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ABSTRACT

Providing images of the subsurface from ground-based datasets is at the heart of

the geophysicist’s work. Multiple approaches have been applied to tackle this task.

Most of the time, this task is performed in a deterministic framework, meaning

that for a given dataset, a single model is provided to explain the data. However,

those deterministic approaches lack the ability to provide reasonable uncertainty

estimations, that take into account the non-unicity of the solution, noise in the data

and modelling error. To provide precise and accurate models of the subsurface along

with uncertainty, geophysicists use probabilistic approaches. Those approaches are

able to sample the ensemble of a priori possible models (the prior) in order to extract

models that can reasonably explain the datasets (the posterior). Such approaches,

even though superior in terms of the reliability of their results, are rarely applied

in practice due to their significant computational requirements.

In this manuscript, the aim is to propose a new Bayesian framework to interpret

those geophysical datasets. This new framework, called Bayesian Evidential Learn-

ing, promises to enable a fast, precise and accurate estimation of the uncertainty.

This framework is applied and adapted for 1D geophysical datasets (BEL1D). The

new and adapted framework presents several advantages when compared to clas-

sical probabilistic approaches: from fast computations due to the limited number

of forward runs needed, to providing insight about the experiment sensitivity and

the validity of the prior. Moreover, it benefits from its construction as a Machine

Learning algorithm, leading to quasi-instantaneous models of uncertainty.
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RÉSUMÉ

Fournir des images du sous-sol à partir d’ensembles de données terrestres est au

cœur du travail du géophysicien. De multiples approches ont été appliquées pour

s’attaquer à cette tâche. La plupart du temps, cette tâche est réalisée dans un cadre

déterministe, ce qui signifie que pour un ensemble de données déterminé, un modèle

unique est fourni pour expliquer les données. Cependant, ces approches détermi-

nistes ne permettent pas de fournir des estimations raisonnables de l’incertitude,

qui tiennent compte de la non-unicité de la solution, du bruit dans les données et

des erreurs de modélisation. Pour fournir des modèles précis et exacts du sous-sol

tout en tenant compte de l’incertitude, les géophysiciens utilisent des approches

probabilistes. Ces approches sont capables d’échantillonner l’ensemble des modèles

a priori possibles (le prior) afin d’extraire les modèles qui peuvent raisonnablement

expliquer l’ensemble des données (le posterior). De telles approches, bien que su-

périeures en termes de fiabilité des résultats, sont rarement appliquées en pratique

en raison de leurs importantes exigences en termes de temps de calcul.

Dans ce manuscrit, l’objectif est de proposer un nouveau processus bayésien

pour interpréter ces données géophysiques. Ce nouveau système, appelé Baye-

sian Evidential Learning, promet de permettre une estimation rapide, précise et

exacte de l’incertitude. Ce processus est appliqué et adapté aux jeux de données

géophysiques 1D (BEL1D). Ce système présente plusieurs avantages par rapport

aux approches probabilistes classiques : il permet des calculs rapides grâce au

nombre limité d’exécutions nécessaires, et donne un aperçu de la sensibilité de

l’expérience et de la validité de l’antériorité. De plus, il bénéficie de sa construc-

tion en tant qu’algorithme de Machine Learning, conduisant à la construction de
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modèles d’incertitude quasi-instantanés.



SAMENVATTING

Het maken van beelden van de ondergrond op basis van grondgegevens is essentieel

voor het werk van de geofysicus. Er zijn verschillende manieren om deze taak uit

te voeren. Meestal wordt deze taak binnen een deterministisch kader uitgevoerd,

wat betekent dat voor een bepaalde dataset één enkel model wordt verstrekt om de

gegevens te verklaren. Deze deterministische benaderingen zijn echter niet geschikt

om redelijke onzekerheidsanalyses te maken, die rekening houden met gegevensruis,

modeleringsfouten, enz. Om precieze en nauwkeurige modellen van de ondergrond

te berekenen, samen met onzekerheid, gebruiken geofysici probabilistische metho-

den. Die benaderingen mogen het ensemble van alle mogelijke modellen (de prior)

bemonsteren om er modellen uit te halen die de datasets redelijkerwijs kunnen

verklaren (de posterior). Deze benaderingen, hoewel superieur door de betrouw-

baarheid van hun resultaten, worden in praktijk bijna nooit toegepast omdat ze

veel computerwerk vergen.

In dit manuscript wordt een nieuw Bayesiaans raamwerk voorgesteld om die

geofysische gegevenssets te interpreteren. Aan de hand van dit nieuwe systeem,

genaamd Bayesian Evidential Learning, kan de onzekerheid snel, nauwkeurig en

accuraat worden ingeschat. Dit kader wordt toegepast en aangepast voor 1D ge-

ofysische gegevenssets (BEL1D). Het nieuwe en aangepaste raamwerk biedt ver-

schillende voordelen in vergelijking met klassieke probabilistische strategieën: van

snelle berekeningen door het beperkte aantal forward runs die nodig zijn, tot in-

zicht in de sensitiviteit van het experiment en de validiteit van de prior. Bovendien

profiteert het van zijn constructie als Machine Learning-algoritme, wat leidt tot

quasi-onmiddellijk modellenren van onzekerheid.
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Chapter 1

Introduction

Geophysics aims at providing methods that inform about the subsurface without

costly invasive investigations such as drilling. To perform this task, geophysicists

investigate the earth through estimation of physical properties of soil, sediments

and rocks. Those properties and their spatial or temporal variations inform the

geophysicist on the geology and subsurface processes of a given site.

There is a large diversity of geophysical methods (see Chapter 2, and textbooks

such as Schubert, 2015, M. Nabighian, 1987 or M. Nabighian, 1991), and each

method is adapted to provide specific information about the subsurface, depending

on the physical property (or properties) to which it is sensitive. However, inter-

preting the raw geophysical data is difficult and often requires to transform the

data into geophysical models of the subsurface which is also known as geophysical

inversion.

1.1 Geophysical inversion

Inversion is the opposite of forward modelling (Figure 1.1). Usually, the forward

modelling is available as a closed-form expression, a matrix equation or a set of

partial derivative equations. It can be solved either exactly or numerically (Equa-

1



INTRODUCTION 2

Geophysical data Geophysical model

Inverse problem

Forward model

Figure 1.1: Inversion and forward modelling.

tion 1.1). Forward modelling can be expressed as:

g(m) = d (1.1)

Let H1 and H2 be Hilbert spaces of finite or infinite dimensions. The non-linear

mapping or forward operator g() : H1 → H2 contains the physics of the experiment

and maps the model space to the data space. It acts as a direct link between the

geophysical model (m) and data (d). In some cases, the forward operator can be

formulated as a linear operator (e.g. for gravity data inversion), but it is most often

non-linear (e.g. resistivity imaging or seismic imaging). Solving the inverse problem

consists in finding a model (m) or a set of models in a way that the data (dobs,

originating from the field) is reasonably matched. Such processes are described in

details in the literature (e.g.: Aster et al., 2013 or Kaipio and Somersalo, 2005).
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1.1.1 Deterministic inversion

There are multiple approaches to solve the inverse problems. One can use a de-

terministic method, where the goal is to find the best model to explain the data,

according to a misfit function (usually a p-norm, see Equation 1.2) formalizing

the difference between the field data (dobs) and the modelled data issued from the

forward model (Equation 1.1).

ψd = ∥d − dobs∥p =

(
n∑

i=1

|di − dobs,i|p
)1/p

, (1.2)

where n is the number of simulated data points and p is a real number greater

than or equal to 1. The main issue with approaches that minimize the misfit of

the data (ψd) is the resulting overfitting of the observed data, since the latter is

affected by uncertainty and the model is affected by inaccuracies. This often results

in a chaotic distribution of the model parameters, not realistically reflecting the

geological structure or the studied process. Moreover, often, the problem is ill-

posed (Lavrentev et al., 1986). This means that the solution to the geophysical

inversion can be non-unique, instable or not existing.

A common way to avoid such issues, is to regularize the inversion. Doing so,

the aim is to minimize an objective function ψ(d,m, λ) which is the sum of the

data misfit (ψd(d,m)) and a model misfit (ψm(m)) which can for example be the

distance to a reference model. The two terms are balanced using a regularization

parameter (λ). The model misfit compares a given model to a reference model and

specific constraints that may be present in the model given an a priori knowledge

of the site. The definition of this misfit is thus itself a parameter of the inversion

that must be explored to provide satisfactory images of the subsurface (e.g.: Acar

and Vogel, 1994; Ajo-Franklin et al., 2007; Nguyen et al., 2016; Jordi et al., 2018).
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This introduces bias in the inversion process in order to make the solution to the

problem unique (Constable et al., 1987).

The regularization consists in tuning the impact of the model misfit using a

regularization parameter (λ).

ψ(d,m, λ) = ψd + λψm (1.3)

The value of λ is controlling the resulting model. Many approaches exist to optimize

this parameter: L-curve, discrepancy principle, fixed value. All of those might lead

to different resulting models.

The discrepancy principal aims at providing a data misfit that is reasonable

given the data noise (Farquharson et al., 2003). Assuming a Gaussian independ-

ent noise for each n data point, one can estimate the expected maximum misfit

(Equation 1.4).

ψd ≈ n (1.4)

This limits the values of the regularization parameter. However, attaining this value

is complex at early iterations. This criterion is thus often combined with a cooling-

schedule that progressively reduces λ by either a fixed factor or selects the optimal

λ that satisfies the criterion. This requires at each iteration to perform a line-search

to find this optimal value.

Another common approach is the L-curve criterion (Aster et al., 2013). Here,

the idea is to optimize the trade-off that exists between the model and the data

misfit. To do this, multiple values of the regularization parameter are tested, and the

optimal choice should be the one that minimizes both misfits the most. Empirically,

this optimum is the inflexion point in the so-called L-curve, linking the misfits for

several values of λ (Figure 1.2).
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Figure 1.2: L-Curve criterion for selecting an optimal λ

In deterministic approaches, it is still possible to estimate the uncertainty on the

model parameters. Error propagation in the linear forward model (G) is among the

most common approaches (Aster et al., 2013). The covariance matrix can be directly

computed using the linear forward model and the data, assuming a Gaussian model

for the error on the data with a known covariance matrix (cov(d)) (Equation 1.5).

This model of the uncertainty on the parameters is performing adequately for linear

well-posed problems, but lack the ability to provide reasonable uncertainty for non-

linear and ill-posed problems which would then require the use of the Jacobian for

a linearized error propagation or the use of Monte Carlo methods.

cov(m) =
(
GTG

)−1
GTcov(d)G

(
GTG

)−1 (1.5)
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1.1.2 Probabilistic inversion

Instead of seeking a single optimum model along with its uncertainty, one may

consider probabilistic methods. Here, the goal is to find a distribution of models

with their corresponding probabilities. This is usually performed under Bayes’ rule

(Equation 1.6) where the solution of the inverse problem is given as a posterior

probability distribution p().

p (m|d) = p (d|m) p (m)

p (d)
, (1.6)

where p (m|d) is the posterior probability of a model (m), given the data (d). To

compute this value, one should know the prior probability of a given model p(m),

the probability of the data p(d), and the probability of the data given the model

p (d|m) which we can link to the forward modelling. The probability of the data is

a constant for a given set of data and prior (p(d) =
∫
p(d|m)p(m) dm). The two

critical terms are thus the prior probability of the model and the probability of the

data given a model (Ulrych et al., 2001).

The probability of the dataset given a model is called the likelihood (written

L(m|d)). This likelihood reflects the difference between the data originating from

the field measurements and the simulated data for the model m using the forward

model (Equation 1.1). This likelihood function has multiple formulations, depend-

ing on the uncertainty distributions of the data and their correlations. However,

under the hypothesis of Gaussian independent noise with standard deviation σ, we

can write Equation 1.7 (Lindsey, 1996).

L(m|dobs) =
n∏

i=1

(
1√
2πσ2

i

)
exp

(
−1

2

(
dobs,i − di

σi

)2
)

(1.7)
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Defining the prior probability will govern the posterior probability. In theory, in

order to achieve the most unbiased inversion, the prior should be as large as possible

(Tarantola, 2006). However, in practice, this is difficult as the resulting prior model

space to explore would be very broad and would require unrealistic computational

time. Therefore, the geophysicist usually defines a limited prior according to prior

knowledge of the site and previous experiences. Careful attention must be attributed

to this task as a prior that is too constrained will lead to biased estimations.

To sample the prior and extract the posterior, the most common and valid-

ated approach is to use Markov chain Monte Carlo simulation (McMC). McMC

approaches sample models from a proposal distribution (or jumping distribution)

in order to randomly perturb the current position of the chain. For each new pro-

posed model, both the likelihood and the prior probability will be evaluated to

assess the Metropolis acceptance probability (Equation 1.8).

Paccept = min

(
1,
L(mi|dobs)p(mi)q(mj|mi)

L(mj|dobs)p(mj)q(mi|mj)

)
(1.8)

In Equation 1.8, the parameters are mj the model in the current chain, mj the per-

turbed model and dobs the dataset; with L() the likelihood, p() the prior probability

and q() the proposal distribution.

Equation 1.8 can be simplified in case of symmetrical proposal distributions as

in Equation 1.9, as is the case in DREAM (Vrugt, 2016).

Paccept = min

(
1,
L(mi|dobs)p(mi)

L(mj|dobs)p(mj)

)
(1.9)

Sampling the posterior with a long enough chain, the geophysicist will obtain a

stable set of posterior models that is representative of the actual posterior model

space (Malinverno, 2002).
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Another approach is the ensemble smoother technique (e.g.: Evensen, 1994; Y.

Chen and Oliver, 2011; Emerick and Reynolds, 2013; Bobe et al., 2020). In this

method the idea is to apply a transform iteratively to models from an ensemble

according to the knowledge of observed data, under the assumption that the prior

and the data error are both Gaussian and independent. This procedure is called

data assimilation. For more details on those techniques and equations, the reader

is directed towards van Leeuwen and Evenson (1996).

Nowadays, even though probabilistic inversion provide a more accurate quanti-

fication of uncertainty to account for in decision-making processes (Lawyer et al.,

2001), they are often limited to scientific studies (e.g.: J. Chen et al., 2008; Trainor-

Guitton and Hoversten, 2011; Linde et al., 2017; Andersen et al., 2018). The main

obstacle is the computational requirements of such methods. An approach to im-

prove on this aspect would be to enable more computations of multiple models

to happen at the same time (parallelization). In the simplest Metropolis-Hasting

McMC approach, the algorithm can not be parallelized. There are some versions of

McMC that can be parallelized, but they are limited to the number of chains that

are running in parallel (e.g. DREAM: Vrugt, 2016). Those aspects usually limit

the applicability of probabilistic inversion to low dimensionality spaces and forward

models that do not require prohibitive computational time.

1.2 The rise of Machine Learning in geophysics

Machine Learning is currently a popular research topic. From medical research

(Rajkomar et al., 2019) to video games (Justesen et al., 2020), those algorithms are

widely used in all areas of the society. Often, they are applied to solve problems

that are either unsolvable using classical algorithms or that are too slow or not
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scalable with other approaches. Chapter 3 is dedicated to the different algorithms

and applications that arise from Machine Learning in geophysics.

These algorithms can improve the workflow of the geophysicist in multiple as-

pects (see Chapter 3). The main advantage of Machine Learning over traditional

techniques originates from the core of the technique: it learns to perform a task

from a given training set. Therefore, the learning phase results (which is usually

computationally intensive) are often reusable.

The use of Machine Learning for geophysical data inversion is not new. In the

90s, the inverse problem was solved by a neural network for the first time for surface

waves (R. Meier & Rix, 1993). Since then, the use of machine learning has risen

for geophysical inversion (see Chapter 3). Multiple approaches have been tested.

However, Machine Learning is mostly deterministic by design (one input provides

a single output).

Even though the design of ML algorithms (especially neural networks) is not

originally suited for uncertainty quantification, multiple approaches have been pro-

posed to overcome this impediment (Bishop, 1995). In early researches, the idea

was to learn the uncertainty from the training set (Devilee et al., 1999). The result

is a set of discrete values that describe the posterior density function. With such a

design, the training set must previously know the probability density functions of

any given set (m,d). It is thus relatively impractical to apply with large priors.

More recently, other approaches, using the standard deviation from predictions

of random forests (Zou et al., 2021) or adapted neural networks have been proposed

(X. Zhang and Curtis, 2021; U. Meier et al., 2007). However, those methods have

their own limitations:

• The posterior must be Gaussian or of known type (Zou et al., 2021).

• The posterior is unable to recover correlations between parameters efficiently
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(U. Meier et al., 2007).

• The algorithm needs to be trained along with noisy data to be able to take it

into account (X. Zhang & Curtis, 2021).

In this research manuscript, we aim at proposing a new alternative Machine

Learning algorithm to solve the inverse problem in geophysical imaging in 1D and

compute the associated uncertainty. This new algorithm is based on the Bayesian

Evidential Learning (BEL) framework (Scheidt et al., 2018). This framework ad-

dresses multiple concerns of geophysicists in a Bayesian way. At first, for a given

prior, it helps to acknowledge the data worth by means of sensitivity analyses. Do-

ing this, we can assess if the experiment is a suitable design to attain the stated

objective. Then, once the experiment validity has been confirmed, BEL may process

prior model falsification. There, the technique consists in verifying the consistency

of the field data with the prior corresponding data space. This step makes it easier

to avoid complex and CPU intensive computations with an inadequate prior. Fi-

nally, BEL may be used to obtain a direct prediction of the parameter of interest,

such as the wellhead protection area (Thibaut et al., 2021), on the basis of the field

data. To do so, BEL learns from a set of models in the prior that are associated

to data and predictions. This differs from classical approaches that first invert the

data into a geophysical model and then, using petrophysics, converts those models

in terms of the interset parameter (Figure 1.3).

1.3 Outline

After the current introduction, we will present different 1D geophysical methods

(Chapter 2) relevant in today’s world. This chapter will also show the diversity of

methods and their related datasets.
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Figure 1.3: Classical approach versus BEL (modified from Scheidt et al., 2018).
(a) The classical approach: first, the data is inverted, and then the prediction
is forecasted. (b) The Bayesian Evidential Learning approach: first, a statistical
relationship is learned from models data and their associated predictions, and then
this relationship is exploited to provide a direct forecast of the prediction of interest
given the data.

Then, we present the use of Machine Learning in geophysics (Chapter 3). This

chapter will be the opportunity to present the reader with typical Machine Learning

algorithms and their common applications in geophysics.

Next, in Chapter 4, we present the BEL1D algorithm. The BEL1D algorithm is

the implementation of BEL for the 1D geophysical imaging of the subsurface based

on geophysical data. In this chapter, we will present the difficulties that rose from

the specificity of geophysical data and what was performed to improve the BEL

algorithm. The algorithm is presented with a synthetic example using sNMR data

and the results are compared to a classical McMC approach. We will then validate

the algorithm on a field dataset against other geophysical measurements.

Along with this chapter, the MATLAB source code for the BEL1D algorithm

is released under the BSD 2-clause licence (Michel, 2020). This MATLAB code

is adapted for the application of BEL1D with sNMR and seismic surface waves

dispersion curves interpretations using graphical user interfaces.
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From the results of Chapter 4, we will show that the algorithm tends to overes-

timate the uncertainty when dealing with large prior uncertainty or poor resolution

datasets. To overcome this impediment, we propose a new iterative algorithm in

Chapter 5. This algorithm, called iterative prior resampling (IPR), uses insights

learned at a given iteration to improve the knowledge of the probabilistic inversion.

This time, we will show the algorithm working on seismic surface waves datasets.

A first synthetic case is explored and compared to an McMC method. Then, we

again validate the approach by using the algorithm on a published dataset from the

InterPACIFIC project (Garofalo, Foti, Hollender, Bard, Cornou, Cox, Ohrnberger

et al., 2016 and Garofalo, Foti, Hollender, Bard, Cornou, Cox, Dechamp et al.,

2016). Those examples empirically demonstrate that the algorithm is efficient to

recover accurate and precise posterior model space estimations.

Along with this chapter, the fully open-source Python code (BSD 2-clause li-

cence) for BEL1D and IPR is released (Michel, 2022) with applications for sNMR

and seismic surface waves dispersion curves and easily adaptable for other meth-

ods. This code, contrary to the previously released MATLAB version is much more

versatile and improves on the parallelization of the algorithm.

Finally, we will discuss on the results of this thesis and the insights learned from

this work (Chapter 6). In this discussion, we will analyse key aspects that BEL

applied to geophysical inversion should improve:

1. Is BEL effective to perform the inversion of geophysical data in a probabilistic

framework?

2. What does BEL provide that other techniques do not?

3. Can BEL be generalized to any type of geophysical datasets? What are the

possible caveats?
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4. How can we further improve the performances of BEL?

Note that the main content of chapters 4 and 5 is published in Computers &

Geosciences (Michel, Nguyen et al., 2020) and Geophysical Journal International

(Michel et al., 2022) respectively.
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Chapter 2

An overview of 1D imaging in

geophysics

Geophysics aims at investigating the Earth structure and composition using non-

intrusive and indirect approaches. The different methods are sensitive to bulk

properties such as seismic velocities or electrical resistivity, which may inform on

parameters of interest such as stiffness or water content, and image the subsurface

structures and estimate its composition (e.g.: Schubert, 2015; Bagdassarov, 2021).

