ_indices(sd)
17 # hardcode essential information
18 nelc = 16
19 nspin = 36
20 # reshape the parameters
21 params = params.reshape(nelec, nspin)
22 # same as above except replace self.nelec with nelec
23 # ...
24 # NOTE: the overlap is derivatized with respect to all wavefunction
25 # parameters unlike above
26 return output.ravel()
27

8

28 # number of electrons
29 nelec = 16
30 # number of spin orbitals
31 norbs = 36
32 # construct wavefunction using the initial parameters
33 wfn = wfn_factory(olp, olp_deriv, 16, 36, init_params)

It is recommended to implement wavefunctions using the class structure because it helps make
the code cleaner by limiting repetitions and makes the code easier to unit test by breaking it into
smaller pieces. For a quick and dirty implementation, however, the utility function may be easier.

Implementing a Hamiltonian: Similar to the wavefunction, new Hamiltonians can be im-
plemented in Fanpy by making a subclass of the Hamiltonian base class or by passing a function
that evaluates the integrals to a utility function. In addition to the general Hamiltonian base class,
Fanpy provides base classes according to the type of orbitals used in the Hamiltonian: restricted,
unrestricted, and generalized. The subclass to the orbital specific Hamiltonian base class requires
the method integrate_sd_sd to be defined.

For example, to implement the Hückel Hamiltonian:[70]

Ĥ =
∑
ij

∑
σ

hija
†
iσajσ

hij =

αi if i = j

βij if spatial orbitals i and j belong to atoms that participate in a bond
0 else

(6)

1 from fanpy.ham.base import BaseHamiltonian
2 from fanpy.tools import slater
3

4 class HuckelHamiltonian(BaseHamiltonian):
5 def __init__(self, one_int):
6 # NOTE: provided integrals correspond to spatial orbitals
7 self.one_int = one_int
8

9 @property
10 def nspin(self):
11 return self.one_int.shape[0] * 2
12

13 def integrate_sd_wfn(self, wfn, sd, wfn_deriv=None, ham_deriv=None):
14 # use the default method except only the first order excitations are used
15 return super().integrate_sd_wfn(
16 wfn, sd, wfn_deriv=wfn_deriv, ham_deriv=ham_deriv, orders=(1,)

9

17)
18

19 def integrate_sd_sd(self, sd1, sd2, deriv=None, components=False):
20 # get the difference of the Slater determinants (i.e. which orbitals are
21 # occupied in one determinant but not in the other)
22 diff_sd1, diff_sd2 = slater.diff_orbs(sd1, sd2)
23 # derivative not supported here
24 if deriv:
25 raise NotImplementedError
26 # if order of excitation between the two Slater determinants is two or greater
27 if len(diff_sd1) >= 2 or len(diff_sd2) >= 2:
28 return 0.0
29 # if two Slater determinants do not have the same number of electrons
30 if len(diff_sd1) != len(diff_sd2):
31 return 0.0
32 # if two Slater determinants are the same
33 if len(diff_sd1) == 0:
34 # get the indices of the spatial orbitals that correspond to the
35 # occupied spin orbitals
36 shared_alpha_sd, shared_beta_sd = slater.split_spin(
37 slater.shared_sd(sd1, sd2), self.nspatial
38)
39 shared_alpha = slater.occ_indices(shared_alpha_sd)
40 shared_beta = slater.occ_indices(shared_beta_sd)
41 # sum over the occupied orbitals
42 output = np.sum(self.one_int[shared_alpha, shared_alpha])
43 output += np.sum(self.one_int[shared_beta, shared_beta])
44 return output
45 # if two Slater determinants are different by one-electron excitation
46 # get indices of the spatial orbitals
47 spatial_ind1 = slater.spatial_index(diff_sd1[0], self.nspatial)
48 spatial_ind2 = slater.spatial_index(diff_sd2[0], self.nspatial)
49 return self.one_int[spatial_ind1, spatial_ind2]

Though it is not necessary, the subclass defines integrate_sd_wfn to specify that the Hamil-
tonian only contains one-body operators. By default, integrate_sd_wfn assumes that the Hamil-
tonian contains one- and two-body operators.

Alternatively, the Hamiltonian can be constructed using the utility function

1 from fanpy.ham.utils.factory import ham_factory
2 from fanpy.tools import slater
3

10

4 def integrate_sd_sd(sd1, sd2, one_int):
5 diff_sd1, diff_sd2 = slater.diff_orbs(sd1, sd2)
6 nspatial = one_int.shape[0]
7 # same as above except replace self.one_int with one_int
8 # and self.nspatial with nspatial
9 # ...