Bulk properties of the Earth can be translated into information that are of direct

concern to the end-user through petrophysical relationships whereas the estimation

of bulk properties depend on the solution of inverse problems.

In this chapter, we will present a panel of near-surface geophysical approaches

that can be interpreted as vertical 1D profiles. The aim of this section is to present

the diversity of methods and the types of data that can be encountered by the

geophysicist. For more details on the different techniques, the reader is directed

towards references in the literature that cover in depth the different methods. We

will here consider seismic methods, electrical and electromagnetic methods.

15
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2.1 Seismic methods

Seismic methods are among the most widely used. They rely on the propagation of

a mechanical wave across the subsurface. Different types of waves can be studied

(Figure 2.1). Body waves travel through the entire subsurface. They are disso-

ciated into two classes: P-waves and S-waves. The first is the compression wave,

whose displacement is along the direction of the wave. The second one is the shear

wave, whose propagation is transverse to the direction of the wave. Contrary to

compression waves, shear waves are not transmitted by fluids.

P-waves

S-waves

Rayleigh waves

Love waves

Body waves Surface waves

Wave propagation Wave propagation

Wave propagationWave propagation

Figure 2.1: Different types of common seismic waves

Surface waves originate at the interface between air and the subsurface. The

most common in geophysics are Rayleigh waves and Love waves. Rayleigh waves

are characterized by a particle motion in an elliptical path in the vertical plane. For

Love waves, the particle motion is horizontal and propagates perpendicularly to the

wave direction. The particularity of such waves is that their velocity depends on
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the wavelength.

The propagation of seismic waves in the subsurface depends on different rock

properties. The main parameters of interest are the velocities VP and VS, the

compression- and shear-waves velocities, which may be defined in terms of elastic

properties and the density. However, those parameters depend themselves on nu-

merous factors, from the mineralogical composition of the rocks to the fluid prop-

erties contained in the soil/sediments/rocks (Schmitt, 2015).

Seismic waves are typically recorded using geophones on terrestrial environ-

ments and hydrophones in marine environments. Those devices record the ground

displacement as a function of time. Geophones are positioned with a specific ori-

entation, which enables the distinction between different wave types. On the other

hand, hydrophones are omnidirectional and pressure dependent.

2.1.1 Basic wave propagation in layered 1D media
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Figure 2.2: Illustration of the physical phenomena of seismic rays interacting with
a plane interface.

From the surface, a seismic wave propagates through the subsurface with ve-
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locities that depend on the impedance of the rocks. Typically, the impedance is

directly related to the seismic velocity of the rocks and its density (Bagdassarov,

2021).

Z ≈ ρ× V (2.1)

When there is a sharp contrast of velocities between two layers, the wave may

be in part refracted deeper, and in part reflected to the surface (Figure 2.2) de-

pending on the impedance contrast. By analysing the signal at the receivers on the

surface and after data processing, the geophysicist can deduce the position of those

interfaces that inform on the geological structures with different approaches (e.g.:

D. R. Cox et al., 2020).

2.1.2 Vertical seismic profile

This technique requires the presence of a borehole. Geophones or hydrophones are

placed inside the borehole at several depths and a source is positioned at the surface

(Kennett et al., 1980). Usually, Vertical Seismic Profiles (VSP) use multiple sources

at the surface. From the surface sources’ configuration, the experiment can enable

the recovery of a 1D profile (Zero-Offset VSP, see Figure 2.3), 2D transects or 3D

models (Offset VSP, Walkaway VSP, etc.) (Campbell et al., 2005).

The physics for 1D layered systems is rather simple if we neglect the interaction

with the borehole casing and diffraction. Two phenomenons are observed in a VSP

after the source is triggered:

1. The wave is received directly on the different geophones/receivers (downgoing

raypaths in Fig. 2.3).

2. The wave reflected on the different interfaces reaches the receivers (upgoing
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Geophones

Downgoing Raypath

Upgoing Raypath

Figure 2.3: Zero-offset VSP illustration
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raypaths in Fig. 2.3).

This means that the interpretation in terms of seismic velocities is straightforward

until the last receiver. However, one of the advantages of such techniques is that

they enable the detection of structures below the bottom of the borehole by means

of the reflected waves/upgoing raypaths (Kennett et al., 1980).

Interpretation of such data is often performed while drilling to inform on the

potential characteristics of the rocks below the drill head. Interpreting the direct

wave immediately gives the seismic velocities for each layer between the geophones.

Using more advanced techniques, it is also possible to retrieve the attenuation factor

(Q) from those datasets (e.g.: Campbell et al., 2005; Zhao et al., 2014).

VSPs are commonly applied in oil and gas exploration (e.g.: Larki et al., 2021;

Matsushima et al., 2016), where the knowledge of in-depth rock properties is crucial.

VSP profiles are also commonly applied to calibrate models from other surface-based

methods (e.g.: Hurich and Deemer, 2013).

2.1.3 Seismic refraction

In seismic refraction, the main hypothesis is that the waves are - as the name

suggests - refracted at the interface between geological layers (see Figure 2.2). Using

an array of geophones positioned on the surface, one can measure the first arrival of

seismic waves (P- or S-waves depending on the equipment). Refraction of the waves

at the interfaces occurs at any angle (Green, 1974). Given the incidence angle (θ1)

and the velocities of the waves in the 2 layers (V1 and V2), we can infer the angle

of refraction (θ2) in the second layer according to Snell’s law:

sin(θ1)/ sin(θ2) = V1/V2 (2.2)
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Figure 2.4: Illustration of seismic refraction for a 1D model

From this equation, we can infer the critical angle of incidence, at which the

refraction occurs along the interface between the layers (θ2 = 90◦). Given a model

of the subsurface with purely horizontal layers, the first break of the seismograms

will align along slopes that correspond to the inverse of the layers velocities (Figure

2.4; Green, 1974).

As can be seen in Figure 2.4, the wave propagation is indeed 2D but the geometry

of the system is essentially 1D. With a single source and under the hypothesis of

horizontal layers, only the thicknesses and velocities of the layers are impacting the

model and thus recoverable. More complex modelling can take into account 2D

features such as slopes of interfaces when there are multiple sources on the array

(e.g.: Green, 1974; White, 1989).

Seismic refraction is now commonly applied using seismic refraction tomography,
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where inversion of the 2D or 3D geological properties and structures is possible (e.g.:

Flinchum et al., 2022). However, applications of seismic refraction to establish

simple 1D (or slightly dipping) structures are still common, for example to recover

the water table without the need for piezometers (e.g.: Clark and Page, 2011).

2.1.4 Surface waves

Surface waves are seismic waves whose propagation follows the Earth’s surface (see

Figure 2.1). Their propagation is dependent on the mechanical and geometric prop-

erties of the subsurface. Their amplitude is generally superior to body waves, mak-

ing their acquisition much easier. Surface waves undergo the phenomena of disper-

sion where the wave velocity is frequency dependent and which can be observed

on a computed dispersion curve (C. B. Park et al., 1999). In most interpretations,

the focus is made on the fundamental mode dispersion curve (Socco et al., 2010).

After inversion, the resulting models are expressed in terms of P-wave velocity (VP ),

S-wave velocity (VS) and density (ρ). However, surface waves are mostly sensitive

to S-wave velocity (Xia et al., 1999; B. R. Cox and Teague, 2016). Often, a link

between VP and VS is considered through the Poisson’s ratio (σ) (Equation 2.3; e.g.:

Wathelet, 2008):

VS = VP × ((0.5− σ)/(1− σ))1/2 (2.3)

Surface waves are mainly interpreted in terms of 1D models, with applications in

several domains. They are commonly applied to recover the S-wave velocity profile

of the first 30 meters of the subsurface, required for seismic design of buildings

and infrastructure (Moss, 2008). In another case, Mreyen et al. (2021) used surface

waves to infer the depth of the interface of a landslide. Surface waves are also capable

of sounding depths that are not reachable with other methods, using passive arrays.

The method is thus also common to model the Earth’s crust (e.g.: Lebedev et al.,
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2013).

2.2 Electromagnetic methods

In geophysics, electromagnetic fields are commonly used to sound electrical and

electromagnetic properties of the subsurface (M. Nabighian, 1991). Those proper-

ties are the electrical conductivity (or resistivity), the dielectric permittivity and

the magnetic permittivity (M. Nabighian, 1987; Zhdanov, 2009). Electromagnetic

methods are often used for their capabilities to sound the subsurface without the

need for a direct contact with the ground and thus their ability to rapidly cover

large areas. The electromagnetic response of the subsurface can either be induced

by a transmitter or naturally present.

10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109 1010

RMT
TEM
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GPR

Electrics

IP
Magnetics CSAMT

Figure 2.5: EM spectrum in geophysics. Modified from Van De Vijver (2017)

The spectrum of electromagnetic waves can be separated for the different geo-

physical techniques (see Figure 2.5, Van De Vijver, 2017).

2.2.1 Frequency domain electromagnetic

In frequency domain EM, the device produces a harmonic primary magnetic field,

using an induction coil undergoing an alternative current. The generated magnetic
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field propagates through the subsurface and if conductors are met, eddy currents

are created which in turn generates a secondary magnetic field. The measuring coil

then receives this secondary magnetic field, along with the primary field. Then,

under the low induction number (LIN) hypothesis, the user can retrieve apparent

conductivities (based on the quadrature) and the magnetic susceptibility (in-phase

ratio) of the investigated volume (Van De Vijver, 2017; Spies and Frischknecht,

1991).

Those measures can then be translated into models of conductivity and magnetic

susceptibility via inversion (e.g.: Farquharson et al., 2003). Often, those inversions

are carried out in 1D profiles, but (pseudo-)2D and 3D inversions are becoming

more and more common, through lateral constraints on juxtaposed 1D models (e.g.:

Siemon et al., 2009) or full 3D models (e.g.: L. H. Cox et al., 2010).

This method is largely applied in agricultural soils investigation (e.g.: Brogi

et al., 2019) or landfill characterization (e.g.: Van De Vijver, 2017). Frequency

domain EM is also used in archaeology to map ancient human-made structures

(e.g.: Smedt et al., 2014). All of those applications greatly benefit from the ease of

use of frequency EM and its ability to quickly map large areas.

2.2.2 Time domain electromagnetic

Time domain electromagnetic (TDEM) or transient electromagnetic (TEM) meas-

urements are using the transient signal originating from eddy currents produced

in the subsurface after the rapid interruption of direct current in a loop (M. N.

Nabighian & Macnae, 1991). Here, the signal measured is only resulting from the

secondary field, making it much easier to set up on the field (Christiansen et al.,

2008).

The resulting decay curves can then be inverted to retrieve models of the con-
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ductivity of the subsurface. Those models are often 1D, since the computation of

the forward model is rather complex and therefore inversion on larger dimensions

requires much more powerful computing (e.g.: Heagy et al., 2017).

TEM has recently seen a rise in popularity due to the development of airborne

TEM (Legault, 2015). This method has seen multiple applications in mineral explor-

ation and hydrogeophysics (N. B. Christensen et al., 2009). Often, the inversion for

those measurements are performed in 1D with lateral constraints to provide smooth

2D or 3D models (Auken et al., 2015).

2.2.3 Magnetotelluric

Magnetotelluric (MT) measurements use the naturally occurring EM sources, due

either to the solar activity or lightning. The electric fields and magnetic fields that

are resulting from those perturbations through the subsurface are measured (Vozoff,

1991). From those measurements, it is possible to retrieve 1D models of the layered

Earth conductivity structure.

The main impediment of this approach is the weakness of the resulting signal.

Therefore, controlled sources MT techniques have been developed: controlled source

audio-frequency MT (CSAMT; Zonge and Hughes, 1991) and radio-frequency MT

(RMT; Tezkan, 2008).

MT is often interpreted using 2D or 3D models (e.g.: Mackie and Madden, 1993).

However, the method can also be interpreted into 1D models of the subsurface

conductivity (e.g.: Kirkby et al., 2015).

This method is most commonly applied for oil and gas (e.g.: Patro, 2017), mineral

(e.g.: Farquharson and Craven, 2009) or geothermal exploration (e.g.: Amatyakul

et al., 2015).
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2.2.4 Surface Nuclear Magnetic Resonance
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Figure 2.6: Illustration of the sNMR physical principle. At first, the alternating cur-
rent is injected, creating a strong magnetic field (1), perturbing the initial thermal
equilibrium of the protons spins (0). Then, when the current injection is stopped,
the protons relax back (2) to the thermal equilibrium (3), producing a decaying
alternative current in the receiving antenna.

Surface Nuclear Magnetic Resonance (sNMR) is a geophysical technique dedic-

ated to the detection and characterization of aquifers, whose main advantage and

particularity is that the measured signal (an exponential decay) is directly linked to

the amount of water present in the subsurface. For more details about the nature

and origin of the sNMR signal, we refer to Behroozmand et al. (2015). The main

goal of sNMR experiments is to retrieve the distribution of the water content and

the relaxation time with depth. The latter depends on the pore space geometry

and can be related to hydrodynamic parameters such as the porosity or the per-
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meability. The acquisition of sNMR data on the field consists in the injection of an

alternative current in a transmission loop (typically circular or in an eight-shape)

directly followed by the measurement of the induced current in the reception loop

(often the same as the transmission loop). The injection is tuned at the resonance

frequency of hydrogens protons contained in water (called the Larmor frequency),

perturbing the quantum state of protons contained in water molecules. Once the

injection is stopped, the protons are relaxed back to their original state, inducing a

current with a decreasing amplitude with time in the receiver loop. This response

is called the free-induction decay (FID) and constitutes the collected data (Figure

2.6). The injection is repeated with different pulse moment intensities, sounding

different zones of the subsurface.

Although the method can be used for 2D or 3D applications (e.g.: Legchenko

et al., 2012), most of the applications are focused on 1D soundings due to the high

number of stacking required to achieve a reasonable signal-to-noise ratio. Physically,

sNMR is limited to groundwater-related studies. It is thus extensively used for

groundwater monitoring and exploration (e.g.: Grombacher et al., 2021; Legchenko

et al., 2020).

2.3 Electrical methods

On the lower end of the electromagnetic spectrum, the magnetic component of

the signal is lost and only the electrical signal remains. This results in direct

current methods which require a contact with the subsurface (Tezkan, 1999). Such

methods are very common for their robustness in the measurements of electrical

properties of the subsurface (Binley & Slater, 2020). For electrical methods, an

electrical current is injected using a dipole of electrodes (AB). This injected current
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creates a potential field in the subsurface. The potential is then measured using

another dipole (MN) (Binley & Kemna, 2005). Larger dipoles sound deeper in

the subsurface (Kirsch and Yaramanci, 2008; Koefoed, 1979). Those measurements

enable retrieving models of resistivity in the subsurface using inversion.

In electrical methods, the simplest approach is the vertical electrical sounding

(VES, Figure 2.7; Binley and Kemna, 2005). The idea is to dispose a set of dipoles

symmetrically around a point and to progressively use larger dipoles, hence sounding

deeper geological structures. Multiple types of arrays can be applied to measure the

resistivity. The most common for VES is the Schlumberger array, but the Wenner

array (as in Figure 2.7) or Dipole-Dipole configurations are also possible (Kirsch &

Yaramanci, 2008).

Nowadays, electrical methods are mostly applied using 2D or 3D arrays (Loke et

al., 2003) which require multichannel equipment. The use of 1D electrical methods

is still common for low budget applications such as groundwater exploration (e.g.:

Jha et al., 2008; Clark and Page, 2011; Gaikwad et al., 2021).

V
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Figure 2.7: Illustration of a vertical electrical sounding (here with a Wenner array)
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2.4 Conclusion

Among the different methods discussed in this chapter, all are related to processes

that are happening in the actual 3 dimensional space. However, an interpretation in

terms of a 1D system has several advantages. The first one is computational since we

can rely either on closed-form expressions for the forward model or computationally

efficient numerical schemes with a reduced number of parameters. This opens the

possibility to perform interpretations at a low computational cost. This advantage

is critical for probabilistic interpretations of the geology, as those require multiple

thousands of runs of forward modelling. The second is that the corresponding

field acquisition can be much faster, allowing to cover more grounds for mapping

purposes. However, the 1D hypothesis is in fact scale dependent and may only be

accurate if 1D+ effects could indeed be neglected. As an example, the sensitivity

of the sNMR for a classical configuration shows that the subsurface outside the

loop area is only weakly contributing to the signal making it in fact a 1D method

at the scale of the loop. On the contrary, VES or seismic refraction data can be

interpreted in terms of 1D models under strong hypothesis, but the sensitivity of

those experiment is in nature 3D.

From this chapter, it is clear that 1D geophysical methods are relevant depending

on the context (actual layered geology), or on the method (1D sensitivity). The

relatively fast computation of the forward models for 1D problems allows us to

consider probabilistic approaches that require to run thousands of forward models.

Our current implementation of BEL (see chapters 4 and 5) is thus limited to those

methods. Among the methods presented in this chapter, seismic surface waves and

sNMR are most commonly interpreted in terms of 1D profiles. They are therefore

selected for applications in the next chapters.
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Chapter 3

Machine Learning: a geophysicist

perspective

3.1 Introduction

Machine Learning (ML) describes a series of algorithms that can learn from a given

dataset to perform a given task without being explicitly programmed to do so. One

of the commonly used definition is written by Mitchell (1997):

A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its

performance on T, as measured by P, improves with experience E.

The different tasks can vary widely and depend on the available datasets. Such

algorithms have been present in geosciences for a long time (Dramsch, 2020).

Among Machine Learning, one can find a multitude of specific algorithms, with

their own sub-variations. One of the earliest ML algorithm is a neural network.

Those categories of algorithms are still among the most studied nowadays, with

plenty of variations, from Artificial Neural Networks in their simplest form to Deep

Learning algorithms that can contain dozens of layers and thus are able to perform

more advanced learning (Goodfellow et al., 2016). Support Vector Machines, Ran-

31
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dom Forests and K-means (among others) are ML algorithms commonly applied in

geosciences.

Those algorithms can be implemented in two ways (Badillo et al., 2020):

• Supervised learning: the data are labelled, and the task consists in predicting

the label of new data.

• Unsupervised learning: the data are unlabelled, and the task is to organize

the data based on patterns.

Generally, ML will also aim one of the two tasks below:

• Learning a relationship: regression if supervised, dimensionality reduction if

unsupervised.

• Separating the dataset into groups: classification if supervised, clustering if

unsupervised.

With those distinctions, we can easily classify different ML approaches. Other

approaches also exist (semi-supervised learning, reinforcement learning, etc.) but

are more sparsely applied in geophysics. Some algorithms can be used for multiple

purposes.

To introduce some common terms of ML, let us use the example of regression.

It is a supervised ML algorithm whose task is to learn a relationship between the

data variables (features) and specific values (labels). In the most simple cases, the

relationship is an equation with parameters that are unknown. From this learning

phase, one can then obtain the expected value of the target for any new sample (a

set of features).

ML is a very active domain of research in geophysics. Figure 3.1 shows the evol-

ution of the occurrence of the keyword ‘Machine Learning ’ in geophysics’ scientific
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Figure 3.1: Evolution of Machine Learning in geophysical publications from 2000
to 2021. The dataset is separated into journals that have a deeper focus on the
programming side of geosciences and journals that are focused on the geophysical
aspect of science. Data gathered from Dimensions (Digital Science, 2018-).

publications. The graph shows that geophysicists have a slight delay when com-

pared to the whole research community. However, the number of publications has

rapidly increased in the last five years. Moreover, ML is not confined to program-

ming focused journals but has also spread to more mainstream geophysical research

journals.

In this chapter, we will briefly review ML algorithms and their usual applications

in geophysics along with recent research.

3.2 Machine Learning algorithms

A plethora of ML algorithms have been developed in the past century. We will not

define them all but rather present the main categories of algorithms. This section

familiarizes the reader with ML terms.
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3.2.1 Artificial Neural Networks & Deep Learning

Input
Layer Layer 2 Layer 3 Output

LayerLayer 1

Figure 3.2: Illustration of a neural network.

Artificial Neural Networks are among the first forms of historic Machine Learning

and are still widely applied in research and industrial applications. At their core,

they consist of multiple neurons that are interconnected. In Figure 3.2, we illustrate

a feedforward network. This neural network can be written in matrix form, enabling

the simple conversion to computer code (Goodfellow et al., 2016). The network in

Figure 3.2 consists of a first layer a(1) built from the inputs x1, x2 . . . and a bias

term (a(1)0 with a value of +1). This vector is multiplied by a weight matrix W(1)

to provide the values fed into the activation functions g to provide the values of the

activation layer a(2). The operation is repeated to propagate from the second to the

third layer that corresponds to the output layer. In matrix form, this gives:

a(l+1) = g
(
W(l)a(l)

)
, l = 1, 2 (3.1)
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where the matrix W(l) contains all the weights w(l)
ij :

W(l) =

w(l)
10 w

(l)
11 w

(l)
12

w
(l)
20 w

(l)
21 w

(l)
22

 , (3.2)

and the vector a(l) contains the values of the network at the nodes from the layer l:

a(l) =


a
(l)
0

a
(l)
1

a
(l)
2

 , (3.3)

with a(l)0 being the bias term added to each layer and equal to one.

The activation function g() can take multiple forms. The most common are

(Goodfellow et al., 2016):

• Sigmoids, for example:

– The logistic function:

f(x) =
1

1 + e−x
(3.4)

– The hyperbolic tangent:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.5)

• ReLU (Rectified Linear Unit):

f(x) = max(0, x) (3.6)
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• SoftMax, applied to a vector input (z = (z1, . . . , zK)):

σ(z)j =
ezj∑K
k=1 e

zk
, with j ∈ {1, . . . , K} (3.7)

The choice of an activation function will depend on the type of neural network

and the type of layer (Goodfellow et al., 2016). Hidden layers typically have the

same type of activation function: Sigmoids or ReLU. The ReLU function has grown

in popularity in the last decade, while sigmoids were more common in the 90s.

For the output layer, there can be either no activation function (the input is the

output), a sigmoid to bound the output between 0 and 1, or a SoftMax function

(normalized logistic function) to transform the input into probabilities with a sum

equal to 1.

Depending on the architecture of the neural network and the combination of

activation functions, the algorithm can take different names. The first distinction is

made between a low number of hidden layers (artificial neural network) and a large

number of hidden layers (deep learning). The more the layers, the more complex

the learning capabilities of the neural network. On the other hand, this addition of

layers requires more models in the training set to achieve reasonable training and

validation errors.

Neural networks can be trained to perform different types of tasks. Learning

for a neural network is often supervised but can also be unsupervised as is the case

for autoencoders, generative adversarial networks, self-organizing maps, . . . (Dike

et al., 2019). The different uses of those networks are discussed in the next section

(3.3).
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Figure 3.3: Illustration of the support vector machine algorithm for a linearly sep-
arable dataset with 2 classes (green and orange).

3.2.2 Support Vector Machine

Support Vector Machine (SVM) were first described by Boser et al. (1992). Their

aim is to "maximize the margin between the training patterns and the decision bound-

ary" (Boser et al., 1992). They are designed to provide the best decision boundary

between categories of a dataset (different labels). Figure 3.3 illustrates the process

for a linearly separable dataset. The decision boundary is a hyperplane whose di-

mension depends on the dimensions of the dataset itself. It is defined by the support

vectors: points that are on the margins. The goal is thus to maximize this margin

(Badillo et al., 2020; Noble, 2006; Hearst et al., 1998). By nature, SVM is limited

to supervised learning and classification purposes.

In the case of non-linearly separable datasets, multiple approaches can be ap-
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plied:

• Accept a given number of wrong classifications (called slack variables) but

keep the boundary as simple as possible.

• Transform the dataset using a kernel to make it linearly separable (in the

hyperspace)

Both approaches can be mixed to avoid an over-complex hyperplane boundary (Ba-

dillo et al., 2020).

3.2.3 Decision Trees, Random Forests & Gradient Boosters

Root
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Leaf 
Node

Decision
Node

Decision
Node
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Figure 3.4: Illustration of a decision tree.

Decision trees are among the earliest forms of supervised ML. A decision tree is

composed of multiple nodes (Figure 3.4). For each node, the dataset is split at a

position in the features set. The split provides the tree with a better separation of
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the dataset and thus a better ability to predict the class label (classification trees)

or the value (regression trees) (Suthaharan, 2016).

A decision tree is defined by its number of layers. A deep decision tree is often

able to reproduce exactly the training set labels. However, this can lead to an over-

fitting of the dataset (Badillo et al., 2020). To overcome this impediment, multiple

approaches have been developed.

Random forests are composed of multiple deep decision trees and use their dif-

ferent outcomes to predict a value or class by a majority vote. Gradient boosters

on the other hand use multiple shallow decision trees subsequently to improve on

the prediction (Badillo et al., 2020).

3.2.4 Others

Even though the different ML algorithms described in the subsections above are

constituting the majority of applications nowadays, other methods also exist and

have been developed along with improving computing capabilities. Citing all the

existing algorithms would be overcomplicated and not productive. We will non-

etheless cite and briefly describe some popular options.

K-Nearest Neighbours (kNN) are one of the simplest classifiers that exist (Kramer,

2013). The goal is to provide a label for a new sample. The algorithm finds the k

nearest samples in the training data and extracts their labels. The nearest samples

are defined by a metric, usually the Minkowski metric of degree p (Eq. 3.8). The

class for the new features set is deduced from the most prominent class in the

neighbouring samples.

∥x′ − xj∥p =

(
q∑

i=1

∣∣∣(xi)′ − (xi)j

∣∣∣p)1/p

(3.8)

K-Means is the pendant of kNN for clustering. The algorithm tries to minimize
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a metric (usually the Minkowski metric with p=2, i.e. the Euclidean distance)

between k centroids and the samples that are present in the k clusters (Likas et al.,

2003).

Naive Bayes is a form of classification that uses a simplified version of the Bayes’

rule to compute the expected probability of a sample being in a given class from its

different features (H. Zhang, 2004).

p(c|E) = p(E|c)p(c)
p(E)

(3.9)

Logistic regression (D. R. Cox, 1958) is a classifier (and not a regression) al-

gorithm commonly used in industrial applications. The idea is to fit a modified

logistics sigmoid (Eq. 3.4) with a linear regression on the exponent of the exponen-

tial. This fit will provide with a probability of a sample being part of a given binary

class. The method has been extended for multi-classes cases since its development

(Böhning, 1992).

Principal Components Analysis (PCA) is also a common ML algorithm for di-

mensionality reduction. The algorithm seeks for a set of orthogonal axes in such a

way that the first axis encompasses the maximum variation (Hotelling, 1933).

3.3 Common use cases in geophysics

Geophysicists use Machine Learning for multiple tasks. We will briefly discuss most

of them and explain their advantages over other approaches.

3.3.1 Classification

Classifying rock properties based on geophysical data is one of the key challenges in

geophysics. The idea is that the end-users are rarely interested in the raw geophys-
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ical results but rather in a proxy that can be of interest to them (Aster et al., 2013).

For example, in Isunza Manrique et al. (2019) and Isunza Manrique et al. (2022)

studies, one of the goal was to transcribe the geophysical models into resources

distribution models. Brogi et al. (2019) classified soils to enhance agricultural yield

based on Electromagnetic Induction data. Building geological models from different

geophysical data is also a common task (e.g.: Marzan et al., 2021; Grana et al.,

2020; Bressan et al., 2020). ML algorithms can help to automate those tasks and

provide unbiased interpretations.

Multiple algorithms can perform those classification tasks. The most common

are Neural Networks (NN - e.g.: Di et al., 2019; Bressan et al., 2020) and Random

Forests (RF - e.g.: C. W. Christensen et al., 2020). Other approaches are also

utilized, such as Support Vector Machine (SVM), Decision Tree (DT) or Logistic

Regression, etc. (Bressan et al., 2020). Usually, the training set is built from col-

located ground-truth data and geophysical data. This means that the separation of

features by ML algorithms is usually supervised (Osisanwo et al., 2017). However,

some unsupervised clustering algorithms are also used to identify patterns into data-

sets (Wallet & Hardisty, 2019). Those patterns can later be identified by the expert

as different lithologies or any other parameter of interest in the absence of ground-

truth data (e.g.: Bauer et al., 2012). The applied unsupervised ML algorithms can

vary. Among many others, Bauer et al. (2012) applied Self-Organizing Maps to

cluster patterns from seismic and magnetotelluric models and Wallet and Hardisty

(2019) applied Gaussian mixture models for facies recognition from seismic data.

3.3.2 Surrogate modelling

The forward modelling of geophysical processes is at the heart of geophysics. The

operation consists in providing a simulation of a dataset based on a given geophysical
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model (Aster et al., 2013). This operation can be CPU consuming and optimization

is often required. ML is a suitable candidate to improve on this aspect as it is able to

efficiently learn a direct relation between models and datasets from a large training

set. Such an approach is efficient when (1) the forward modelling is difficult to

compute or (2) when the number of models to simulate is large. In both cases, even

thought training the algorithm is time-consuming, the end-goal is to provide the

end-user with computationally efficient and fast proxy for the forward operations.

Wave-based methods are among the main methods to see a large application of

such an approach. Especially, when dealing with full waveform datasets. In those

cases, the full waveform forward requires heavy computations and CPU time that

make the use of such approaches impractical. Simplifying the operations results in

a significant gain for the inversion. Giannakis et al. (2019) used neural networks

to approach the full-waveform ground penetrating radar datasets. In a similar

approach, Conway et al. (2019) trained a neural network for the forward modelling

of 3D magnetotelluric datasets. Those solvers are then used for faster inversion

with classical approaches and could be applied for stochastic inversions as well.

ML based forward operations can also boost the performances of a probabilistic

approach (Valentine & Sambridge, 2017). In this case, even though the forward

operator is already relatively efficient, there is still a use case for faster computa-

tions, since the operations need rerunning several thousands of times. For example,

Hansen and Cordua (2017) used a neural network based forward for GPR travel-time

Monte Carlo sampling. Aleardi et al. (2022) used a neural network approximation

of the electrical resistivity tomography forward operator to perform a Markov chain

Monte Carlo and Ensemble Smoother inversions.

The main issue with those approaches is the need to fine-tune a network for

every case. To circumvent this, Siahkoohi et al. (2019) proposed to apply transfer
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learning to better model seismic data from previously trained neural networks.

3.3.3 Inversion

ML is often applied to replace the inversion procedure in geophysics (Kim & Nakata,

2018). The advantage of ML algorithms in geophysical inversion lies in the ability of

such algorithms to model highly non-linear effects easily (Russell, 2019). The most

common approach is to apply an artificial neural network (or any given variation) to

a problem. Training the algorithm can be done either by gathering a large dataset

of collocated geological models and geophysical data (e.g.: Joshi et al., 2021) or by

building a training set from scratch (e.g.: Michel, Nguyen et al., 2020; Guo et al.,

2021). The latter approach is more common, due to the need of large training

sets of models and geophysical data that show features similar to the data samples

to interpret. Even though geophysicists are used to deal with large datasets, the

variations of contexts make it complex to reuse them for different sites. Some

databases of complex synthetic models are beginning to see the light, with for

example Noddy (Jessell et al., 2022).

Another approach that has been applied is to learn the gradient from a model

to the optimal update during the inversion (Sun & Alkhalifah, 2020). Since this

process requires the computation (or at least the approached version) of the inverse

of the Hessian matrix, a ML approach can be beneficial if efficiently trained.

It is also possible to use ML to perform the inversion in the latent space of those

neural networks (lower dimensionality space). Such an approach was applied by

Lopez-Alvis et al. (2021), Lopez-Alvis et al. (2022) and Laloy et al. (2017).

Another possible help from ML in inversion is the use of generative models.

Those algorithms can generate models that show similarities to models that already

exist (training set). This approach can be beneficial to perform Bayesian inversion
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(e.g.: Laloy et al., 2018; Scheiter et al., 2022). The generative models of predilection

are either Generative Adversarial Networks (e.g.: Laloy et al., 2018; Mosser et al.,

2020) or Variational Autoencoders (e.g.: Lopez-Alvis et al., 2022).

3.3.4 Signal processing

Processing the raw signal from geophysical equipment into usable data is key in

geophysics, especially for noise prompt data such as sNMR and seismic traces.

Various methods have been developed to overcome this issue. The case of sNMR

is still very active in research today, as evidenced by the review of Kremer et al.

(2022) on the subject. This has led to several attempts at this task with ML.

Yu et al. (2019) train a convolutional neural network (CNN) algorithm to filter

out noise in seismic images through supervised learning. The idea is to produce

noisy samples and to label them with the corresponding noise-free sample. The

CNN will thus be able in the end to reproduce noise-free data from raw data. Such

a concept has also been used for sNMR (Wei et al., 2021). Another method is to use

autoencoders to process the noise out (Bhowmick et al., 2019; Vincent et al., 2010).

In this approach, the idea is to benefit from the dimensionality reduction capabilities

of autoencoders to remove noise. This comes from the fact that noise is usually

gathered in higher dimensions as it is less prominent in the dataset. Therefore, a

network trained to reproduce the data itself will reproduce the data without those

higher dimensions and remove the noise (Vincent et al., 2010). Bhowmick et al.

(2019) applied this approach to seismic data and well logging.

3.3.5 Petrophysical relationships

Using ML, it is also possible to learn petrophysical relationships. The advantage of

ML in this application is the possibility to learn complex relationships between para-
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meters when compared to more classical approaches limited to analytical formulas

with few parameters to remain usable (e.g.: Moghadas et al., 2019; Gottschalk and

Knight, 2022).

Those applications offer the advantage to avoid the need for the development of

complex geostatistics models. Among others, Gottschalk and Knight (2022) used a

Gradient-Boosted Decision Trees (GBDTs) to extend borehole descriptions to field-

scale geophysical models. Moghadas et al. (2019) used an Artificial Neural Network

(ANN) to model the soil moisture from geophysical data in a spatio-temporal ap-

proach.

3.4 Uncertainty in Machine Learning

By design, most ML algorithms provide a single output for a given input, and are

mostly deterministic. However, several techniques exist to extend ML to probabil-

istic approaches.

Among those methods, classification algorithms are the most suitable methods

for providing probabilities. Using Neural Networks with a SoftMax output layer,

the user receives as output the probability of all the classes given the input (e.g.:

Grana et al., 2020). Often, those are used to extract the most probable output and

assign this class to the values. However, it is possible to use the output directly

as an estimation of the probability of any class. Similarly, Random Forests are

providing the user with multiple outputs, from which a majority vote is made to

declare a single output. However, it is possible to use those multiple outputs as

possible realizations of the classes and to deduce probabilities of classes from those

(e.g.: Cracknell and Reading, 2013).

For inversion, it is also possible to use Neural Networks designed to provide un-
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certainty on the parameters estimations. Multiple approaches have been developed

to tackle this task (Bishop, 1995). In geophysics, the appraisal of uncertainty is a

key parameter when dealing with inversion, and therefore, ML probabilistic inver-

sion is an active research topic (e.g.: X. Zhang and Curtis, 2021; U. Meier et al.,

2007; Aleardi et al., 2022). In Aleardi et al. (2022) approach, they use a ML forward

operator to perform a probabilistic inversion, avoiding the cost of the forward op-

erator. Devilee et al. (1999) were among the first to use neural networks to obtain

posterior probability from geophysical data. They proposed to apply histogram and

median networks, whose training is based on the known probability densities for the

training datasets. More recently, scientific work has been focused on providing a

better estimation of the posterior uncertainty, using more advanced descriptions of

the posterior via Gaussian kernels in Mixture Density Networks (MDNs) (U. Meier

et al., 2007) or sampling the posterior distributions using Invertible Neural Net-

works (INNs) (X. Zhang & Curtis, 2021).

U. Meier et al. (2007) used MDNs to perform the inversion for the Moho depth

(single parameter) from seismic dispersion curves. There, the distributions are

described by Gaussian kernels that are summed to provide the posterior. The

algorithm is capable of learning the uncertainty on the bases of numerous (here

500000) forward models runs.

X. Zhang and Curtis (2021) used INNs to approximate the posterior model space for

multiple seismic data types. In this method, the network maps models to datasets

augmented by random variables representing the noise and vice-versa (Ardizzone

et al., 2019). Doing so, X. Zhang and Curtis (2021) were able to produce posterior

models for a given field dataset (augmented by sampled random variables), thus

producing different outputs representing the posterior.
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3.5 Conclusion

ML proposes a large variety of algorithms that can solve common problems in

geophysics. In this short review, we showed that the diversity of ML algorithms

can offer the geophysicist with several options when facing a challenge. Neural

networks are the most versatile ML algorithms as they can take multiple forms

and answer different questions, depending on the task at hand. They are well

suited for supervised learning tasks, where the author already knows the labels

that are associated with each sample in the training set and wants to label a new

sample. However, for unsupervised tasks, neural networks are less frequent, due to

the difficulty to train a network on an undefined (or ill-defined) objective. Many

algorithms are then available to propose adequate handling of the defined tasks. The

different tasks performed by geophysicists are often supervised, but unsupervised

tasks are also possible (Table 3.1).

Supervised Learning Unsupervised Learning
Classification Regression Clustering Dim. reduction

Classification + +
Surrogate modelling +

Inversion + +
Signal processing + +

Petrophysics +

Table 3.1: Summary of the tasks commonly performed by geophysicists classified
by the type of learning

ML algorithms can present significant advantages when compared to more clas-

sical approaches. In the case of classification, the tedious task of assigning rock

properties to a given cell of a model, based on geophysical inversion results, can be

efficiently assigned to ML algorithms in order to provide fast and accurate models

of the geology. This approach can be performed either supervised or unsupervised.
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In the first case, the groundtruth data must be present in sufficient quantity on the

studied site, but the classification is effective at retrieving similar patterns across

the site. In case of absent or insufficient groundtruth, the analysis can be per-

formed unsupervised. Then, the algorithm will discover categories of the response

that follow some similar patterns and will be able to locate those categories. The

geophysicist is then responsible to label the clusters that have been discovered based

on prior knowledge of the site and experience.

Then, ML can significantly reduce the CPU cost of the forward modelling oper-

ations of geophysical phenomenons. The non-linearity of such operations, making

the use of costly finite difference or elements methods to solve the problem, can be

learned by ML algorithms and will result in much faster operations. This is greatly

helpful for Bayesian inversion of complex datasets where multiple thousands of for-

ward runs are required.

ML can also lead to efficient ways to provide geophysical images on the basis

of geophysical data. The ML algorithm can perform the full inversion operation,

similarly to what a classification algorithm would provide in a discrete space, but

with geophysical parameters on a continuous space. Other approaches consist in

using Machine Learning to perform the inversion in a lower dimensionality space

(the latent space) or to approach the updates given the dataset and current models

to perform gradient descent. To top it all, ML provides efficient algorithms to

sample priors defined from training images, which is beneficial since the definition

of complex prior in 2D and/or 3D can be mathematically cumbersome and CPU

consuming.

Finally, the geophysicist often faces noisy datasets. ML is able under specific

circumstances to improve the signal-to-noise ratio of the datasets. The noise re-

duction can either be performed by training an algorithm to recognize the noise
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and remove it from the signal or by using dimensionality reduction algorithms, that

naturally tend to reduce the impact of the noise on the lower dimensionality space.

In conclusion, geophysicists greatly benefit from ML in their workflows. The

main issues with those approaches are the training phases, where large databases are

required and often lacking. Such databases are currently being built (e.g.: Jessell

et al., 2022). Nonetheless, direct applications of ML in geophysics are currently

available.

However, ML is still not yet suitable for a widespread application of inversion

with uncertainty quantification at a reasonable training cost. The different ap-

proaches that exist have limitations.

• They can be limited to specific distributions types (e.g.: Maiti et al., 2013)

• They can be limited in the number of models variables due to the need for a

large number of variables to describe non-specific distributions (e.g.: U. Meier

et al., 2007)

• They require large training sets which is CPU intensive (e.g.: U. Meier et al.,

2007; X. Zhang and Curtis, 2021)

• They need to be trained either on known posterior distributions given the

dataset and the prior (e.g.: Devilee et al., 1999) or with a form of likelihood

for a model and the dataset with noise (e.g.: X. Zhang and Curtis, 2021)

The algorithm discussed in this manuscript (BEL1D) can be seen as a hybrid

solution that overcomes those limitations at the cost of a lower versatility. It can

be seen as a supervised regression approach. We build a training set from synthetic

datasets whose features are the different discrete data points, with their associated

labels being the models they originate from. This training set is sampled from a
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prior model space, meaning that the learning phase is valid only for models that are

inside this space. From this training set, BEL1D is able to learn a relationship that

maps a given set of features to multiple probable labels in a latent space. Doing

so, we provide an efficient approach to stochastic geophysical data interpretation

through ML.

The algorithm in question is detailed in the next chapters.



Chapter 4

Bayesian Evidential Learning for 1D

geophysical data: theory and

development

In this chapter, we will present the algorithm for Bayesian Evidential Learning

(BEL), the Bayesian approach that is developed in this dissertation1. We will also

apply the algorithm to surface Nuclear Magnetic Resonance (sNMR) geophysical

data in different contexts. To validate the approach, we will compare the results to

results obtained using a classical McMC approach.
1This chapter is largely based on the publication entitled: 1D geological imaging of the sub-

surface from geophysical data with Bayesian Evidential Learning (Michel, Nguyen et al., 2020).
The different authors of this paper all contributed different aspects to this research.

• Code development: Hadrien Michel - advices: Thomas Hermans and Frédéric Nguyen

• Data acquisition: Thomas Kremer, Ann Elen and Hadrien Michel

• Data processing: Hadrien Michel, Thomas Kremer, Ann Elen - advices: Thomas Hermans
and Frédéric Nguyen.

• Bayesian inversion: Hadrien Michel - advices: Frédéric Nguyen, Thomas Hermans and
Thomas Kremer

• Parametric analysis: Hadrien Michel

• Writing: Hadrien Michel

• Proof-reading: all contributing co-authors
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4.1 Theory and development

4.1.1 Introduction

In this chapter, we present Bayesian Evidential Learning (BEL) (Scheidt et al.,

2018) as an innovative method for the unidimensional geophysical imaging of the

subsurface. Bayesian Evidential Learning (BEL) is a general framework to handle

data in geosciences, from the optimization of the data acquisition to the data in-

terpretation, prior falsification, global sensitivity analysis, and the prediction of

relevant model responses (Scheidt et al., 2018).