10

11 # construct Hamiltonian for 36 electrons
12 ham = ham_factory(integrate_sd_sd, oneint, 36, orders=(1,))

Again, using the class structure is encouraged because its structure can be cleaner and more trans-
parent and because it provides finer control over the Hamiltonian. For example, if integrate_sd_wfn
is directly implemented rather than integrate_sd_sd, then integrate_sd_wfn can be vectorized
over the given Slater determinant and its excitations associated with the application of the Hamil-
tonian. When the derivative of the integral is not provided, orbital optimization is only available
through relatively inefficient gradient-free optimization algorithms, such as CMA-ES.

Since the Hückel Hamiltonian is defined by its one-electron integrals, this class can be used
to describe any Hamiltonian with only one-body operators. The integrals for the Hückel Hamil-
tonian (and other model Hamiltonians) can be generated using the ModelHamiltonian GitHub
repository[78].

Implementing an Objective: New objectives can be implemented in Fanpy by making a
subclass of the objective base class. The subclass requires the method objective to be defined.
To use the gradient (or Jacobian) in the optimization algorithm, the subclass must also contain
the method gradient (or jacobian). The Jacobian is used to solve the system of nonlinear equa-
tions (projected Schrödinger equation). These objectives can then be solved using the appropriate
methods in the solver module. For example, the energy related objectives can be solved via min-
imization and the projected Schrödinger equation related objectives can be solved via root-finding
and least-squares algorithms.

For example, consider the local energy used in the orbital-space variational Quantum Monte
Carlo[86],

EL =
∑
i

⟨Φi|Ĥ|Ψ⟩
⟨Φi|Ψ⟩

(7)

where the Slater determinant, Φi, is sampled according to the distribution p(Φi) =
⟨Ψ|Φi⟩2∑
k⟨Ψ|Φj⟩2

.
This corresponds to:

1 from fanpy.eqn.base import BaseSchrodinger
2

3 class LocalEnergy(BaseSchrodinger):
4 def __init__(self, wfn, ham, pspace, param_selection=None):
5 super().__init__(wfn, ham, param_selection=param_selection)

11

6 # param_selection is used to select the parameters that are active
7 # throughout the optimization
8 self.pspace = pspace
9 # pspace is the list of Slater determinants from which local energy is

10 # computed
11

12 @property
13 def num_eqns(self):
14 # number of equations is used to differentiate objectives in the solver
15 return 1
16

17 def objective(self, params):
18 # assign (active) parameters to the respective wavefunction and
19 # Hamiltonian
20 # note that params is always flattened (1-dimensional) for compatibility
21 # with solvers
22 self.assign_params(params)
23 output = 0.0
24 for sd in self.pspace:
25 output += self.ham.integrate_sd_wfn(sd, self.wfn) / self.wfn.get_overlap(sd)
26 return output
27

28 def gradient(self, params):
29 self.assign_params(params)
30 # note that gradient of the objective is also flattened (1-dimensional)
31 output = np.zeros(params.size)
32 for sd in self.pspace:
33 # indices of the wavefunction parameters that are active
34 wfn_inds_component = self.indices_component_params[self.wfn]
35 if wfn_inds_component.size > 0:
36 # indices of the objective parameters that correspond to the
37 # wavefunction
38 wfn_inds_objective = self.indices_objective_params[self.wfn]
39

40 # differentiate local energy with respect to wavefunction parameters
41 output[wfn_inds_objective] += (
42 self.ham.integrate_sd_wfn(sd, self.wfn, wfn_deriv=wfn_inds_component)
43 / self.wfn.get_overlap(sd)
44)
45 output[wfn_inds_objective] -= (
46 self.ham.integrate_sd_wfn(sd, self.wfn)

12

47 * self.wfn.get_overlap(sd, deriv=wfn_inds_component)
48 / self.wfn.get_overlap(sd) ** 2
49)
50 # indices of the Hamiltonian parameters that are active
51 # Used when hamiltonian has parameters to optimize (e.g. orbital
52 # optimization)
53 ham_inds_component = self.indices_component_params[self.ham]
54 if ham_inds_component.size > 0:
55 # indices of the objective parameters that correspond to the
56 # hamiltonian
57 ham_inds_objective = self.indices_objective_params[self.ham]
58

59 # differentiate local energy with respect to Hamiltonian parameters
60 output[ham_inds_objective] += (
61 self.ham.integrate_sd_wfn(sd, self.wfn, ham_deriv=ham_inds_component)
62 / self.wfn.get_overlap(sd)
63)
64 return output

Though it is not required, providing the indices in the gradient ensures that users can specify the
parameters that are active during the optimization via the attribute param_selection.