We will refer to the approach presented here as Bayesian Evidential Learning 1D

imaging (BEL1D). It uses statistics-based relationships between forecast variables

and data learned from realizations sampled from a prior distribution. As opposed

to inversion methods, this approach does not require the time-consuming inversion

of the dataset, but rather numerous (and parallelized) runs of the faster forward

model. So far, BEL has been used to predict (among others) the dynamical response

of subsurface models from well monitoring data (Satija & Caers, 2015), time-lapse

geophysical experiments (Hermans et al., 2018), push-pull tests (Hermans et al.,

2019), updating a geological model from new boreholes and predicting gas volume

production (Yin et al., 2020), defining wellhead protection areas (Thibaut et al.,

2021), i.e. model predictions mostly characterized by smooth variations in time

and/or in space. BEL was also applied to show the non-uniqueness of the gravity

inverse problem (Phelps et al., 2018).

In this contribution, we extend BEL to 1D geophysical imaging. Such 1D ima-

ging arises in many geophysical methods (see Chapter 2) where forward models

assume a succession of homogeneous horizontal layers such as surface nuclear mag-
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netic resonance (sNMR e.g., Behroozmand et al., 2015), surface seismic waves (e.g.,

Socco et al., 2010), electromagnetic surveys (e.g., Hanssens et al., 2019; Li et al.,

2018), or vertical electrical sounding (e.g., Jha et al., 2008). The main contributions

in this chapter compared to previous works are:

1. The application of BEL1D for static geophysical imaging. Here, we predict

directly the posterior distribution of spatially distributed geophysical model

parameters

2. The estimation of the data-prediction relationship using kernel density estim-

ation instead of Gaussian regression, because the former can be applied when

the relationship deviates from linearity and Gaussian assumptions

3. The validation of the approach by comparing it with state-of-the-art McMC

4. The illustration of the similarity between the distance-based global sensitivity

analysis and the canonical correlation analysis

5. The analysis of the number of samples in the prior

This chapter first introduces our implementation of BEL: Bayesian Evidential

Learning 1D imaging (BEL1D). The method is then validated within a numerical

example. To demonstrate the broad applicability of our approach, we also provide a

validation within a non-geophysical related inverse problem (Appendix A: “Testing

BEL1D on a synthetic mind experiment: oscillations of a pendulum”). Then, we

present an example of BEL1D applied to field data, providing evidence that the

method is already mature. Finally, we discuss elements governing the accuracy of

BEL1D, such as the number of models sampled in the prior and the choice of the

bandwidth for kernel density estimation.
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4.1.2 BEL applied to 1D imaging: methodology

In this work, the focus is on computing geophysical models and assessing the uncer-

tainty of the inferred models (Phelps et al., 2018). This interpretation part of BEL

is also known as the prediction-focused approach (PFA), introduced by Scheidt et al.

(2015). Contrary to deterministic approaches, this method does not rely on the sta-

bilization of the ill-posed inverse problem, such as regularization for example, that

imposes non-realistic constraints to the solution. It rather relies on the constitution

of statistical relationships between targets (the set of parameters of interest to the

end-user) and data (predictors). These relationships are originating from models

and (numerical) simulations of the geophysical problem that reflect the available

prior knowledge.

BEL has already been applied previously to geophysical data - time-lapse elec-

trical resistivity - by Hermans et al. (2016). Hermans et al. (2016) demonstrated

the applicability of BEL to predict variations of subsurface physical properties with

time-lapse electrical resistivity data. More broadly, they also demonstrated that

BEL was a possible tool for geophysicists.

However, Hermans et al. (2016) presented a scheme that required numerical sim-

ulations of groundwater flow and transport and petrophysical relationships specific

to hydrogeophysical monitoring (i.e. time-lapse data), limiting the extent of the

geophysical prior model, making it a hydrogeophysical coupled framework (Her-

mans et al., 2021). Solving the time-lapse problem in geophysics is easier because

we can invert for changes in the model (e.g., Kemna et al., 2002; Nguyen et al.,

2016), and that the petrophysical relationship is generally simpler (Linde et al.,

2015). In Hermans et al. (2016), a petrophysical relationship and the background

distribution of resistivity were taken as known, which simplified the inference of the
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posterior distribution. Static data are also characterized by a higher noise level and

thus more challenging to process (LaBrecque et al., 1996; Lesparre et al., 2017).

This is also the first application where BEL is used to directly estimate spatially

distributed model parameters. In our case, the forecast variables are static geophys-

ical models, directly linked to the geophysical experiment, hence no petrophysical

relationship is required. Such situations generally bear more prior uncertainty and

wider variability. Moreover, our aim is to propose a fast generation of subsurface

models along with uncertainties.

The adapted BEL1D method consists of six steps (Figure 4.1):

1. Definition of the prior uncertainty based on prior field knowledge, generation

of prior models (yellow box in Figure 4.1) and associated data (blue box in

Figure 4.1) by forward modelling

2. Reduction of the dimensionality of the data using principal component ana-

lysis (PCA)

3. Constitution of statistical relationships between the model parameters and the

reduced data (green cloud in Figure 4.1), using canonical correlation analysis

(CCA)

4. Generation of posterior distributions for the model parameters in reduced

space by constraining the bivariate distributions to field data (red box in Fig-

ure 4.1) using kernel density estimators (contrary to previously used Gaussian

process regression (Hermans et al., 2016))

5. Sampling of the constituted (non-Gaussian) distributions

6. Back-transformation of the samples into the original space, delivering a set

of 1D models of the subsurface that are constrained to the knowledge of the
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geophysical data (purple box in Figure 4.1).

Each step is explained in detail in the following subsections.

Figure 4.1: Illustration of the BEL1D framework. The prior is sampled, producing
a set of models (yellow box), that yield a set of corresponding datasets (blue box)
through forward modelling. The datasets’ dimensionality is reduced using PCA,
then a relationship linking models and datasets is deduced using CCA, producing
a distribution of models in the CCA space (green ellipse). When the (noisy) field
data is known (red box), it is projected into the CCA space, yielding to a posterior
model space in this reduced space (pink distribution). Then, models tare sampled
from those distributions and back-transformed into the original space (pink box),
producing a set of samples from the posterior model space.

Although BEL1D can be applied to any 1D inverse problem with a limited

number of parameters, for the clarity of this chapter, we choose to illustrate the

method in using sNMR (see Chapter 2, Subsection 2.2.4).
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4.1.2.1 Step 1: prior realizations and associated data

In BEL1D, the models are described in a classic manner with a finite number of

layers NL, the last one being a half-space. For each layer, the NP physical properties

related to the geophysical experiment and layer thickness are assigned. This means

that a model can be described with a low number of parameters: (NL × (NP +

1)) − 1 = q. Defining the prior model space fH(m), i.e. the space describing

the prior knowledge of the subsurface physical properties before data acquisition,

consists in assigning a distribution to the values of each of those q parameters. The

shapes of those distributions are unconstrained and must best represent the prior

knowledge of the survey site, either originating from previous experiments or from

general geological and geophysical considerations. Once the prior model space is

defined, we generate random models within the prior boundaries, hereafter called

prior realization: m(q × 1) ∈ fH(m).

For example, the prior model space for sNMR experiments is defined using both

the water content (in %) and relaxation time (in ms) distributions along depth.

This leads to a finite number of layers, of unknown thickness, and of unknown

water content and relaxation time, thus to the description of a model with only five

parameters for a 2-layer model.

For all prior realizations, we compute their associated response using the same

acquisition parameters as the experimental conditions. Doing so, we produce the

synthetic data vector: d(l× 1). To perform this operation, we use the (non-linear)

forward operators (K) of the geophysical problem of interest such that (Equation

4.1)

d = K(m) (4.1)

For more details about the forward operator associated with the sNMR method,
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we refer to Hertrich et al. (2007). Often, the dimensionality of the data (l) is

relatively large. For sNMR, the data space is composed of tens of time-decaying

signals (one for each pulse moment) with sampling rates on the order of 100 Hz

measured for about 1 second, thus resulting in several thousands of dimensions.

4.1.2.2 Step 2: reduction of the dimensionality of the data using prin-

cipal component analysis

At this stage, we have generated the “model space” which contains the prior realiza-

tions, and the “data space” which contains the synthetic geophysical data sets asso-

ciated with each model. To explore the statistical relationships that exist between

these two spaces, one must first ensure that their dimensionality is sufficiently low

(typically about 10 dimensions per space) to allow for reasonable computational

costs. In the case of sNMR, as in most other cases if the prior models space remains

simple, the model space will generally have a reasonable number of dimensions, thus

no dimension reduction is required (mf = m(q×1)). As stated previously, the data

space is generally large and cannot be handled properly under reasonable computa-

tional costs. In this case, the Principal Component Analysis (PCA) technique can

be used to transform the data space and reduce its dimensionality while preserving

its original variability.

The PCA method seeks for linear combinations of variables that maximize

the variability in the first dimensions using eigenvalue decomposition (Krzanowski,

2000). This operation results in PCA scores, the values of the transformed data.

This way, the first dimensions are the most informative about the dataset, and the

others only represent a small amount of the variability. Those latter can be dis-

carded, to gain memory and ease following computations. In the sNMR context,

the same process is applied to the original data space and performs very well since
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the dimensions are often highly correlated. The obtained reduced data space has a

dimensionality k << l and is noted df (k× 1). Note that in other geophysical prob-

lems, this PCA step may not be necessary if the dimensions of both the model and

data space are low (among others: VES and TEM, see Chapter 2) or may also be

necessary for the model along with the data spaces if their dimensions are too high

(for example, if many thin correlated layers are used to describe the model). Noise

analysis using Monte Carlo simulations (Hermans et al., 2016) provides co-variance

between the different PCA components representing the data (Cf ). This translates

in uncertainties on the PCA scores of the test data. The detailed procedure for

noise propagation is presented in subsection 4.1.2.7.

4.1.2.3 Step 3: constitution of statistical relationships between the

model parameters and the reduced data, using canonical cor-

relation analysis

BEL1D relies on the constitution of statistics-based relationships between Earth

models and simulated data. This step is the core of BEL1D. Several methods are

suitable to derive such a relationship (see Chapter 3), but we choose canonical cor-

relation analysis (CCA) for its simplicity. In essence, CCA transforms the (possibly

PCA-reduced) model space (mf ) and the PCA data space (df ), so that the ca-

nonical correlation (an approach formula of the correlation) between the resulting

CCA spaces (mc – Equation 4.2 – and dc – Equation 4.3) is maximized (Krzanowski,

2000). The dimensions of the CCA spaces are linear combinations of the variables

in their original space and are orthogonal to each other, meaning that there is no

redundancy between the dimensions. We obtain:

dc = dfAT (4.2)
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mc = mfBT (4.3)

where A is a matrix of dimensions m × k and B is a matrix of dimensions m × q

(m is the minimum between k and q). Graphically, we can observe the statistical

relationship between dc and mc as both spaces have the same dimensions (1×m).

As long as k is larger than q, it is possible to back-transform the models from the

CCA model space to the original model space using the inverse of B (Hermans

et al., 2016).

4.1.2.4 Step 4: generation of posterior distributions for the model para-

meters in CCA space using kernel density estimators

Figure 4.2: Illustration of the Kernel Density Estimation process

In canonically correlated space, the correlation between data and prediction

variables within one dimension is maximized. Since the dimensions are orthogonal

to each other, it is possible to produce a meaningful statistical description of each

bi-variate distribution. This enables to determine a posterior distribution in the

CCA model space constrained by the knowledge of field data. This posterior dis-

tribution represents the probability density function for the model parameters in
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the CCA model space. To approximate the posterior distribution corresponding

to the observed data fH(mc|dc
obs), we use a kernel density estimator (KDE) with

a Gaussian kernel (Wand & Jones, 1993) similar to Hermans et al. (2019) where

they faced non-linearity issues when validating BEL for hydrogeology. Gaussian

regression (Hermans et al., 2016; Satija & Caers, 2015) was tested; but in many

cases, CCA did not yield perfectly linearly correlated relationships with Gaussian

prior distributions, two necessary conditions to apply Gaussian regression. We thus

implemented KDE for its robustness to estimate posterior distribution in a large

variety of situations. KDE computes, for a given location in space, the sum of the

contribution of each point from the CCA space as is illustrated in Figure 4.2. We

use a multi-Gaussian kernel centred on the points with bandwidths chosen accord-

ing to the point density (see subsection 4.1.5.2). The resulting distributions in the

CCA model space are not constrained to any given distribution of known shape.

The process is illustrated in Figure 4.3.

4.1.2.5 Step 5: sampling of the constituted distributions

The posterior distribution is not constrained to a known distribution. Therefore,

sampling is done through the inverse transform sampling method (Devroy, 1986).

This sampling procedure benefits from the properties of the cumulative distribution

function that links a uniformly distributed variable to any distribution. The sampler

thus transforms a value sampled in a uniform distribution to the corresponding value

in the original distribution via the inverse of the cumulative distribution function.

We can now easily generate a set of samples from the posterior distributions in the

reduced space:

mc
post ∈ fH(m

c|dc
obs) (4.4)



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 62

Figure 4.3: Illustration of the constitution of posterior distributions in CCA space.
The cloud of points from the prior realizations and their associated data after KDE
is represented by the blue ellipse, the red line represents the observed data in CCA
data space and the blue distribution on the y-axis represents the distribution ob-
tained through the kernel density estimator.

4.1.2.6 Step 6: back-transformation of the samples into the original

space

The set of samples in CCA model space can be back-transformed into the original

model space, using the inverse of the B matrix (q × q). We thus have the posterior

in the original physical space:

mpost = mf
post = B−1mc

post (4.5)

Here, in the sNMR context, since the model space was not reduced using prin-

cipal component analysis, the models in PCA space are the same as the ones in

original space. Because Gaussian regression or KDE with Gaussian kernel has no
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limit on the value of sampled parameters, a few samples might occasionally be loc-

ated outside the prior model space, in particular when the true model is at the

extremity of the prior. Those models are removed from the sampled space as they

do not correspond to the definition of the problem.

4.1.2.7 Noise propagation in BEL1D

Noise characterization is an essential step in any geophysical data acquisition. In

order to investigate the effect of noise on BEL1D, one can analyse the variation of

the PCA scores to the estimated field noise level (if the latter has been estimated).

If the scores of the first k components are not varying significantly, then, one can

assume that noise has no impact on the imaging process. On the other hand, if the

noise impacts the scores significantly, BEL1D considers this impact by propagating

uncertainty (represented by Cf in Equation 4.6) on the reduced observed data in

the canonically correlated space, leading potentially to more complex computation

of the posterior distributions (Hermans et al., 2016). This uncertainty is propagated

in the CCA dimension according to linear error propagation from equation 4.2:

Cc = ACfAT (4.6)

To estimate Cf , we explore the PCA scores and their modifications when noise

is present in the dataset. To do so, we take the data associated to each of the prior

realizations as a basis and compute the PCA scores when one model is perturbed

with a noise level similar to the data. The operation is repeated for a significant

sub-sample (in the example, we used 50 randomly selected models) of the prior

samples allowing to derive the PCA score covariance matrix Cf .

Contrary to Gaussian regression where the addition of covariance to the observed

reduced data is fully handled by matrix operations, and only slightly increases the
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complexity of the formula for the sampling parameters (Hermans et al., 2016), the

addition of uncertainty on the reduced observed data highly hinders performances

of the kernel density estimation. Assigning uncertainty to the observed data (X

in Figure 4.4) requires the computation of the kernel density estimation of the

reduced posterior distributions for multiple sets of randomly sampled dc
obs+ ϵ, then

processing to sampling and back transformation from those sets of distributions to

constitute models of the posterior distributions.

This can be avoided by enlarging the bandwidth of the kernel density estimator

(Bowman & Azzalini, 1997) in the X direction (in the CCA data space) according

to Cc. This accounts for the uncertainty on the exact position of the data in the

reduced space and therefore accounts for noise, without adding complexity to the

computations, as is shown in Figure 4.4.

Figure 4.4: Example of the effect of noise on the computation of the kernel density
estimator for the probability density functions. On the left, a random dataset
that is highly correlated and the associated true value of X. On the right, the
estimated distributions for the values of Y constrained to the known value of X and
its associated error of 1. The computation time ’t’ is given for the different cases.
The proposed increased bandwidth approach yields the same results as the exact
sampling method.
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4.1.3 Numerical example

In this section we will present results obtained by applying BEL1D to numerical

examples of sNMR. The model that we will use corresponds to a classical context

with two layers: a first unsaturated layer and a saturated half-space (Table 4.1). A

field case is presented in section 4.1.4, and a non-geophysical related inverse problem

is presented in Appendix A (“Testing BEL1D on a synthetic mind experiment:

oscillations of a pendulum”).

Thickness (m) Water content (%) Relaxation time (ms)
Layer 1 5 5 100

Half-space / 25 200

Table 4.1: Characteristics of the synthetic model

4.1.3.1 Computation of the model space and data space

The data are simulated for sNMR using the MRSMatlab toolbox (Müller-Petke

et al., 2016). For the simulated experiment, the circular transmitter is the same

as the receiver (the loops have a 50 m diameter with 2 turns). To simplify the

computations, the Earth is set as resistive, thus neglecting the effect of electrical

conductivity in signal attenuation and phase shift. Therefore, the signal is purely

real. However, the process presented in this chapter is not limited to real-value

data. sNMR is known to be impacted significantly by electromagnetic (EM) noise

(e.g., Behroozmand et al., 2016). Different types of EM noise can affect the sNMR

data. However, when most of these components have been filtered out, the sNMR

signal will remain contaminated by a Gaussian noise distribution, whose magnitude

cannot be reduced further. To represent this, we choose to add a Gaussian noise

level to the dataset, corresponding to a mean signal-to-noise ratio of 10 (35 nV),

which is a relatively high value in usual sNMR surveys.
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Figure 4.5: Simulated data for the sNMR experiment. The black curves represent
the noisy dataset and the red curves the noise-free one.

As can be observed in Figure 4.5, the initial amplitude of the signal is around 500

nV, and a signal-to-noise ratio of 10 produces quite noisy signals, but the decaying

behaviour remains observable.

The prior model space reflects the prior knowledge of the study site. In our

case, we will assume that it is known that the subsurface is composed of one layer

resting over an infinite half-space. Then, the rest of the properties will be defined as

uniformly distributed variables varying in the intervals described in Table 4.2. The

prior intervals are not necessarily centred on the actual value of the parameter. This

is to better simulate real situations, where the user will only have rough information

about the subsurface constitution. 5000 prior realizations are generated using a

Latin-hypercube sampler (McKay et al., 1979). The forward model that was used

to simulate the test data is reused here to generate synthetic data sets.
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Thickness [m] Water content [%] Relaxation time [ms]
Minimum Maximum Minimum Maximum Minimum Maximum

Layer 1 2.5 7.5 3.5 10 5 350
Half-space / / 10 30 5 350

Table 4.2: Prior model space for the sNMR experiment

4.1.3.2 Global sensitivity analysis and dimension reduction

We performed a distance-based global sensitivity analysis (J. Park et al., 2016)

whose results are presented in Figure 4.6. The parameters corresponding to the first

layer (W1 and T ∗
2,1) are not sensitive to the sNMR signal in this specific experimental

configuration and should therefore lead to a poorly reduced uncertainty on those

parameters.

Figure 4.6: Multivariate sensitivity analysis performed on the simulated data. The
red bars correspond to parameters that have an effect on the data and the blue ones
to parameters that have a negligible effect.

From the initial 11904 dimensions in the dataspace, PCA enabled a reduction

to only 5 dimensions, while managing to keep more than 90% of the variability.

The canonical correlation analysis is shown in Figure 4.7. It is observed that (1)

the correlation between the models and the data is larger for the first 3 CCA
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Figure 4.7: Data space versus model space in the canonically correlated space. The
blue dots represent the prior models and data spaces and the orange line represents
the exact value of the test data in the reduced space.

dimensions, (2) the correlation is not linear from the 2nd dimension and (3) from

the 4th dimension, the points are scattered and not correlated. The fact that the

last dimensions are scattered (note that each dimension is a linear combination of

the model parameters) informs us on the inability of the data to efficiently predict

all the parameters simultaneously. This is confirmed by the linear combinations

that constitute the CCA model space dimensions (Figure 4.8): we observe that

the three last reduced dimensions are mainly linear combinations of the insensitive

values (Figure 4.6). Note that non-linear statistical techniques (e.g., Gorban et

al., 2008; Lawrence, 2012) could potentially lead to better characterization of the

data-model relationship.
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Figure 4.8: Combinations of parameters representing the canonically correlated
model space dimensions. The values are scaled for visual purposes.

4.1.3.3 Results of BEL1D on the numerical example

BEL1D is applied to the simulated noisy dataset. Figure 4.9 shows the prior and

posterior distributions of parameters obtained through BEL1D. We observe that the

uncertainty on the half-space parameters is dramatically reduced through BEL1D.

On the other hand, the insensitive parameters T ∗
2,1 and W1 are poorly reduced.

This insensitivity to some parameters is also clearly identified in the pendulum

example (Appendix A). As can be observed, the test value of the parameter is

always contained in the posterior distribution. The multivariate analysis of the

parameters shows that most of the parameters are independent. However, some

correlations are observed for parameters that are related to the same layer (T ∗
2,2 and

W2 for example). Figure 4.10 (Left) presents another representation of the posterior

results, where the data RMS of posterior samples are colour-coded, and where each

model is a set of linked parameters. The presented results show that a large part of

the posterior models has a very low RMS error. The trend in the water content set

through the prior model space is respected. In contrast, the trend for the relaxation
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Figure 4.9: Results of the BEL1D process on the synthetic noise-free data from the
2 layers model. The obtained distributions are the posterior distributions estimated
from the noisy dataset in red. The sampled prior model space is represented by
the blue distributions. The test values are represented with dashed red lines in the
histogram plots. Results of the McMC algorithm DREAM are presented in yellow.

time is not resolved by BEL1D. The analysis of the RMS and the comparison with

DREAM (Figure 4.10, Right) show that this is related to the insensitivity of the

data and not to the method itself.

Finally, we applied the DREAM McMC algorithm (Vrugt, 2016) to the same

dataset. We applied a Gaussian likelihood with 15 generations and 10000 chains and

a burn-in period of 5000 chains. However, to achieve convergence towards reasonable
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Figure 4.10: Left: results of the BEL1D process on the synthetic noisy data from
the 2 layers model. Each displayed model is presented with its associated RMS
error value. In order to enhance visualization, each colour is associated to the same
number of models. The dashed white lines represent the test values and the dashed
black lines represent the extent of the prior model space. The similar graph is also
presented for DREAM results (Right)

uncertainties, changes to the definition of the dataset are required. We had to

use gate integration, similarly to what is applied in MRSMatlab (Müller-Petke et

al., 2016) in order to attribute higher loads to the first part of the decay curves,

thus lowering the impact of noise on the estimation. For the presented results, we

used 5 gates for each pulse moment. However, we must note that the results of

DREAM are highly sensitive to the number of gates: with 1 or 2 gates, nearly

no reduction of uncertainty is observed, whereas with a too large number of gates

(to the limit with no gate integration), false posterior distributions are observed

(the test values are outside the predicted posterior). The results are presented

alongside the BEL1D results in Figure 4.9. They show that BEL1D tends to have

a slightly lower performance than DREAM. This is related to the approximation

of the problem in a lower dimension space where the actual data misfit is never

computed. Applying a cut-off on the RMS values observed in BEL1D would result

in the same distribution (Figure 4.10). In the next chapter (Chapter 5), we propose

a solution to this issue by applying an iterative scheme with rejection at the final
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iteration.

Figure 4.11: Impact of noise on the PCA scores (the first 5, kept after dimension-
ality reduction), covariance matrix for the PCA scores impacted by noise (left) and
the corresponding covariance in CCA space (right). This first matrix is estimated
through the mean of the covariance matrices observed between the noise-free scores
and the noisy ones.

To estimate the posterior distributions, we needed to account for the impact of

noise in the process. The matrix Cf presented in Figure 4.11 shows very low values

for the covariance. However, once transformed into CCA space (Cc, Equation 4.6),

we observe that the effect of noise, even if limited, is still observable. From a default

bandwidth of 0.01 in the X direction for the kernel density estimation, we computed

bandwidths ranging from 0.017 to 0.059.

Those increased bandwidths explain the presence of some outliers in the data-

space (Figure 4.10, Left). When observing the CCA space (Figure 4.7), it is notice-

able that the second dimension (mainly representing the decay time of the second

layer) shows models that are outside the main distribution but close to the position

of the reduced test data. When using the bandwidth that takes into account the

impact of noise, those models are included into the posterior. Nonetheless, those

models correspond to large RMS error and are easily identified (Figure 4.10).

An example with more than two layers is presented in Section 4.2, where we



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 73

apply BEL1D to a new experimental configuration on a four-layer synthetic model.

4.1.4 Field case study: Mont Rigi (Belgium)

The Mont Rigi is located in the Belgian Fagnes region, in the Eastern part of the

country. This site presents an ideal case study for sNMR as it is remote and far

from any electromagnetic noise sources, due to its natural reserve classification.

Geologically, the site is characterized by a metric peat layer on top of a Cam-

brian bedrock (La Venne formation) known as an aquiclude with a very low water

content (Gilson et al., 2017). In contrast, peat is known to present very high water

contents with observed total porosities around 90% (Wastiaux, 2008). According

to previous GPR exploration (Wastiaux & Schumacker, 2003), the peat layer at the

experimental site should have a thickness between 2.5 and 4.5 metres. The sNMR

response should therefore allow to easily distinguish the two layers with a prop-

erly designed experiment. The designed on-site experiment consisted of a classical

coincident loop transmitter/receiver couple with a diameter of 20 metres.

The raw data have been preprocessed to lower the impact of noise with despiking,

harmonic modelling, reference noise cancellation and despiking again (Müller-Petke

et al., 2016). The signals have been further truncated to 0.2 seconds to decrease the

impact of noise, mostly present at large timeframes. The resulting noise amplitude

is quite low for sNMR (18 nV). Then, the signals have been inverted using the QT

Inversion (Müller-Petke & Yaramanci, 2010), to constitute a benchmark to compare

to the results of BEL1D. We used a smooth-mono model description (smooth models

with a single relaxation time for a given depth) and a regularization parameter of

6000 for both water content and relaxation time using the L-curve criteria (Aster

et al., 2013). Then, BEL1D was applied with the uniformly distributed prior model

space described in Table 4.3. We sampled 5000 prior realizations and produced
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5000 models for the posterior.

Thickness [m] Water content [%] Relaxation time [ms]
Minimum Maximum Minimum Maximum Minimum Maximum

Layer 1 0 7.5 30 80 0 200
Half-space / / 0 15 100 400

Table 4.3: Prior model space for the Mont Rigi sNMR experiment

The CCA space analysis (Figure 4.12) shows that we could expect a significant

reduction of uncertainty for some parameters, as the first three dimensions show

high correlations. The first dimension, dominated by the water content of the half-

space shows an especially narrow relationship between the reduced data and model

space. On the other hand, the last dimension, mostly represented by the water

content of the first layer, shows no specific correlation. We should therefore expect

a much better reduction for the parameters of the half-space than for the first layer.

Figure 4.12: Mont Rigi – Data versus model space in the CCA space. The blue dots
represent each prior realization and the orange line the position of the field data.
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The noise level (after denoising) impact on BEL1D was assessed and resulted in

significant changes in bandwidths for the kernel density estimation, between 0.04

and 0.12 instead of the default 0.01 value.

Figure 4.13: sNMR at Mont Rigi - Prior (blue) and posterior (orange) distributions
of the parameters.

The analysis of the posterior parameters model space (Figure 4.13) shows that

the reduction of uncertainty from the prior model space to the posterior is signi-

ficant and produces consistent results, when compared to the geological context

and the QT inversion solution (dashed grey lines in Figure 4.14). The thickness of

the peat layer tends to be smaller than the maximum estimate (4.5 m) from the
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GPR interpretation (Wastiaux & Schumacker, 2003). The use of a narrower prior

taking into account the GPR information would prevent such a behaviour. This

is illustrated by the decrease of the maximum value of the thickness for the first

layer when the water content of the aforementioned layer increases. This behaviour

arises from the non-uniqueness of the sNMR response stated above.

In the posterior models produced by BEL1D (Figure 4.14), a large majority

shows a root-mean-square error lower than the noise level in the dataset, implying

that the set of probable models provides an efficient estimation of the site paramet-

ers. The RMS errors of the posterior samples show that they all explain the data to

a similar level; the uncertainty is thus intrinsic to the data set and the non-unicity

of the solution. The non-uniqueness of the solution is easily observable, with two

distinct behaviours: one with a median water content and a thick first layer and

another with a very high water content but a thinner first layer. This confirms the

realistic very high water content in the peat layer. Those two cases show similar

RMS errors, hence are explaining the data to the same level. The probability of

each posterior model is shown in the RMS error colour bar for which each colour

represents the same number of models. Therefore, it is observed that the low RMS

error models also correspond with the most probable ones.

4.1.5 Discussion

4.1.5.1 Impact of the number of sampled models in the prior model

space

The optimum number of models in the prior model space sample is a trade-off

between precision of the posterior models distributions and ease of computation:

the larger the number of samples, the larger the memory requirement and the

harder the computations. This parameter was not investigated in early applications
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Figure 4.14: sNMR at Mont Rigi - Posterior models distributions with their asso-
ciated misfit and results of the QT inversion (dashed grey line). The black line in
the RMS error graph represents the level of noise in the original dataset.

of BEL, focussing on simpler predictions. However, when dealing with complex

posterior predictions, the number of parameter begins to matter since more models

are required to achieve convergence.

We ran BEL1D on the previous synthetic sNMR dataset with 10, 50, 100, 500,

1000, 5000, 10 000, 50 000 and 100 000 models in the prior samples. For each case,

we ran BEL1D 10 times with different random samples and aggregated the results.

It is observed that the RMS error distribution tends to stabilize above 1000 models,

suggesting that this value is optimal in our case (Figure 4.15), especially for the

minimum and 5th percentile values. This observation is confirmed by the evolution

of the parameter distribution characteristics (Figure 4.15). In those graphs, the

mean values of the parameters are normalized with the test values, and the standard

deviations are normalized with the standard deviation in the prior model space. We

see that the parameter distributions are stabilized above 1000 models, even if the

values are not minimal. This value is still relatively low, even though latter studies

have found that fewer models were required for other applications (Thibaut et al.,
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Figure 4.15: Impact of the number of prior samples on the posterior distribution.
The top graph presents RMS evolution, while the two bottom graphs show (from
left to right) the normalized mean value and the normalized standard deviation.

2021). Those results indicate that using a large number of models in the training

set guarantees convergence, but that a fine-tuning of this parameter can lead to

computational gains.

4.1.5.2 Impact of the chosen kernel density bandwidth on the posterior

distributions

To assess the impact of the kernel density bandwidth on the posterior distribution,

we ran 10 times 10 different values ranging from 10−5 to 1. In each case, 5000 models

were sampled in the prior (Latin-hypercube sampler) and 5000 models were pre-

dicted, to ensure that no side effect is linked to other parameters. A similar analysis



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 79

to the one performed in the previous subsection is then performed (Figure 4.16). We

observe that the bandwidth has a strong impact on the resulting distributions. Too

low values result in erratic behaviours of the posterior distributions. On the other

hand, too large bandwidths result in the smoothing of the posterior distributions,

as is observed in the evolution of the standard deviation where this value increases

sharply for the sensitive parameters. Therefore, the optimal bandwidth is a value

located in-between the two extremes, where the reduction of uncertainty is signific-

ant for the sensitive parameters and the other parameters are stable. This occurs

around 10−2 in our case. In our implementation of the kernel density estimator, the

effect of a too small bandwidth is avoided by verifying that enough points (at least

1% of the sampled prior) are present in the direct surrounding of the reduced data

(dcobs ± 3× bandwidth). To perform the test presented in this bandwidth analysis,

this safeguarding measure was disabled. In the case the default bandwidth is too

small, then, the bandwidth is multiplied by 2 and the verification is made again

until the criterion is satisfied and only then, the kernel density estimation is per-

formed. We ran BEL1D with a bandwidth set to 10−5 and the safeguard algorithm

enabled. The obtained result is here similar to the one obtained with a suitable

bandwidth as is shown by the diamonds in the graph presenting the evolution of

the normalized standard deviation in Figure 4.16.
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Figure 4.16: Impact of the bandwidth in the kernel density estimation on the pos-
terior distribution. The top graph presents RMS evolution, while the two bottom
graphs show (from left to right) the normalized mean value and the normalized
standard deviation. This latter also presents results obtained with the safeguarding
measure enabled (diamonds) for the most extreme case: a bandwidth of 1E-5.



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 81

4.2 Application: sNMR multi-central configuration

In this section, we will use the newly built algorithm to demonstrate the improved

accuracy of 1D sNMR with the multi-central configuration.2 We will use BEL1D

on a synthetic dataset with both the classical configuration and the multi-central

configuration with the idea to demonstrate the advantage in sensitivity gained from

the multi-central configuration. This example also demonstrates the potential of

BEL for experimental design purposes (Thibaut et al., 2021), although the exper-

imental design framework would require to repeat the experiment for several true

models (Thibaut et al., 2021).

4.2.1 The multi-central configuration

Classically, sNMR surveys are using coincident loops. However, even though those

are very efficient to gather information at depth, those lack in sensitivity to the

shallow subsurface. To circumvent this, Behroozmand et al. (2016) proposed the

central-loop configuration: injecting on the outer loop and measuring the resulting

signal on a smaller, central, antenna. This resulted in a higher sensitivity to shallow
2The results presented in this section have been partly published in Journal of Applied Geo-

physics (Kremer et al., 2020). The part presented here is mainly related to (and extends) my
contribution to the paper. The different authors contributed to:

• Data acquisition: Thomas Kremer, Mike Mueller-Petke, Raphael Dlugosch and Hadrien
Michel.

• Data processing: Thomas Kremer - advices: Trevor Irons, Mike Mueller-Petke and Raphael
Dlugosch.

• Resolution analysis and inversion work: Thomas Kremer, Mike Mueller-Petke, Raphael
Dlugosch and Hadrien Michel - advices: Frédéric Nguyen and Thomas Hermans

• Discussion: all contributing co-authors

• Writing: Thomas Kremer

• Proof-reading: all contributing co-authors
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Figure 4.17: Comparison of the classical coincident configuration and the multi-
central configuration in sNMR

layers. The multi-central sNMR configuration (Kremer et al., 2020) is an iteration

over the central-loop (Figure 4.17). The idea is to benefit from both the coincident

loop and the central-loop at the same time. This enables to gain sensitivity to the

shallow subsurface, due to the presence of the central-loop. However, we do not lose

sensitivity at greater depths as we still use the coincident loop. This also maximizes

the data that is collected on the field during a single injection.

Figure 4.18 shows an example of the three sensitivity distributions associated

with a multi-central loop configuration where the transmitter/receiver (Tx/Rx) loop

is 50 m in diameter (1 turn), and the 2 smaller receiver loops are respectively 25 m

in diameter (2 turns) and 10 m (4 turns) in diameter. The first graph corresponds to

the classical 1D kernel shape observed for classical coincident loop configurations,

whereas the others show the quite specific shapes of the central-loop configura-

tion, where high sensitivity values are present close to the surface, also shown by

Behroozmand et al. (2016).
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Figure 4.18: Sensitivity kernels values associated with the multi-central-loop con-
figuration. All kernels have been computed with MRSMatlab, assuming a resistive
Earth. The scale is normalized for every kernel. The total of the kernel for each
depth is presented in dashed white lines.

4.2.2 Application of BEL1D

We applied the BEL1D method to investigate the interest of the multi-central-loop

on a synthetic example. The model will represent a case typical of peatlands: a

first layer (the peat, 2.5 meters) with a very high water content (25%), lying above

a thick aquitard (1 to 3% water content), interrupted by an aquifer (10% water

content) present at a depth between 50 and 70 meters. We use the multi-central

configuration presented before. A 5 nV Gaussian noise was added across the board.

The datasets were simulated with MRSMatlab, under the assumption of a resistive

Earth.

In order to apply BEL1D, we must first define the extent of the prior model

space. We will assume known that the model is composed of three layers, and use

uniform distributions for the remaining parameters as described in Table 4.4. We

sampled 10000 prior realizations and simulated their associated datasets according
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to the sensitivity kernels, in order to replicate the “true” experiment. Then, we

produced the posterior distributions of models by constraining the result of CCA to

the knowledge of the benchmark dataset, enabling the production of models from

the posterior model space constrained to the knowledge of the data.

Thickness [m] Water content [%] Relaxation time [ms]
Min. Bench. Max. Min. Bench. Max. Min. Bench. Max.

Layer 1 0 5 10 10 25 40 0 250 400
Layer 2 20 45 60 0 3 10 0 70 400

Half-space / / / 0 1 10 0 50 400

Table 4.4: Description of the synthetic model used for the sensitivity demonstration
along with the prior model

The results of those computations are presented in Figure 4.19. There, we can

clearly see that the resulting uncertainty is lower for the multi-central configuration,

than it is for the classical coincident loops. This is explained by the higher sensitivity

towards shallow layers, containing most of the water in this example.

The improvements in the uncertainty reductions are more pronounced for the

water content and thickness of the first layer. This layer has a relatively low sensit-

ivity overall using the coincident configuration (see Figure 4.18). Here, the central-

loop is crucial for the added information about the peat layer. We can also note

that the estimate is, at worst, similar for all the parameters. This indicates that

the experiment does not reduce the sensitivity to some parameters.
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Figure 4.19: Posterior model space on the peatland synthetic case. The posterior
obtained with the coincident configuration is in yellow and the multi-central con-
figuration in blue.
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4.3 Conclusion

We propose an adaptation of the Bayesian Evidential Learning framework as a

new tool for the unidimensional interpretation of geophysical data called BEL1D.

This approach offers an alternative to stochastic inversions, as it requires fewer and

simpler computations, thus a lowered CPU cost. This approach is also presented as

an alternative to deterministic inversions as its behaviour is superior both in terms

of ease of implementation and completeness of the results (handling properly non-

uniqueness, quantifying the uncertainty, etc.). We therefore developed this method

theoretically, as a new general algorithm.

The framework does not require the use of regularization parameters or any

other form of bias, but rather requires the proper definition of the prior model

space. Contrary to other Bayesian methods, the use of a large prior model space

(hence, introducing less bias in the posterior information) does not involve heav-

ier computations to converge, as the algorithm is always building in one step the

posterior model space that corresponds to the observed data (see, 4.1.2.4). This

method can therefore be considered unbiased if the prior model space is sufficiently

large. BEL1D is thus a computationally efficient alternative to stochastic inversions

as it only requires n forward models corresponding to the prior samples. Moreover,

in BEL1D noise is considered via an embedded theoretically based method, con-

trary to classically used high regularization parameters that lack a theoretical basis

to be properly assessed and are therefore difficult to estimate.

When compared to McMC methods (such as DREAM), one of the key advant-

ages of BEL1D is the traceability of all operations. When McMC classically applies

random changes to the models and select them randomly, BEL1D constitutes a cor-

relation between model parameters and the data. This means that one could seek



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 87

for the origin of all the posterior models in the prior model space. This enables,

for example, to efficiently sample multi-modal distribution or to understand the

origin of odd models in the posterior distribution (see the numerical example), im-

possible to track back in McMC algorithms. The other key advantage is the simpler

tuning to convergence of BEL1D compared to DREAM (McMC). In DREAM, it

was required to change the dataspace to enable convergence towards reasonable (or

even correct) posterior distributions. In BEL1D, as long as the prior is correctly

assumed, the only parameter that the user needs to take care of is the number of

models to sample in this space. As shown in the discussion, this parameter can

be selected by observing the stabilization of the posterior distributions, and can

therefore be solved by sequentially increasing the number of sampled models. In

DREAM, the application without changes in the dataset representation leads to

either nearly no reduction of uncertainty (using the RMS as a proxy of the prob-

ability) or to a reduction towards level of uncertainty close to deterministic values

but without the true model inside the posterior (using all data points as proxy of

the probability). Therefore, applying this method to an unknown dataset might

lead to erroneous interpretations, whereas BEL1D, even if producing slightly larger

uncertainties, should always predict consistent posterior spaces.

We demonstrated that BEL1D is efficient for the interpretation of sNMR data.

We presented results for noisy datasets originating from a numerical model and

field. In both cases, we validate the results from BEL1D, either against the test

values from the model and McMC methods - DREAM (Vrugt, 2016) - for the

numerical example or other geophysical experiments and classical state-of-the-art

inversion techniques for the field case. On the other hand, the careful analysis

of the RMS error of the proposed models indicates that the range of uncertainty

delivered by BEL1D is intrinsic to the non-unicity of the solution for geophysical
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inverse problems: many models explain the data to the same level.

We also presented an application of BEL1D to the new sNMR multi-central

configuration (Kremer et al., 2020). In this example, we show how this new con-

figuration is superior to the classical design (coincident loops). This example also

shows the ability of BEL1D to deal with more complex models (4 layers with 2

parameters each) and datasets. It also indicates that BEL (and BEL1D) is well

suited for experimental design. Indeed, by comparing the results of BEL1D from

multiple experiments and multiple probable models from the prior, it is possible to

diagnose the best design for the objective at hand, similarly to what the work of

Thibaut et al. (2021) explored.

In terms of performance, the computation cost of BEL1D is directly proportional

to the efficiency of the forward model and the number of samples in the prior model

space. It must be noted that the prior samples being independent, the simulation

of synthetic data can be fully parallelized. The performance of BEL1D can thus be

easily estimated from the available computing facilities. The cost is therefore much

smaller than with other stochastic methods requiring ten to hundreds thousands

of runs to converge towards a solution. Moreover, computation time could be dra-

matically reduced by pre-field forward modelling operations for large geophysical

campaigns where the prior would be similar. Prior realizations and the associated

datasets would then be reused (PCA and CCA operations also), leaving only the

kernel density estimation, sampling and back-transformation operations to be ap-

plied after field acquisition, leading to extremely rapid imaging. This is an extreme

advantage compared to other stochastic methods that rely on the data misfit (such

as McMC) to sample the posterior.