6 Frequently Asked Questions
Who is Fanpy for? Fanpy was designed to be used by developers of post-HF methods, espe-

cially those interested in new multireference wavefunction ansätze. To use our library, extensive
programming experience is not necessary, because: Fanpy’s modular design and extensive docu-
mentation make it easy to understand and extend the existing methods and base classes. The base
classes serve as templates to help ensure that the developed method fits together with the rest of
Fanpy seamlessly. Developers with programming experience but a limited background in post-HF
methods should have an easier time understanding the code because the methods are documented
with the corresponding equations (and their derivations) and are implemented in a simple and
straight-forward fashion.

What is the mission of Fanpy? Our goal is to develop a platform where developers of
new ab initio methods can quickly implement and test their ideas. We hope to make it easier for
researchers—whether they are seasoned professors or new graduate students—to test their ideas
without being burdened by undocumented code conventions, untested source code, mysterious
equations, or cumbersome installation processes.

What does Fanpy do? As elaborated in Sections 4 and 5, Fanpy provides independent mod-
ules that facilitate the development of new multideterminant wavefunctions, Hamiltonians, rep-
resentations of the Schrödinger equation (objective functions), and optimization algorithms. We

13

designed these modules to be compatible with one another so that researchers can easily customize
their calculations and experiment with different combinations of methods and algorithms.

What are the limits of Fanpy? At present, Fanpy is not designed for high performance. In
fact, its performance was often deliberately compromised to prioritize ease of use and development.
For accessibility, Fanpy was written in pure Python even though other languages, such as C++
and Julia, may be better suited for high-performance parallel computing. Moreover, while Fanpy’s
modular design is important for its extendibility and customizability, it prevents some types of
algorithmic improvements. Since a method in its early stages of development is often intractably
expensive, calculations in Fanpy are often limited to small model systems with small basis sets. Some
of the more efficient methods (e.g. AP1roG, which could be extended to thousands of electrons in
an efficient implementation) are limited to about 100 electrons in Fanpy. Consistent with the overall
mission of HORTON3, therefore, Fanpy should be viewed as a research tool that allows developers
to quickly implement and test their ideas, rather than a comprehensive quantum chemistry suite
that can simulate large chemical systems. The intention is that after a researcher establishes that
a method is of practical utility, a more efficient implementation can be developed.

How do I install Fanpy? The Fanpy library can be installed using Python package-management
systems pip and conda or directly from its source code. Since Fanpy is purely Python and depends
mainly on common Python libraries (NumPy and SciPy), it can be installed by simply copying the
source code onto the desired directory (though this is not recommended). Detailed instructions on
how to install Fanpy are available on the Fanpy website.

What is the future direction of Fanpy? In addition to developing additional methods
relevant to our scientific interests, the next iteration of Fanpy will mainly focus on improving its
performance. The computationally critical components will be outsourced to highly optimized
libraries, such as our in-house CI software, PyCI. Some of the performance bottlenecks will be
removed by reimplementing some features in Cython or C++. As these improvements may cause
problems for some users in terms of ease of use and installation, the pure Python implementation
of Fanpy will continue to be available. In terms of new features, modules for (arbitrary-order)
perturbation theory, equations-of-motion, and quantum-mechanical embedding are currently in
various stages of development.

7 Summary
This brief paper introduces Fanpy as a library for developing new post-HF ab initio methods.
Fanpy’s goal is to help researchers quickly test their ideas for new correlated electronic structure
theory methods and, to achieve this goal, Fanpy contains many methods that can be used in
countless combinations with one another. These methods are of intrinsic interest but, moreover,
they serve as examples to be extended upon. Base classes are available as templates to help users
develop a structure that is compatible with the rest of Fanpy.

14

Acknowledgements
We wish to acknowledge various refinements to Fanpy library from Matthew Chan, Cristina E.
González-Espinoza, Xiaotian D. Yang, Stijn Fias, Caitlin Lanssens, and the QC-Devs Community.
P.W.A. and F.H.Z. acknowledge Natural Sciences and Engineering Research Council (NSERC)
of Canada, Compute Canada, and CANARIE for financial and computational support. P.W.A.
acknowledges support from the Canada Research Chairs. T.V. acknowledges support from the
Research Board of Ghent University. R.A.M.Q. acknowledges financial support from the University
of Florida in the form of a start-up grant.