Those applications, along with the pendulum case presented in Appendix A,

demonstrate the versatility of BEL1D and its applicability to multiple cases with



BAYESIAN EVIDENTIAL LEARNING 1D IMAGING 89

very few adaptations. Provided that a forward model already exists, the adaptation

of the codes to any other 1D geophysical method would be straightforward. For

example, the forward operator from HV-Inv (García-Jerez et al., 2016) could be

used for the interpretation of H/V data. System calls may also help to further

extend the applicability of BEL1D. This may be the case for the use of all the 1D

forward operators implemented in pyGIMLi (Rücker et al., 2017) - vertical electrical

sounding, frequency- and time-domain electromagnetic and magnetotelluric.

In its present version, BEL1D is dedicated to the 1D inversion of geophysical

data in layered Earth model where the contrast between layers is supposed to be

sharp. In the future, we plan to extend the method to smoothly varying systems

accounting for numerous thin, correlated layers.
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Chapter 5

Improving the posterior estimate

through Iterative Prior Resampling

Chapter 4 showed that BEL was able to identify correctly the posterior. However,

we found that BEL1D tends to overestimate the uncertainty in some cases. In this

chapter1, we will present a way to improve the precision and accuracy of BEL1D

through iterations on the prior (Iterative Prior Resampling - IPR).

1The results presented in this chapter are published in the paper entitled: Iterative Prior Res-
ampling and rejection sampling to improve 1D geophysical imaging based on Bayesian Evidential
Learning (BEL1D) (Michel et al., 2022). The contributions of the different authors are:

• Code development: Hadrien Michel - advices: Thomas Hermans and Frédéric Nguyen

• Bayesian inversion: Hadrien Michel - advices: Frédéric Nguyen and Thomas Hermans

• Parametric analysis: Hadrien Michel

• Writing: Hadrien Michel

• Proof-reading: all contributing co-authors

The results are also built upon results published in an extended abstract to SEG2020 entitled:
Improving BEL1D accuracy for geophysical imaging of the subsurface (Michel, Hermans, Kremer
& Nguyen, 2020). The contributions of the different authors are:

• Code development: Hadrien Michel - advices: Thomas Hermans and Frédéric Nguyen

• Bayesian inversion: Hadrien Michel - advices: Frédéric Nguyen, Thomas Hermans and
Thomas Kremer

• Writing: Hadrien Michel

• Proof-reading: all contributing co-authors
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Those improvements are required with large priors, and with poor correlations

between the models and the data in this initial prior. Indeed, a large prior can mix

models that have different data aspects and thus lead to a poor correlation between

models and data. We will illustrate the results using seismic surface waves, that

are usually prone to low data-model parameters correlation due to the presence of

insensitive parameters in the prior (Xia et al., 1999). However, the code developed

is not limited to this application, and a sNMR example will also be presented.

5.1 Introduction

In this chapter, we are using Bayesian Evidential Learning (BEL) (Scheidt et al.,

2018) to solve the inverse problem of retrieving 1D shear waves velocity profiles

from dispersion curves efficiently. This approach is at the crossing between Ma-

chine Learning and Bayesian inversion since it requires a learning phase, allowing

to approximate the Bayesian problem in a reduced dimension space by developing

a statistically significant relationship between data and predictions. This linearized

statistical relationship between data and predictions is based on a canonical correl-

ation analysis in reduced dimensions. It has seen several applications in geosciences

from oil field production prediction (Satija et al., 2017) to hydrogeological pre-

diction of wellhead protection areas (Thibaut et al., 2021) and hydrogeophysical

modelling of heat transport (Hermans et al., 2018; Hermans et al., 2019). BEL

was originally designed as a prediction-focused approach applied to time dependant

processes, circumventing the need to estimate the posterior distribution of model

parameters by inversion. In Chapter 4 (also, Michel, Nguyen et al., 2020), we intro-

duced a new variation of BEL that enables instantaneous uncertainty quantification

of static subsurface model parameters (1D imaging) together with a global sensit-
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ivity analysis and validated the approach on surface Nuclear Magnetic Resonance.

The approach has also been tested on time domain electromagnetic (TEM) data-

sets (Ahmed et al., 2021). In addition to the low computational cost associated

with predicting 1D models, associated uncertainty, and the global sensitivity that

BEL1D provides, it also enables tracking posterior models and identify unexpected

models in the posterior.

A drawback of BEL1D lies in the overestimation of the uncertainty from the prior

model space to the posterior model space for some low sensitivity parameters of the

models (Michel, Hermans, Kremer & Nguyen, 2020). This often happens when the

relationship obtained between the predictions and the data is not properly linear-

ized for example when dealing with large prior uncertainty (Hermans et al., 2019;

Michel, Hermans, Kremer and Nguyen, 2020; Ahmed et al., 2021). This uncertainty

overestimation has been encountered previously in Bayesian frameworks (Jeong et

al., 2017; Mariethoz et al., 2010; Dosne et al., 2016 or J. Park and Caers, 2020).

To address this issue, Iterative Spatial Resampling (ISR) (Jeong et al., 2017; Mari-

ethoz et al., 2010) proposes augmenting the prior with new information drawn from

the posterior at the previous iteration. Sampling Importance Resampling (SIR)

(Dosne et al., 2016) assign new loads to the prior (changes the statistical distribu-

tion that describes it) according to previously drawn models and their likelihood

in McMC. These algorithms are often introduced to achieve better convergence of

Bayesian approaches when dealing with large prior uncertainty, as is often the case

in geophysics. More recently, J. Park and Caers (2020) proposed in the framework

of Bayesian Evidential Learning to update the uncertainty of data and prediction

variable, by using the obtained posterior models as prior models for the next it-

eration after running forward functions on the obtained posterior samples. The

iterative procedure is stopped when the error in fit decreases below some specified
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threshold.

In this contribution, we propose a resampling algorithm based on J. Park and

Caers (2020), named Iterative Prior Resampling (IPR), to reduce the overestima-

tion of the uncertainty. Here, IPR iteratively improves the posterior distribution

by adding a sub-sample of posterior models from the previous iteration to obtain a

“better informed” prior, improving the learning phase of the algorithm and leading

to an improved quantification of the uncertainty. We show that the combination

of BEL1D with IPR significantly improves the precision of BEL1D but is not suf-

ficient to reach an uncertainty similar to McMC approaches. To further reduce

the overestimation of the posterior distribution, we propose to apply a rejection

sampling algorithm to the models obtained at the last iteration to reach a more

accurate estimation. By comparison with McMC, we show that this approach is

converging towards the posterior model space while still having reasonable compu-

tational times. In this chapter, we demonstrate the approach on the case of the

dispersion curve from seismic surface waves and present the case for surface Nuc-

lear Magnetic Resonance, although BEL1D can be applied to any 1D geophysical

inversion scheme.

5.2 Methods

5.2.1 Iterative Prior Resampling

Iterative Prior Resampling (IPR) within BEL1D consists in adding a given number

of the models sampled from the estimated posterior to the prior and rerunning all

the BEL1D operations from this new augmented prior (Fig. 5.1). The number of

models to be added is derived from a mixing ratio, which defines the proportion

between the numbers of models added from the posterior compared to the number
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of models in the initial prior. Since BEL1D approximates the Bayesian problem in

a reduced space where learning operations occur, IPR is designed to improve the

quality of the uncertainty estimation by enabling a better correlation between the

model parameters and their corresponding datasets. IPR increases the number of

models compared to a uniform distribution in the region of the prior space where

the posterior distribution shows a higher probability density.

This algorithm is inspired by proven methods like ISR (Jeong et al., 2017; Mari-

ethoz et al., 2010) and SIR (Dosne et al., 2016) which indicate that improving the

prior knowledge iteratively does reach convergence towards the actual posterior. As

is the case with BEL1D (Michel, Nguyen et al., 2020), we cannot prove that IPR

converges towards the actual posterior model space, even though previous studies

showed empirically that the results are comparable to McMC (Michel, Nguyen et

al., 2020) and rejection sampling (Satija & Caers, 2015). We will thus empirically

demonstrate that the method converges towards a posterior distribution similar to

classical Markov chain Monte Carlo approaches (see section 5.3.1).

To stop the iterative process, the Kolmogorov-Smirnov distance (KS) (Thas,

2010) between the univariate model parameter distributions at the current and

previous iterations is used by defining a threshold on the similarity between the

posterior distributions at two successive iterations. If this is not reached after 100

iterations, the algorithm stops. The computations are conducted in a normalized

space to avoid giving too much importance to some parameters due to their high

relative magnitude. The threshold is defined through empirical testing on multiple

distributions with a probability of falsely rejecting the null hypothesis (the two

distributions are not equal) lower than 5%. The KS distance has the advantage to

be computed on the cumulative distributions functions, hence is normalized (Thas,

2010). This ensures that the distance may be used even if the obtained distributions
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Figure 5.1: Illustration of the principle of Iterative Prior Resampling. The mixing
ratio in this figure would be the ratio between the area in green and the area in
orange in the “informed prior” graph. As a final step once the IPR algorithm has
converged, we apply rejection sampling.
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are not Gaussian. The threshold is thus only varying with the number of models in

the compared distributions.

5.2.2 Rejection Sampling

Once IPR has converged, as a final step, a rejection sampling algorithm, accounting

for data misfit, further improves the estimated posterior. This algorithm consists

of a Metropolis Sampler applied to the models from the last iteration of IPR. This

algorithm differs from an McMC approach fundamentally, as it re-samples models

out of a set of already sampled models (the posterior distribution after IPR) contrary

to generating new models from perturbations of previously accepted models.

1. For all models from the sampled posterior, compute the likelihood from the

field data and the simulated data according to equation 5.1 (Vrugt, 2016).

L(m|dobs,σ
2) =

n∏
i=1

1√
2πσ2

i

× exp

(
−1/2

(
dobs,i − di(m)

σi

)2
)

(5.1)

In equation 5.1, m is the tested model, dobs is the observed field data of

dimensionality (1× n), d(m) is the simulated data for the current model m

and σ2 is the estimated Gaussian data variance (of dimensionality (1 × n))

(Vrugt, 2016).

2. Initialize a counter for the number of rejected models to 0.

3. Select a random model (m0) out of the samples with a likelihood λ0. The first

model is always accepted.

4. Select another random model (m1) with a likelihood λ1 and compute the ratio

between the two likelihoods: r = λ1/λ0.
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(a) If r > U(0, 1), accept the model m1, replace λ0 with λ1 and reset the

counter to 0.

(b) Else, reject the model m1 and increase the counter of rejected models by

1. If the counter of rejected models is higher than 20, accept the model

m1, replace λ0 with λ1, and reset the counter to 0.

5. Select another random model m1.

6. Repeat the operations of the 4th and 5th points until all the models have been

analysed.

In practice, this step allows to remove the models of the posterior that are not

fitting the data, i.e. which have a low likelihood. The order of the models is taken

randomly to avoid introducing any bias in the computation. Assuming that the

datasets corresponding to these models are already computed to calculate their

Root Mean Square Error (RMSE), the computation of the likelihood and rejection

sampling is straightforward.

5.2.3 Surface Waves Forward simulation

Seismic surface waves (see Chapter 2, Subsection 2.1.4) datasets are often reduced

to dispersion curves. Here, we use a Python port of sdisp96 from surf96 (PySurf96)

(Herrmann, 2013) to compute the dispersion curves (the data d) of 1D models,

and we demonstrate our approach on the fundamental mode. The models m are

expressed in terms of layer thicknesses, P-wave velocity (VP ), S-wave velocity (VS)

and density (ρ). Since surface waves are mostly sensitive to S-wave velocity (Xia et

al., 1999; B. R. Cox and Teague, 2016), a link between VP and VS can be considered

through the Poisson’s ratio (σ) (Equation 5.2) (see e.g. Wathelet, 2008).
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VS = VP ×
(
0.5− σ

1− σ

)1/2

(5.2)

In order for BEL1D to run accounting for potential uncertainties in the datasets,

we use the frequency-dependent error model proposed by Boaga et al. (2011) :

ϵ(V, f) = A× V +B/f (5.3)

With V the velocity, f the frequency, A [km/s] and B [s] two parameters that can

be tuned according to the noise level. In this thesis, we use A = 0.075km/s and B =

20s. Those values are empirically selected to accurately represent the uncertainty

arising from the different experts interrogated during the InterPACIFIC project

(Garofalo, Foti, Hollender, Bard, Cornou, Cox, Ohrnberger et al., 2016; Garofalo,

Foti, Hollender, Bard, Cornou, Cox, Dechamp et al., 2016) in the Mirandola case

(see section 5.4 for more details). We will use the same model for the synthetic

benchmark and the field validation (the previously mentioned Mirandola test case).

5.3 Synthetic benchmark

We first apply iterative prior resampling with rejection sampling to a synthetic

surface wave’s dataset generated from a model where only the shear-wave velocity

profile is unknown. The other parameters (compression waves velocities and dens-

ities) are fixed mainly for visualization and comparison purposes. This simplifying

assumption is later released. All the computations are performed on Windows 10

with an Intel Core i7-6800K running at stock with 64 GB of RAM at 2400MHz.

The benchmark model that we are selecting consists of two layers overlying a

half-space (Table 5.1).
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Table 5.1: Benchmark model description

Thickness S-wave velocity P-wave velocity Density
(th) [m] (Vs) [m/s] (Vp) [m/s] (ρ) [kg/m3]

Layer 1 10 120 300 1500
Layer 2 50 280 750 1900

Half-space / 600 1500 2200

We are considering a noisy dataset with the noise distribution described in Equa-

tion 2. The frequency range that we use is between 1.25 Hz and 32Hz.

For the prior model space, only the thicknesses (thi) and S-wave velocities (Vs,i)

are varying. We use a uniformly distributed prior with ranges for Vs that are selected

to obtain physically consistent Poisson’s coefficient for all layers when considering

the benchmark values for Vp. Therefore, we do not need to enforce specific conditions

to ensure a valid range of Poisson’s coefficient which is useful for McMC, where

imposing relationships between parameters is complex. We define the prior on the

five parameters with BEL1D in Table 5.2. The ranges for the uniformly distributed

parameters are selected voluntarily to reflect a large prior uncertainty.

Table 5.2: Description of the uniformly distributed prior model space for the bench-
mark.

Thickness (th) [m] S-wave velocity (Vs) [m/s]
Minimum Maximum Minimum Maximum

Layer 1 1 30 100 180
Layer 2 10 100 250 450

Half-space / / 500 900

This prior is automatically falsified in the BEL1D algorithm. When projecting

the data into the CCA reduced space (dCobs, represented by the red lines in Figure 5.2

C to F), the position is compared to the kernel density estimation of the distributions

f(dci ,m
C
i ). If the position of dCobs lies inside the probable parts of the distributions

(between the 1% and 99% percentiles), the prior is accepted. Otherwise, the dataset

is declared outside the prior and the algorithm stops automatically. Here, BEL1D
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was initially run with 1000 models in the prior and progressively augmented with

1000 models at each IPR iteration (mixing ratio of 1). In the following benchmark

study, we first present the improvements brought by the iterative resampling scheme

and analyse its iterative behaviour in terms of uncertainty reduction and posterior

estimation accuracy and compare it with the posterior estimated from McMC. We

then show how the rejection sampler allows filtering the posterior by accounting for

the data misfit. As an alternative, we show how the approach can also be used to

define a pre-posterior before running McMC. Finally, we proceed with a parametric

study of the algorithm.

5.3.1 Results and McMC comparison

In this section, we first show how the IPR approach allows to reduce the uncertainty

of the posterior distribution compared to the original BEL1D algorithm. The im-

provement in the statistical correlation and the disentanglement of the model para-

meters in the reduced dimension brought by IPR is shown in Figure 5.2. Figure

5.3 shows the reduction of uncertainty in the posterior distribution over the prior

space for the original BEL1D algorithm. We note that the estimated uncertainty re-

mains large with a significant proportion of posterior models showing large RMSE.

This modest uncertainty reduction is due to the poor relationship that we observe

between the model parameters and the reduced data spaces (Figures 5.2 C and

E) after one iteration. The higher dimensions, containing less sensitive parameters

(Michel, Nguyen et al., 2020) display a large scattering, and hence a poor correla-

tion. The first iteration therefore fails to resolve less sensitive parameters. In this

case, as seen in Figure 5.2 (A), the different parameters are entangled in the dif-

ferent dimensions, indicating that all the parameters are similarly informed by the

dataset given the obtained posterior.
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Figure 5.2: Visualization of the CCA space relationship between the models’ para-
meters and the reduced data. A and B represent the relative contributions of all
the models’ parameters to the different CCA dimensions at (A) the first and (B)
the last, 18th in this case, iterations. C and D represent the relationship for the
first CCA dimension at (C) the first and (D) the last iterations. We present the
same for the fifth dimensions in E and F for the first and last iterations respectively.
In those figures, the vertical red bar represents the actual position of the data in
the reduced data space (solid line) along with the noise propagated (dotted lines
representing +/- 1, 2 and 3 standard deviations). The PDFs represented on the
left are the kernel density estimated probability density functions of the reduced
model’s parameters given the dataset. We use those to sample back models from the
estimated posterior. The narrower those distributions, the narrower the obtained
posterior in the original model space.
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The implemented iterative procedure allows a substantial reduction of uncer-

tainty from the prior (yellow in Figure 5.3D) to the posterior at the last iteration

(blue in Figure 5.3D) and a disentanglement of the model parameters in the reduced

dimension (Figure 5.2 B). The improvement of the statistical relationship that is

learnt through the procedure is evident from the comparison between Figures 5.2C

and 5.2D (dimension 1, mostly sensitive to the thicknesses) and between Figures

5.2E and 5.2F (dimension 5 where all parameters are entangled but where the cor-

responding velocities dominate). Moreover, the posterior is more accurate with

iterative resampling than without. The posterior models are shown as 1D profile in

Figure 5.3 with their RMSE on the dataset as colour scale. As can be seen, most

models of the posterior are fitting the data within their noise level, but some models

with a high RMSE remain.

Figure 5.4 shows the evolution of the different parameters with the iterations.

The mean value of the posterior for the first iterations are far away from the ac-

tual values and fall outside the likely part of the distribution for some parameters,

with a corresponding too large uncertainty. IPR proves efficient in improving the

accuracy of the posterior and in reducing its uncertainty due to the improved correl-

ations between the data and the parameters (Figure 5.2), especially for the higher

dimensions.

Since BEL1D (with or without IPR) does not theoretically ensure convergence

towards the actual posterior, we benchmark our results with an McMC algorithm:

a Metropolis sampler with on-the-fly adaptation of the scaling factor (Vrugt, 2016)

(Figure 5.5). We can see that our implementation delivers an accurate estimation

of the posterior mean but that the uncertainty is still overestimated. Note that

BEL1D and IPR results were obtained in less than 5% of the time it took the McMC

algorithm to converge and required only 3% of the number of models sampled by
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Figure 5.3: Results of BEL1D before (A and B) and after applying IPR (C and D)
on the benchmark case. (A and C) Visualization of the obtained 1D profiles along
with their associated RMSE and (B and D) comparison of the prior (yellow) and the
posterior (blue) model space for the different variables of the models. The scale for
the RMSE is linear, but we built the colour scale to represent percentiles, with each
colour representing as many models as the others. The RMSE corresponding to the
noise level is 0.026 km/s. Eighteen iterations were required to achieve convergence
based on the KS distance in this specific case. They took under 20 seconds to run
on the test computer.
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Figure 5.4: Analysis of the convergence of IPR. The solid blue lines represent the
mean for the corresponding distributions, the dashed lines the mean +/- the stand-
ard deviation and the red lines represent the actual benchmark value that we are
searching.



IMPROVING THE POSTERIOR ESTIMATE THROUGH IPR 106

the McMC algorithm. In addition, McMC clearly identifies a strong correlation

between parameters, e2/vS,2 being the most pronounced. The results obtained by

using IPR on BEL1D show the same correlation, but it is partly hidden by outliers

in the distribution. Since BEL1D does not require the data misfit or the likelihood

of a model to determine if the sampled model from the posterior distribution is

accepted or not as opposed to McMC, some models with high RMSE values are

sampled. This can be observed in Figure 5.3C where the uncertainty range is

impacted by sampled models having a high RMSE. It is thus inherent to BEL1D

to find outliers that would be discarded in an approach that is based on the data

misfit (or the likelihood) and is a result of the approximation of the inverse problem

in the low dimensional space.

To account for this limitation, we propose to apply rejection sampling to the

models that are present in the sampled posterior model space in Figure 5.5. Rejec-

tion sampling allows getting rid of highly unlikely models with high RMSE (or low

likelihood) and to generate results much closer to the McMC benchmark with little

computational efforts (1 sec in this case). After rejection sampling, the correlations

that exist between the parameters are clearly identified.

Even though rejection sampling is very compelling as a quick approach to refine

the obtained distributions, it does not provide the exact posterior model space. We

therefore propose another approach to obtain the exact posterior distribution: we

use the posterior obtained from BEL1D and IPR as the prior for a classical McMC

approach. The results of this approach are presented in Figure 5.6. Using this ap-

proach, the retrieved posterior distribution is similar to the one obtained by McMC

with the original prior. In terms of computation time, all proposed approaches sig-

nificantly reduce computation time compared to McMC on the original prior (which

takes 490 sec). BEL1D + IPR takes 20 sec (4% of the McMC) while BEL1D + IPR
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Figure 5.5: Improvements obtained by using rejection sampling after IPR. The
results are compared to the results obtained by an McMC algorithm applied on the
prior model space (green).
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+ McMC takes 125 sec (25.5%). Nonetheless, applying rejection sampling provides

the best compromise between accuracy and computation time as it only takes one

second to compute after BEL1D and IPR for a total of 21 sec (less than 4.5% of

the time for a standard McMC approach).

In summary, BEL1D when combined with IPR already provides a rapid first

estimation of the posterior model space but overestimates the uncertainty (Figure

5.3). When combined with rejection sampling (obtained at a negligible CPU cost)

the obtained distribution mimics the behaviours of the results from an McMC ap-

proach, but small discrepancies remain (Figure 5.5). Therefore, if one wants to

improve even further the estimation of the posterior model space, it is possible to

use the posterior obtained through the BEL1D + IPR workflow as a pre-posterior

for an McMC approach that will provide an accurate estimation of the posterior

(Figure 5.6) while still being faster to converge than the application of the McMC

approach to the original prior.

5.3.2 Parametric study of iterative prior resampling

Here, we sequentially study the influence of key parameters in the proposed meth-

odology. First, we discuss the impact of the number of models in the original prior

and the mixing ratio nposterior,add/nprior,init between the posterior to add to the prior

and the initial prior. We will analyse their impact on key aspects of the posterior

estimation and on the computation time, since it is crucial to remain under a reason-

able threshold in order for the method to remain attractive. We are using different

indicators to analyse the impact of the parameters. First, we use the normalized

difference between the mean of the obtained posterior distribution and the actual

benchmark value. Then, we use the reduction of the standard deviation from the

prior model space to the posterior model space. Again, we normalize this reduc-
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Figure 5.6: Improvements obtained by using McMC after IPR. The results are
compared to the results obtained by an McMC algorithm applied on the prior
model space (green).
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tion for visual purposes. Finally, we are recording the needed computational time.

We repeated each test 10 times to account for natural variability of the Bayesian

process (standard deviation of the indicators presented with error bars).

By default, the number of models in the initial prior corresponds to the number

of models to be sampled in the posterior which can be defined by the user, cor-

responding to a mixing ratio of 1. The number of sampled models can increase or

decrease to reach the required mixing ratio that can also be defined by the user.

However, the initial number of models sampled in the prior still largely governs the

convergence of the algorithm, as it controls the accuracy of the algorithm in the

early iterations (Michel, Nguyen et al., 2020).

The results of the analysis is presented in Figure 5.7 (first column). There is

clearly an impact of the number of models in the prior on the convergence of the

algorithm. For a low number of models sampled in the prior, we can see that the

prediction is neither precise (Figure 5.7 – A), nor accurate (Figure 5.7 – C): the mean

of the posterior is not properly estimated, and the uncertainty is overestimated.

Above 500 models sampled, we see that the behaviour stabilizes itself towards a

more precise and accurate prediction. This means that choosing any value above

500 for the number of models in the sampled prior model space is conservative.

This behaviour is related to the requirement to sample enough models to properly

learn the relationship in the low dimensional space. Otherwise, the first iteration

will not identify properly the region of the prior that should be resampled, adding

inappropriate models to refine the posterior and resulting in a prior not consistent

with the data.

When analysing the impact on the computation time (Figure 5.7 – E), we note

that the time is only increasing linearly, which indicates the order of complexity of

the algorithm being approximately O(n), n being the number of models sampled
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Figure 5.7: Impact of the number of models in the sampled prior (first column)
and of the mixing ratio posterior/prior (second column). From top to bottom, (A
and B) the accuracy of the obtained estimation (Euclidean distance between the
mean of the obtained posterior distribution and the benchmark model, normalized
by the initial prior standard deviation), (C and D) the precision of the obtained
estimation (ratio of the obtained standard deviation for the posterior estimation
and the initial prior standard deviation) and (E and F) the computation time. For
each value presented on the graph, the computations where performed ten times to
estimate the run-to-run standard deviations (error bars). None for the mixing ratio
means adding everything that is sampled without taking care of the ratio.
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in the prior. Therefore, we should stick to the lower values for this parameter.

We introduced the mixing ratio in the model to avoid bias in the estimation of

the posterior. This parameter (m) equilibrates the load between the prior and the

posterior. The idea is that at a given moment, convergence will be achieved, not

by reaching a stable posterior, but because perturbations in the prior from IPR

become negligible. For low mixing ratios (Figure 5.7 – B and D), BEL1D converges

towards a poorly resolved mean estimation of the posterior. The number of added

samples is too small to really improve the learning process. From the benchmark,

a mixing ratio around one seems appropriate, since adding more samples does not

change significantly the mean estimation nor reduces the standard deviation, while

remaining reasonably time-consuming. We also add the sampled models from the

posterior at each iteration without taking care of the proportions between one-

another (see ‘None’ in the figures). This leads to similar results globally, with the

noticeable exception of the observed run-to-run standard deviation on the obtained

distributions, which is larger. In terms of computation time (Figure 5.7 – F), we

observe that the time increases with the mixing ratio. This increase in time is due

to the increased number of models that need to be computed in order to satisfy

the mixing ratio. It is also observable that the CPU time required is similar with

a mixing ratio of “1” and no mixing ratio (“None”). Therefore, we advise to use a

mixing ratio of one for an optimal behaviour control.

The parametrization of the prior model space has typically an important impact.

We analyse the impact of having 3 (the above benchmark model), 4, 5, 6 and 7 layers

defined in the prior. For each case, we use the same type of parametrization as in

the benchmark. Hence, we only take into account the n-1 thicknesses and n s-wave

velocities, n being the number of layers. For the algorithm to work properly with

additional layers (thus more parameters to explore), we increased the number of
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models sampled from the initial prior by multiplying it by 2 for each added layer,

since the models are more complex to explore. This relationship was obtained

through empirical testing. The results are presented in Figure 5.8. We observe that

adding layers in the model slightly increases the uncertainty, which is logical since

the prior uncertainty is larger. Nonetheless, we are still able to retrieve the main

aspects from the model, namely the number of identified layers still remaining 3 for

all the cases, showing that the method does not need a prior constrained to 3 layers

to predict them. Some variations are observed inside the layers, but the estimation

is always skewed at the boundaries between the layers and not in the middle, where

the impact on the dataset is more important. This results in smoother transitions

between layers and is inherent to the non-unicity of the solutions when the number

of parameters increases.

Exploring a larger model space requires more time since more models are needed

in the prior samples (multiplying by 2 for each added layer). In the test case

presented above, the time was approximately doubled for each added layer. This is

linked to the number of models required to cover the full model space and a similar

increase applies to McMC approaches. Nonetheless, in case the number of layers in

the model is uncertain, it can be beneficial to start with a large number of layers to

identify how many layers are necessary to explain the data, and then to run BEL1D

with a reduced number of layers.

5.4 Validation: application to Mirandola field

dataset (InterPacific)

The InterPacific project (Intercomparison of methods for site parameter and velo-

city profile characterization) aimed at assessing the reliability of in-hole and surface
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Figure 5.8: Impact of the number of layers on the obtained posterior model space.
(Top) From A to E with respectively 3 to 7 layers with an increment of one. The
colour scale is unique to every subplot as it represents the obtained probability for
the represented case with each colour representing as many models in the subplot.
The RMSE corresponding to the noise level is 0.026 km/s. (Bottom) Histograms of
the obtained models at specific depths (8 and 50 meters for F and G respectively)
and the estimated depth to the bedrock (H).

wave methods for the estimation of shear wave velocity by comparing the interpreta-

tions obtained from different experts (Garofalo, Foti, Hollender, Bard, Cornou, Cox,

Ohrnberger et al., 2016; Garofalo, Foti, Hollender, Bard, Cornou, Cox, Dechamp

et al., 2016). In this section, we use the mean dispersion curve that arose from these

experts’ analyses of the raw data to demonstrate BEL1D applicability to retrieve

the shear wave velocity profile. We will focus on the case proposed by Garofalo,
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Foti, Hollender, Bard, Cornou, Cox, Ohrnberger et al. (2016) in the Mirandola test-

site located in the Po plain. The site is characterized by soft sediments (sand, clays

and gravels) overlaying a Pliocene bedrock (sand and marine pelite), found at a

depth between 50 and 150 meters (Garofalo, Foti, Hollender, Bard, Cornou, Cox,

Ohrnberger et al., 2016). From this available information, we will assume that the

terrain is composed of three layers: two soft layers, representing the alluvial plain

and its heterogeneity and a third layer representing the bedrock. Above this, we

will impose that the models must have Poisson’s coefficient within the range 0.2 to

0.45 for each layer through added conditions on the prior. Including the Poisson’s

coefficient in the prior would be redundant with the inclusion of either Vs or Vp, as

the knowledge of two out of the three parameters enables the computation of the

third. We made the choice to use Vs and Vp in the prior and to exclude models

that do not correspond to the acceptable range of Poisson’s coefficient. Therefore,

the prior is no longer uniformly distributed across the different dimensions, as some

models are excluded through this added rule. The prior is composed of 11 paramet-

ers: 2 thicknesses (thi), 3 S-waves velocities (Vs,i), 3 P-waves velocities (Vp,i) and 3

densities (ρi). Their uniformly distributed prior distributions are described below:

• th1 ∈ U [5, 50]m

• th2 ∈ U [45, 145]m

• Vs,1 ∈ U [100, 500]m/s

• Vs,2 ∈ U [100, 800]m/s

• Vs,3 ∈ U [300, 2500]m/s

• Vp,i ∈ U [200, 4000]m/s with i = 1, 2 or 3

• ρi ∈ U [1500, 3500]kg/m3 with i = 1, 2 or 3
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As is observed, the prior is very large given the context. This approach is used

to show the capacity to reduce significantly the uncertainty when very few is known

in advance from the site.

In this case, since there are more parameters in the model, we will use a larger

set of models sampled from the prior. We settled on 10000 as being a good trade-off

between fast computations and reliable estimations.

To sample the models, we used uniformly distributed variables with rejection in

order to satisfy the Poisson’s coefficient interval. From the original 60 dimensions of

the data (the 60 couples frequency-phase velocity of the sampled dispersion curve),

PCA reduced the dimensionality to 11, explaining more than 95% of the variability.

In this case, the number of dimensions is constrained by the BEL1D algorithm and

not the variability to explain as, to be able to perform further steps of BEL1D, the

dimension of df (the PCA reduced dataset) must be larger or equal to the one of

mf (= m) (the - potentially PCA reduced - model space).

We propagate the error on the data itself using the propagation process described

in Chapter 4 with the noise model from equation 3. Once noise propagated, we can

sample as many models from the posterior as wanted. Here, since we are iterating

on the prior, we sample a number of models sufficient to satisfy the mixing ratio

fixed to one, as for the previous benchmark case.

After 13 iterations (3min), we obtain the results presented in Figure 5.9 and

Figure 5.10. They clearly show that we are encompassing the uncertainty observed

by the different experts from the InterPacific project (Garofalo, Foti, Hollender,

Bard, Cornou, Cox, Ohrnberger et al., 2016). We can observe multiple interesting

aspects. First, we see that we do not reduce the uncertainty for the densities. This

is coherent with the well-known fact that surface waves have low sensitivities to this

parameter (Xia et al., 1999). On the other hand, we observe that we have achieved
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significant reduction for the parameters of the Vs profile and, to a lesser extent for

the Vp profile. This latter observation is mostly due to the intrinsic link that exists

between Vs and Vp through the Poisson’s coefficient, as the measurement itself is

not particularly sensitive to the compression waves velocities. This is especially

visible in Figure 5.10 where we can see that the range of values for Vp is limited

by the sampled values of Vs for a given layer. In Figure 5.9, we present the results

of the algorithm at different steps. Figure 5.9A presents the results of BEL1D,

where we easily see the large uncertainty in the estimated posterior. If we directly

apply rejection sampling to the results of BEL1D (Figure 5.9B), we reach a better

estimation, but we are still overestimating the uncertainty. Applying IPR (Figure

5.9C) results in a better overall estimation with some outliers still present. Finally,

applying rejection sampling to BEL1D with IPR (Figure 5.9D) removes most of the

high RMSE (low likelihood) models for a very reasonable cost (less than 1 second).

The better estimation is also illustrated in the dataspace for the initial BEL1D

run (Figure 5.9E) and the final BEL1D, IPR and rejection sampling results (Figure

5.9F).

We observe some discrepancies on the bedrock estimations compared to previous

studies. We explain this behaviour by the use of the average dispersion curve as

data, whereas there is a large discrepancy at low frequencies (long periods) for the

dispersion curves used by the different experts (Garofalo, Foti, Hollender, Bard,

Cornou, Cox, Ohrnberger et al., 2016 and Figure 5.9).

We can further validate our approach by comparing the depth to the bedrock

measured in drilling cores (Garofalo, Foti, Hollender, Bard, Cornou, Cox, Dechamp

et al., 2016) to the estimated depth from the proposed numerical process. This

comparison is presented in Figure 5.11. There, we observe that our mean estimation

is slightly underestimating the actual depth. Nonetheless, the measured depth is
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Figure 5.9: Results of BEL1D, IPR and rejection sampling applied to the Mirandola
test case. (A to D) Models of the shear-wave velocity obtained from (A) BEL1D,
(B) rejection sampling applied directly after BEL1D, (C) BEL1D and IPR and (D)
rejection sampling applied after BEL1D and IPR with the colour scale representing
the RMSE. Those figures present also the profiles obtained by the different experts
(overlaid in grey) for the shear-wave velocities (Garofalo, Foti, Hollender, Bard,
Cornou, Cox, Ohrnberger et al., 2016). (E and F) Datasets associated to the
different models (with their RMSE) after (E) BEL1D and (F) rejection sampling
applied to the results of BEL1D and IPR. In white, we present the datasets as found
by the different experts. The colour scale is the same for all the different graphs.
The RMSE corresponding to the noise level is 0.038 km/s.
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Figure 5.10: Results from BEL1D, IPR and rejection sampling applied to the Mir-
andola dataset. The prior models sampled from the prior model space are presented
in yellow and the posterior models from the estimated posterior model space are
shown in blue. The subplots presenting a light correlation between Vs and Vp are
highlighted by red rectangles. This correlation is mainly due to the Poisson’s coef-
ficient that limits the ranges of possible values in the prior.
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close to the mean and still in a high probability area of our estimated posterior.

The relatively large uncertainty is related to the lack of constraints on the bedrock

in the dispersion curve. In this figure, we illustrate once again the need for IPR to

better constrain the posterior model space as only running BEL1D and rejection

sampling results in a quasi negligible uncertainty reduction.

Figure 5.11: Estimation of the depth to the bedrock from BEL1D with IPR (and
rejection). The actual measured depth (Garofalo, Foti, Hollender, Bard, Cornou,
Cox, Dechamp et al., 2016) is displayed in black above the histograms.
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5.5 The case of sNMR

Here, we will use the algorithm presented in the previous sections and apply it

to sNMR data to demonstrate the applicability to other types of data2. We will

apply BEL1D to a synthetic dataset created using MRSMatlab (Müller-Petke et

al., 2016). On purpose, the prior will be large to force the demonstration that it is

rather difficult to converge when very few is known in advance regarding the model.

Table 5.3: Description of the benchmark model and associated uniform prior

Layer number thi [m] Wi [%] T ∗
2,i [ms]

Min True Max Min True Max Min True Max
1 1 25 50 1 5 50 5 100 500
2 1 25 50 1 25 50 5 200 500

Half-space / Inf / 1 10 50 5 50 500

The benchmark model along with the used prior is presented in Table 5.3. The

dataset is simulated using a classical transmitter/receiver configuration with a 50

m diameter. The sampling frequency is 500Hz from 0.005 seconds to 0.5 seconds.

The prior is barely informative, apart from the input knowledge that three layers

can describe accurately the model. By design, the prior has zones where the dataset

cannot be sensitive to the model; hence, it makes estimations of uncertainty even

more complex.

2The results presented in this section were partially presented at the MRS2021 conference
(Michel et al., 2021). The different authors contributed to:

• Code development: Hadrien Michel - advices: Thomas Hermans and Frédéric Nguyen

• Bayesian inversion: Hadrien Michel - advices: Frédéric Nguyen, Thomas Hermans and
Thomas Kremer

• Writing: Hadrien Michel

• Proof-reading: all contributing co-authors
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5.5.1 Results after one iteration

Let us first analyse the results obtained at the first iteration. Since the prior uncer-

tainty is rather large, BEL1D is facing difficulties to retrieve an efficient correlation

between the models and the simulated data. However, we are still able to reduce

significantly the uncertainty on most of the parameters (Figure 5.12).

From the results at the first iteration, we already see that the experiment is

mostly sensitive to the water contents. Then, the relaxation times and, finally, the

layers thicknesses are the least sensitive parameters in this configuration. As is also

expected, the first layer shows a higher uncertainty reduction at the first iteration

for both the water content and relaxation time than the other parameters. This is

due to the higher sensitivity of the experiment to this layer.

5.5.2 Results after applying IPR and rejection sampling

When applying IPR, we are using the information from the previous iterations to

better constrain the prior. This leads to a more coherent reduction of uncertainty.

Observing the results of the last iterations (Figure 5.13), we see that the obtained

distributions tend towards a more accurate posterior.

If we analyse the correlation between the model’s parameters (Figure 5.13),

we observe that there is a significant correlation between the water content of the

second layer and its thickness (Pearson’s cross-correlation of −0.67). This result

is corroborated by the distributions of the total water content (Figure 5.14, top).

There, we observe that, even though the uncertainty on the water content and the

thicknesses remains large, we reduce significantly the total water content.

In this figure, we aim to demonstrate the importance of sampling the whole

ensemble and to take correlations between parameters into account. To do so, we
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Figure 5.12: Results of BEL1D on the synthetic sNMR case.
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Figure 5.13: Results of BEL1D and IPR on the synthetic sNMR case.
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Figure 5.14: Analysis of the impact of correlation on the estimated parameters for
the total observed water content.

compare the results from BEL1D to the same results, but where the link between

the models variables is loosened, producing uncorrelated model parameters. We see

that the correlation that exists inherently between the parameters is crucial to the

model estimation.

Finally, we observe that the gain of the latest iterations is marginal. Knowing

that the latest iterations are also the ones that are the longest to compute (more

models in the informed prior), a user that is interested in a rapid but not especially

precise estimation of the uncertainty could use fewer iterations to gain rapid insight

on the uncertainty.

5.5.3 Improving the results from the Mont Rigi field data

In Chapter 4, we validated the BEL1D approach using a field dataset from the

Mont Rigi natural reserve, in the Belgian Fagnes (Section 4.1.4). Those results

were coherent with previous results from other geophysical methods’ interpretation.
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However, the uncertainty on the model parameters remained relatively large. Here,

we apply IPR to the same field dataset and analyse the resulting model.

Figure 5.15: Results of IPR on the Mont Rigi field case. The different model para-
meters are well constrained and an even stronger correlation between the thickness
of the peat layer and its water content is observed.

From the results in Figure 5.15, we see a strong correlation between the thickness

of the first (peat) layer (e1) and its water content (W1). This result confirms the

observation from the application of BEL1D alone (there is a strong non-unicity of

the solution). However, instead of a limitation of the water content for a given

thickness of the layer, we rather see a more coherent correlation between those two
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parameters, resulting in a similar total water content in the explored system. We

also observe that the parameters of the second layer are much more constrained.

This is due to the very high sensitivity of the experiment to those deep layers,

constituting most of the sNMR signal.

The distribution for the water content of the first layer (W1) obtained through

this algorithm also demonstrates the ability of the algorithm to recover multi-modal

behaviours. Indeed, we observe that two types of models can explain the data, one

being more likely than the other. This behaviour was already observed in the

application from Chapter 4, but IPR preserves this multi-modal aspect.

5.6 Conclusion

In this chapter, we introduce an iterative process and rejection sampler to improve

results from Bayesian Evidential Learning 1D imaging (BEL1D). This process is a

combination of a first iterative step called Iterative Prior Resampling (IPR), aiming

at establishing statistically representative relationships between model parameters

and datasets, and a final rejection sampling test allowing to remove models not

fitting the data from the posterior. Although using IPR deviates from the theoret-

ical basis underlying Bayes rule, we show empirically that this addition to BEL1D

leads to an improved quantification of the uncertainty. Our results indicate that

we obtain posterior estimates from the modified IPR priors that are similar to ones

obtained through McMC using the original prior.

We validate the method using dispersion curves obtained from surface waves

analysis, both for a synthetic case and for an already documented field case (Mir-

andola, see Garofalo, Foti, Hollender, Bard, Cornou, Cox, Ohrnberger et al., 2016).

Contrary to previous applications where the prior was relatively simple and inform-
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ative (fewer parameters, low ranges of prior uncertainty and absence of insensitive

parameters), here, the use of IPR was required to provide a satisfactory posterior

estimation. This is most likely due to the low sensitivity to multiple parameters

from the inverse problem (namely the compression wave velocities and the densities

– Xia et al., 1999) that highly impair the ability to reduce the uncertainty through

BEL1D.