15

8 References
(1) Kim, T. D.; Miranda-Quintana, R. A.; Richer, M.; Ayers, P. W. Computational and Theo-

retical Chemistry 2021, 1202, 113187.
(2) Johnson, P.; Ayers, P.; Limacher, P.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P. Com-

putational and Theoretical Chemistry 2013, 1003, 101–13.
(3) Fecteau, C.-É.; Berthiaume, F.; Khalfoun, M.; Johnson, P. A. Journal of Mathematical Chem-

istry 2020, 1–13.
(4) Frisch, M. J. et al. Gaussian 16 Revision C.01, Gaussian Inc. Wallingford CT, 2016.
(5) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdisciplinary

Reviews: Computational Molecular Science 2012, 2, 242–253.
(6) Smith, D. G.; Burns, L. A.; Sirianni, D. A.; Nascimento, D. R.; Kumar, A.; James, A. M.;

Schriber, J. B.; Zhang, T.; Zhang, B.; Abbott, A. S., et al. Journal of chemical theory and
computation 2018, 14, 3504–3511.

(7) Smith, D. G.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.; Galvelis, R.;
Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A., et al. The Journal of Chemical Physics
2020, 152, 184108.

(8) Lemmens, L.; Vriendt, X. D.; Tolstykh, D.; Huysentruyt, T.; Bultinck, P.; Acke, G. The
Journal of Chemical Physics 2021, 155, 084802.

(9) Verstraelen, T.; Tecmer, P.; Heidar-Zadeh, F.; Boguslawski, K.; Chan, M.; Zhao, Y.; Kim,
T. D.; Vandenbrande, S.; Yang, D.; González-Espinoza, C. E.; Fias, S.; Limacher, P. A.;
Berrocal, D.; Malek, A.; Ayers, P. W. HORTON, version 2.0.1, 2015.

(10) Verstraelen, T.; Adams, W.; Pujal, L.; Tehrani, A.; Kelly, B. D.; Macaya, L.; Meng, F.;
Richer, M.; Hernández-Esparza, R.; Yang, X. D., et al. Journal of Computational Chemistry
2021, 42, 458–464.

(11) Boguslawski, K.; Leszczyk, A.; Nowak, A.; Brzęk, F.; Żuchowski, P. S.; Kędziera, D.; Tecmer,
P. Computer Physics Communications 2021, 264, 107933.

(12) Pople, J.; Seeger, R.; Krishnan, R. International Journal of Quantum Chemistry: Quantum
Chemistry Symposium 1977, 11, 149–163.

(13) Bytautas, L.; Henderson, T.; Jiménez-Hoyos, C.; Ellis, J.; Scuseria, G. Journal of Chemical
Physics 2011, 135.

(14) Alcoba, D.; Torre, A.; Luis, L.; Oña, O.; Capuzzi, P.; Van Raemdonck, M.; Bultinck, P.;
Van Neck, D. Journal of Chemical Physics 2014, 141.

(15) Cook, D. Molecular Physics 1975, 30, 733–743.
(16) Weinhold, F.; Wilson Jr, E. The Journal of Chemical Physics 1967, 46, 2752–58.
(17) Boys, S. Proceedings of the Royal Society of London A 1950, 200, 542–554.
(18) Hurley, A.; Lennard-Jones, J.; Pople, J. A theory of paired-electrons in polyatomic molecules

Proceedings of the Royal Society of London Series A 1953, 220, 446–455.
(19) Parr, R.; Ellison, F.; Lykos, P. Journal of Chemical Physics 1956, 24, 1106.
(20) Parks, J.; Parr, R. Journal of Chemical Physics 1958, 28, 335–345.

16

(21) McWeeny, R.; Sutcliffe, B. Proceedings of the Royal Society of London Series A 1963, 273,
103–116.

(22) Surjan, P. In Correlation and Localization, Surjan, P., Ed., 1999, pp 63–88.
(23) Allen, T.; Shull, H. Journal of Physical Chemistry 1962, 66, 2281–2283.
(24) Tecmer, P.; Boguslawski, K.; Johnson, P.; Limacher, P.; Chan, M.; Verstraelen, T.; Ayers, P.

Journal of Physical Chemistry A 2014, 118, 9058–9068.
(25) Paldus, J.; Cizek, J.; Sengupta, S. Journal of Chemical Physics 1971, 55, 2452–2462.
(26) Paldus, J.; Sengupta, S.; Cizek, J. Journal of Chemical Physics 1972, 57, 652–666.
(27) Shull, H. The Journal of Chemical Physics 1959, 30, 1405–13.
(28) Kutzelnigg, W. The Journal of Chemical Physics 1964, 40, 3640–47.
(29) Johnson, P.; Limacher, P.; Kim, T.; Richer, M.; Miranda-Quintana, R.; Heidar-Zadeh, F.;

Ayers, P.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D. Computational and Theoretical
Chemistry 2017, 1116, 207–219.

(30) Surjan, P.; Szabados, Á.; Jeszenszki, P.; Zoboki, T. Journal of Mathematical Chemistry 2012,
50, 534–551.

(31) Rassolov, V. Journal of Chemical Physics 2002, 117, 5978–5987.
(32) Rassolov, V.; Xu, F.; Garashchuk, S. Journal of Chemical Physics 2004, 120, 10385–10394.
(33) Rassolov, V.; Xu, F. Journal of Chemical Physics 2007, 126, 234112.
(34) Cassam-Chenaï, P. Journal of Chemical Physics 2006, 124, 194109.
(35) Cassam-Chenaï, P.; Rassolov, V. Chemical Physics Letters 2010, 487, 147–152.
(36) Cassam-Chenaï, P.; Ilmane, A. Journal of Mathematical Chemistry 2012, 50, 652–667.
(37) Stein, T.; Henderson, T.; Scuseria, G. Journal of Chemical Physics 2014, 140, 214113.
(38) Henderson, T.; Scuseria, G.; Dukelsky, J.; Signoracci, A.; Duguet, T. Physical Review C 2014,

89, 054305.
(39) Henderson, T.; Bulik, I.; Stein, T.; Scuseria, G. Journal of Chemical Physics 2014, 141,

244104.
(40) Bulik, I.; Henderson, T.; Scuseria, G. Journal of Chemical Theory and Computation 2015,

11, 3171–3179.
(41) Cullen, J. Chemical Physics 1996, 202, 217–229.
(42) Miller, K.; Ruedenberg, K. Journal of Chemical Physics 1965, 43, S88–S90.
(43) Miller, K.; Ruedenberg, K. Journal of Chemical Physics 1968, 48, 3414–3443.
(44) Silver, D.; Mehler, E.; Ruedenberg, K. Journal of Chemical Physics 1970, 52, 1174–1180.
(45) Mehler, E.; Ruedenberg, K.; Silver, D. Journal of Chemical Physics 1970, 52, 1181–1205.
(46) Silver, D.; Ruedenberg, K.; Mehler, E. Journal of Chemical Physics 1970, 52, 1206–1227.
(47) Coleman, A. Journal of Mathematical Physics 1965, 6, 1425–1431.
(48) Coleman, A. International Journal of Quantum Chemistry 1997, 63, 23–30.
(49) Bajdich, M.; Drobný, G.; Wagner, L.; Schmidt, K. Physical Review Letters 2006, 96, 130201.

17

(50) Bajdich, M.; Mitas, L.; Wagner, L.; Schmidt, K. Physical Review B 2008, 77, 115112.
(51) Pernal, K. Journal of Chemical Theory and Computation 2014, 10, 4332–4341.
(52) Pastorczak, E.; Pernal, K. Physical Chemistry Chemical Physics 2015, 17, 8622–8626.
(53) Limacher, P.; Kim, T.; Ayers, P.; Johnson, P.; De Baerdemacker, S.; Van Neck, D. Molecular

Physics 2014, 112, 853–862.
(54) Limacher, P. Journal of Chemical Physics 2016, 145, 194102.
(55) Boguslawski, K.; Tecmer, P.; Ayers, P.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D.

Physical Review B 2014, 89, 201106.
(56) Boguslawski, K.; Tecmer, P.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D.; Ayers, P.

Journal of Chemical Theory and Computation 2014, 10, 4873–4882.
(57) Silver, D. The Journal of Chemical Physics 1969, 50, 5108–16.
(58) Limacher, P.; Ayers, P.; Johnson, P.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P. Journal

of Chemical Theory and Computation 2013, 9, 1394–1401.
(59) Schollwöck, U. Annals of Physics 2011, 326, 96–192.
(60) Paldus, J.; Li, X. In Advances in Chemical Physics, Prigogine, I., Rice, S., Eds., 1999; Vol. 110,

pp 1–175.
(61) Cizek, J. Journal of Chemical Physics 1966, 45, 4256–4266.
(62) Shavitt, I.; Bartlett, R., Many-body methods in chemistry and physics: MBPT and coupled-

cluster theory; Cambridge: Cambridge, 2009.
(63) Bartlett, R.; Musiał, M. Reviews of Modern Physics 2007, 79, 291–352.
(64) Evangelista, F. A.; Chan, G. K. L.; Scuseria, G. E. Journal of Chemical Physics 2019, 151,

244112.
(65) Evangelista, F. A. Journal of Chemical Physics 2011, 134, 224102.
(66) Richardson, R. Physical Review 1967, 159, 792–805.
(67) Pariser, R.; Parr, R. G. The Journal of Chemical Physics 1953, 21, 466–471.
(68) Pariser, R.; Parr, R. G. The Journal of Chemical Physics 1953, 21, 767–776.
(69) Pople, J. A. Transactions of the Faraday Society 1953, 49, 1375–1385.
(70) Surján, P. R., Second quantized approach to quantum chemistry: an elementary introduction;

Springer Science & Business Media: 2012.
(71) Hubbard, J. Proceedings of the Royal Society of London A 1963, 276, 238–257.
(72) Planelles, J.; Zicovich-Wilson, C.; Jaskolski, W.; Corma, A. International journal of quantum

chemistry 1996, 60, 971–981.
(73) Ising, E. Zeitschrift für Physik 1925, 31, 253–258.
(74) Capelle, K.; Campo Jr, V. L. Physics Reports 2013, 528, 91–159.
(75) Heisenberg, W. In Original Scientific Papers Wissenschaftliche Originalarbeiten; Springer:

1985, pp 580–597.
(76) Richardson, R. 1963.
(77) Dukelsky, J.; Pittel, S.; Sierra, G. Reviews of modern physics 2004, 76, 643.

18

(78) Chuiko, V.; Adams, W.; Richards, A.; Sanchez-Diaz, G.; Richer, M.; Zhao, Y.; Heidar-Zadeh,
F.; Ayers, P. W. ModelHamiltonian, version 0.0.0, 2022.

(79) Piela, L., Ideas of quantum chemistry; Elsevier: 2013.
(80) Jensen, F., Introduction to computational chemistry; John wiley & sons: 2017.
(81) Cramer, C. J., Essentials of computational chemistry: theories and models; John Wiley &

Sons: 2013.
(82) Helgaker, T.; Jørgensen, P.; Olsen, J., Modern electronic structure theory; Wiley: Chichester,

2000.
(83) Szabo, A.; Ostlund, N., Modern Quantum Chemistry - Introduction to Advanced Electronic

Structure Theory; McGraw-Hill Inc.: 1989, pp 43–107.
(84) Nightingale, M. P.; Umrigar, C. J., Quantum Monte Carlo methods in physics and chemistry;

525; Springer Science & Business Media: 1998.
(85) Umrigar, C. The Journal of chemical physics 2015, 143, 164105.
(86) Sabzevari, I.; Sharma, S. Journal of chemical theory and computation 2018, 14, 6276–6286.
(87) Neuscamman, E. The Journal of chemical physics 2013, 139, 194105.
(88) Neuscamman, E. Journal of chemical theory and computation 2016, 12, 3149–3159.
(89) Kurita, M.; Yamaji, Y.; Morita, S.; Imada, M. Physical Review B 2015, 92, 035122.
(90) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.;

Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J., et al. Nature methods 2020, 17, 261–
272.

(91) Hansen, N.; Auger, A. In Theory and Principled Methods for the Design of Metaheuristics,
Borenstein, Y., Moraglio, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014,
pp 145–180.

(92) Hansen, N.; Akimoto, Y.; Baudis, P. CMA-ES/pycma on Github, Zenodo, DOI:10.5281/zenodo.2559634,
2019.

(93) Head, T. et al. scikit-optimize/scikit-optimize: v0.5.2, version v0.5.2, 2018.
(94) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain,

J. D.; Sayfutyarova, E. R.; Sharma, S., et al. Wiley Interdisciplinary Reviews: Computational
Molecular Science 2018, 8, e1340.

19

	What is Fanpy?
	About Fanpy
	Why Fanpy?
	Features of Fanpy
	Examples
	Frequently Asked Questions
	Summary
	References