The benchmark with synthetic models shows that the method evolves towards

the posterior model space as estimated by an McMC algorithm. While still slightly

overestimating the posterior uncertainty, the combination of BEL1D, IPR and re-

jection sampling approach seems the best compromise to reach the convergence at

a limited computational cost.

The application to the field dataset validates the approach on a more complex

case. In this example, we show that we are capable of retrieving a set of models

that is coherent with results obtained by different experts and algorithms. We also

show that our results are validated against in-situ field measurements for the depth

to the bedrock and for prior distribution with related parameters. In both cases,

the resulting distributions are not multimodal.

We also show results obtained by applying BEL1D and IPR to sNMR data with

both a synthetic model with a large prior uncertainty and the field case study from

the previous chapter (Chapter 4). Those show the applicability of the algorithm

to other (much denser) data types. They also demonstrated the ability of BEL1D

combined with IPR to obtain multimodal posterior distributions, confirming the

findings on BEL by Hermans et al. (2019).

On the prior design for 1D imaging, we show that, even though using more

layers is less time-efficient, priors with numerous layers converge to a simpler pos-

terior model. This shows that even though prior uncertainty might still be large,
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using many layers remains a feasible approach. Another approach that could be

applied but is not explored here is coupling BEL1D with a regularized smoothed

inversion, or a blocky inversion, to have a first idea of the subsurface configuration

and gather the supposed number of layers from these results. This approach is less

automated and therefore requires a deeper knowledge of the inversion algorithm as

regularization can lead to very smooth models where layers might be difficult to

extract.

In the proposed approach, the rejection sampling step is computationally very

efficient since the likelihood is readily available, and allows retrieving posterior

distributions similar to the ones from an McMC algorithm, with a 95% gain in

computational time. This gain is explained by the limited number of models re-

quired to learn a meaningful statistical relationship between the models and the

data and the full parallelization of the forward computation. This contrasts with

even the most advanced McMC algorithms that are still limited to parallelizing at

most the different chains (in the order of ten), since the knowledge of the previous

model is required to calculate the next models to test. As an alternative, using

the posterior from BEL1D combined with IPR as the prior for an McMC approach

results in faster convergence of the McMC algorithm for similar results. This latter

approach, even though more computationally intensive than the rejection sampling

option, leads to the most precise and accurate approximation of the posterior with

a significant computational gain (75%) compared to a standard McMC approach.
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Chapter 6

General discussion and conclusion

In this manuscript, a new framework for the Bayesian inversion of geophysical data

has been explored. This new framework uses Machine Learning to overcome the

CPU intensive probabilistic inversion of the field data. It relies on the construc-

tion of a statistically significant relationship between synthetic models and their

associated datasets.

In the introduction, we stated four questions that this manuscript aimed at

answering:

1. Is BEL effective to perform the inversion of geophysical data in a probabilistic

framework?

2. What does BEL provide that other techniques do not?

3. Can BEL be generalized to any type of geophysical datasets? What are the

possible caveats?

4. How can we further improve the performances of BEL?

Each of those questions addresses a topic that is key for further developments of

the proposed method.

131
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6.1 BEL for the interpretation of geophysical data

In chapters 4 and 5, we explored our implementation of BEL aimed at the 1D

geophysical imaging of the subsurface. This new implementation is called BEL1D.

In Chapter 4, the BEL1D algorithm is presented. It was applied to both a

numerical and a field case study with sNMR datasets (see Subsection 2.2.4). In

the first (numerical) case, the results of BEL1D are validated against an McMC

algorithm. Our results empirically demonstrate that BEL1D provides similar pos-

terior distributions as the ones obtained by McMC.

Then, the application to the Mont Rigi field case study demonstrates the ability of

the newly built algorithm to work on real field data.

However, when BEL1D was applied to broad priors that are less informative

about the experiment, the resulting posterior distributions are overestimating the

uncertainty when compared to McMC approaches. We attribute this behaviour to

the lack of correlation between prior models and their associated datasets in the

canonically correlated space, due to the large diversity of possible behaviours that

may be present in the original prior. To overcome this impediment, we implemented

an iterative approach called Iterative Prior Resampling (IPR) that iteratively im-

proves the posterior distributions until convergence by integrating models from the

posterior of the previous iteration in a new, informed, prior (see Chapter 5). This

approach was tested on both seismic surface waves dispersion curves (see Subsection

2.1.4) and sNMR data (see Subsection 2.2.4). The application of BEL1D combined

with IPR on synthetic seismic surface waves dispersion curves demonstrates empir-

ically that the iterative process converges towards posterior distributions obtained

via an McMC approach. The other applications showed the ability of the algorithm

to perform adequately on different geophysical datasets types, with even the ability
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to recover multi-modal posterior distributions.

Overall, this manuscript empirically demonstrates the feasibility of using a

Bayesian Evidential Learning framework for the interpretation of geophysical data

into 1D geophysical images. We showed that the estimations of posterior model

spaces obtained through BEL1D or BEL1D combined with IPR (and, to a lesser

extent, rejection sampling) are similar to the ones that can be obtained through the

careful tuning of McMC algorithms.

6.2 BEL advantages over other techniques

Through the different tests from chapters 4 and 5, multiple significant advantages

of this approach were discovered. Among those advantages, the traceability of all

the operation is key. When compared with other probabilistic approaches (classical

or Machine Learning methods), the presence of any model in the posterior model

space can easily be tracked down to the sampled models in the prior by analysing

the canonically correlated space. This can help the user to understand the presence

of odd models in the posterior, whose presence is difficult (or impossible) to track

back with other techniques.

Then, BEL1D benefits from its construction as a Machine Learning approach.

It enables rapid estimations of the posterior model space, assuming that the al-

gorithm has already been trained on an appropriate prior. Moreover, the training

phase can be very efficient, as the thousands forward computations can be fully

parallelized. This contrasts with McMC algorithms, where even the most advanced

version is limited to the number of chains being computed, since the knowledge of

the likelihood at the previous iteration is required to build the new models of the

chain (Vrugt, 2016).
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Even though the combination of BEL1D with IPR (and, to a lesser extent, rejection

sampling) is able to provide more precise and accurate posterior distributions, this

comes at the cost of losing the advantage of the training phase not requiring the

field data. Indeed, the initial training can still be performed without field data

knowledge, but the iterations require them to build intermediate posteriors. This

is a significant drawback of using an iterative approach. However, the iterative

approach still requires few models to be computed (tens of thousands), which is to

compare with other approaches that might require hundreds of thousands to mil-

lions of models to be able to converge. Also, the iterative process can still be heavily

parallelized, as each iteration requires the computation of numerous independent

forward model runs.

Another key advantage of the method is its ability to estimate any type of

posterior distribution. In the Mont Rigi test case from Section 4.1.4 and Subsection

5.5.3, we showed that the algorithm was able to recover multi-modal posterior

distributions. Also, in the Appendix A, the insensitive parameter M showed that

BEL1D can recover uniform distributions. This means that no a priori knowledge

of the posterior distributions statistical function is required. This contrasts with

some approaches to uncertainty quantification in geophysics, where the shape of

the posterior distributions is assumed (often a Gaussian), as is the case for most

ensemble smoother techniques, or simple Machine Learning approaches providing

moments of the posterior statistical distributions.

BEL1D also incorporates an easy to compute propagation of data noise. This

means that it does not need specific training for a given noise to be able to take

it into account, nor does it require a specific noise distribution to work. Thus, the

training phase of BEL1D can take place before any field measurements, and any

knowledge of the noise level on the field data.
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The new framework also offers the advantage of being easy to tune to conver-

gence, assuming the prior model space is coherent with the field data (falsification).

Indeed, only two parameters are controlling the convergence: the number of models

in the initial prior samples and the mixing ratio between the prior samples and

the posterior samples in the iterative process. This heavily contrasts with other

approaches, determinist or probabilist, where many parameters are used to tune

the algorithms to convergence. For example, Neural Networks need a given number

of layers with a given number of nodes each, with their activation function. Those

parameters need to be fine-tuned to achieve a reasonable training and validation

error (e.g. Leung et al., 2003). With the DREAM McMC implementation (Vrugt,

2016), there are twelve parameters (not related to the definition of the prior or

the misfit computation) that can vary, leading to different results. Once a set of

parameters is obtained, the method is very efficient, but tuning the algorithm can

be cumbersome. Even worse, using an incorrect set of parameters, can lead in some

cases to erroneous posterior estimations. In contrast, for BEL1D the number of

models in the sampled prior can easily be optimized by testing increasing values

until stabilization of the posterior. A similar approach can also work for the mixing

ratio, governing the IPR behaviour.

Then, within the BEL1D training step, we are able to empirically assess the

sensitivity of the experiment towards the model parameters. If the parameters of

interest are mainly gathered in the first, highly correlated, reduced dimensions in

the canonically correlated space, this indicates a strong sensitivity towards those

parameters. On the contrary, when the parameters of interest are gathered in the

higher dimensions (lower correlations), this indicates that the experiment design is

not effective to retrieve information on those aspects. Since the training phase can

be performed without the knowledge of the exact field dataset value, this can help to
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design a suitable experiment. This idea is explored in the multi-central configuration

versus the coincident configuration section 4.2, where two experimental designs are

compared in terms of the recovered posterior model space for the same model. It is

relevant to note that the BEL framework is designed to tackle experimental design,

as is the case in Thibaut et al. (2021).

Finally, prior falsification is automated within BEL1D. Indeed, when projecting

the field data onto the canonically correlated space, the program can, at a very

low CPU cost, check that the prior is capable of explaining the dataset. This is

a crucial point, since prior falsification is often a complex task that, if not taken

into account, can lead to erroneous estimations as would be the case for McMC for

example.

6.3 BEL generalization in geophysics

In this manuscript, we applied the new methodology to both sNMR and dispersion

curves from surface waves datasets. However, the framework is theoretically not

limited to those two methods. We also applied BEL1D to a synthetic case unrelated

to geophysics (Appendix A). BEL has also seen applications to multiple types of

data and predictions in research during the last years (e.g.: Hermans et al., 2019,

Phelps et al., 2018, Thibaut et al., 2021, . . . ).

The codes for BEL1D are fully available open-source (Michel, 2022). This means

that working upon the work provided here is easier for anyone and collaboration

is highly encouraged. Building upon open-source forward operators provided by

projects such as pyGIMLi (Rücker et al., 2017), SimPEG (Cockett et al., 2015), Fa-

tiando a Terra (Uieda et al., 2013) and emsig (Werthmüller, 2017), should broaden

the reach of BEL1D. This implementation for 1D methods should be relatively
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straightforward.

This indicates that BEL1D could be adapted to any geophysical method. How-

ever, the main limitation to this adaptation in the definition of the prior. Indeed,

contrary to more classical approaches whose building of the posterior model space

is based on a misfit definition, BEL1D does not compute those misfits for the se-

lection of posterior models. In BEL1D, the validity of a given dataset is related

to its distance to other models in the canonically correlated space. This has the

advantage of being a robust approach: BEL1D cannot provide a model if either the

prior model space is not containing models explaining the dataset, or if the forward

modelling is not accurate enough (a form of prior falsification). The definition of

the prior model space is therefore of the utmost importance. At the current state,

the code is written for blocky 1D profiles. This limits the usability of the algorithm

to methods for which such models are coherent.

When the field dataset falls outside the canonically correlated space, it is linked

to the prior definition and its adequation to the experiment. The most simple case

can occur when the prior model space is too optimistic on the prior uncertainty, and

the groundtruth is indeed not included in this prior. However, in cases of unbiased

prior model spaces that are sufficiently large and assuming that the number of prior

samples is sufficient to cover the full prior model space, this should not happen. The

reason for the inability of BEL1D to provide a posterior model space in such cases

is to find elsewhere.

The prior should be able to accurately represent the geophysical experiment.

To do so, both the prior model space description and the applied forward model

(also part of the prior hypothesis) must correspond to the experiment at hand.

Using the current version of the code, the prior is limited to 1D blocky profiles.

This limits applicability to physically blocky experiments. However, depending
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on the scale of the experiment, blocky profiles can be an issue. There is thus a

need for more versatile prior models definition. Also, the 1D aspect of the current

code is a limitation in itself, since geophysical experiments (even if they can often

be interpreted in terms of 1D model) are happening in the 3D world. The 1D

hypothesis thus neglects or approximates the effects above the first dimension, which

can sometimes lead to a misrepresentation of the actual field experiment. For such

reasons, prior definition and adequation to the field data is a task that will require

further work to enable the applicability of BEL (and BEL1D) more broadly.

6.4 Further improvements of BEL

6.4.1 Defining new priors

From the discussion on the adaptation of BEL1D for other geophysical methods, it

is clear that implementing smoothly varying models could help in cases of higher

uncertainty on the possible layering or for physically smoothly varying contexts

(temperature gradients visualized by electrical imaging for example (Hermans et

al., 2015)). An approach to achieve this is to use numerous fixed thickness layers

with varying parameters, as is often found in deterministic approaches (e.g.: Müller-

Petke et al., 2016). Ideally, the parameters could be correlated one-another, through

some sort of geostatistical object like a variogram (e.g.: Omre, 1984). This would

avoid the prior to be unrealistically large. However, introducing a prior correlation

between the different layers could also result in the introduction of bias.

We test the application of this idea with a synthetic sNMR dataset (see Chapter

2) and fully independent prior parameters (see Figure 6.1). We use 10 layers of 10

meters each. In the tested case, the prior consisted of equivalent uniform distribu-

tions for each water contents and relaxation times, with ranges from 2.5% to 30%
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and 5ms to 400ms respectively. Here, the benchmark model consists of a single deep

aquifer with a smooth increase in both the water content and the relaxation time.

In Figure 6.1, we observe that the algorithm has difficulties to recover the main

trend, even though the benchmark model is in the posterior model space. This

lack of correlation between parameters in the posterior is due to the unrealistic

prior, with water contents and relaxation times varying between their minimum

and maximum values between layers.

Currently, this approach is still limiting due to the number of layers and their

thicknesses, but this limitation is present because of the uncorrelated nature of the

prior, which leads to an unreasonable prior with more layers. From this example,

we see that implementing structural correlations in the prior definition is a key

aspect to enable such models to work properly. Ideally, the model would have tens

to hundreds of layers to be able to model adequately all the different phenomenon

and such spaces would be nearly impossible to explore using uncorrelated variables.

Solving for 2D (or 3D) structures is another obvious evolution of the algorithm.

To solve for those structures, there are several obstacles that need careful attention.

In 1D blocky models, parameters in the prior could be fully uncorrelated, since each

layer was representing completely different structures. This can still be the case

with simplified views of the 2D/3D world. Drifting away from simplified models,

building complex models of the geology is a challenge in itself. There are many

techniques to define priors of the geophysical models (Caumon, 2018). In each

technique describing the prior, a way to insert a geospatial constraint in the model

is required to avoid unrealistic behaviours. This means that contrary to all the

examples presented in this manuscript, the model parameters are going to be related

one-another in a predefined way. Another possible approach is to use surface-based

geophysical modelling (Galley et al., 2020). In this approach, instead of providing
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Figure 6.1: Testing 10 fixed thickness layers. The benchmark model is displayed in
grey above the models obtained through BEL1D and IPR. The prior model space
is represented in grey below the posterior model space. The colour scale reflects
the RMSE distributions, with each colour representing the same number of models.
The noise level on the dataset is Gaussian with 5.2nV in amplitude.



GENERAL DISCUSSION AND CONCLUSION 141

a single value for each cell of a mesh, the mesh is constituted of multiple structures

with their own properties. This could help to reduce the number of parameters in

the process.

Implementing for other methods in 2D or 3D would also bring more complex forward

models to compute (e.g.: Adriaens et al., 2021). This could greatly benefit from

the full parallelization of this operation in BEL1D training phase. Using super-

computers with clusters of tens to thousands of CPU cores on those complex models

could dramatically improve the training phase of the algorithm. Once the training

phase is performed, this could lead to a rapid first estimate of the uncertainty on a

low power field machine.

An intermediate approach towards 2D/3D models is to use information from

close-by 1D profiles to infer a more informed prior. This is classical in geostatistical

approaches, where propagating the information from a fixed set of points is required

to build a full field of data (Chilès & Delfiner, 2012). Similarly, several inversion

processes rely on the position of constraints between lateral models (e.g.: Auken

et al., 2005).

Here, the idea would be to mix an initial prior with the posterior from a close-by

point to infer an informed prior, similarly to the iterative process from Chapter 5.

Doing so, the iterative process might be able to recover a reliable relationship with

fewer iterations, leading to computational gains.

We tested this approach with 2 models that vary slightly (the depths to the layers

are different) with seismic surface waves dispersion curves data. This situation is

similar to what would happen with dipping layers and multiple surveys along a

single line.

Results of this experiment are presented in Figure 6.2. The mix between the

initial prior and the posterior of the first model is set to respectively 75% and 25%.
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Figure 6.2: Testing the effect of propagating the prior. The initial prior is suitable
for both cases. Using the posterior of the first case to inform the second, we reach
a similar estimation, except for the fewer models presenting higher RMSE.

First, the obtained posterior models show a lower uncertainty for most of the para-

meters. However, the difference is mainly in the extreme values, that are highly

unlikely. This is expected, since we are introducing biases in the problem by adding

information from the first model to the location of the second model. This effect is

similar to what is obtained using lateral constraints on 2D models, since the con-

straints avoid large variations.

This approach is not yet ready for standard use, as parameters governing the al-

gorithm need to be investigated. Since the mixing initial prior/posterior of close-by

model is introducing bias, it is important to be able to tune this parameter using

an objective criterion (ideally based on the datasets themselves).
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6.4.2 Experimental design with BEL in geophysics

Developing approaches for experimental design is also a task that BEL can improve,

as is indicated by the multi-central test case (Section 4.2). Developing a way to

automatically assess the validity of several experiments to achieve the goal set by

the investigators, BEL could improve the field data acquisition itself.

To do so, similar approaches to what is proposed by Thibaut et al. (2021) need to

be adapted for geophysical experiments. One could test the sensitivity of different

configurations for a given prior model space (reflecting the prior knowledge of the

site to experiment), using the correlation of the canonically correlated space of

BEL1D as indicators (see Chapter 4) or another method such as the distance-based

sensitivity analysis DGSA from J. Park et al. (2016). Then, the experiments can

be compared in terms of sensitivity towards the different parameters (or only a

selection of parameters), enabling the selection of the best experiment to perform

a given task.

One of the advantages of this approach would be that prior samples for the

selected experiments will already be drawn. Thus training of BEL1D is a low CPU

cost to add.

6.4.3 Exploring the impact of non-linear transforms

Finally, one of the current limitation of BEL1D is its use of linear algorithms for

dimensionality reduction and building a strong relationship between models and

datasets. Implementing non-linear algorithms for the dimensionality reduction (Lee

& Verleysen, 2007), such as kernel PCA or Neural Networks such as Autoencoders

(Hinton & Salakhutdinov, 2006) could improve the performances in the case of high

dimensionality data, or preserve more of the initial variability while remaining in a
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low dimensionality space. The quantification of the interaction between the models

and the datasets could also see a conversion to non-linear algorithms (Lai & Fyfe,

2000). Those improvements would result in more complex training phases of the

algorithm, but should achieve better relationships between parameters and data

points, leading to improved performances of the algorithm.



References

Acar, R., & Vogel, C. R. (1994). Analysis of bounded variation penalty methods

for ill-posed problems. Inverse Problems, 10, 1217–1229. https://doi.org/10.

1088/0266-5611/10/6/003

Adriaens, X., Henrotte, F., & Geuzaine, C. (2021). Adjoint state method for time-

harmonic scattering problems with boundary perturbations. Journal of Com-

putational Physics, 428, 109981. https://doi.org/10.1016/J.JCP.2020.109981

Ahmed, A., Michel, H., Deleersnyder, W., Dudal, D., & Hermans, T. (2021). Apply-

ing BEL1D for transient electromagnetic sounding inversion. EGU General

Assembly. https://doi.org/10.5194/egusphere-egu21-1131

Ajo-Franklin, J. B., Minsley, B. J., & Daley, T. M. (2007). Applying compactness

constraints to differential traveltime tomography. Geophysics, 72, R67–R75.

https://doi.org/10.1190/1.2742496

Aleardi, M., Vinciguerra, A., Stucchi, E., & Hojat, A. (2022). Probabilistic inver-

sions of electrical resistivity tomography data with a machine learning-based

forward operator. Geophysical Prospecting, 70, 938–957. https://doi.org/10.

1111/1365-2478.13189

Amatyakul, P., Rung-Arunwan, T., & Siripunvaraporn, W. (2015). A pilot magneto-

telluric survey for geothermal exploration in mae chan region, northern thai-

land. Geothermics, 55, 31–38. https://doi.org/10.1016/J.GEOTHERMICS.

2015.01.009

Andersen, K. R., Wan, L., Grombacher, D., Lin, T., & Auken, E. (2018). Studies of

parameter correlations in surface NMR using the Markov chain Monte Carlo

145

https://doi.org/10.1088/0266-5611/10/6/003
https://doi.org/10.1088/0266-5611/10/6/003
https://doi.org/10.1016/J.JCP.2020.109981
https://doi.org/10.5194/egusphere-egu21-1131
https://doi.org/10.1190/1.2742496
https://doi.org/10.1111/1365-2478.13189
https://doi.org/10.1111/1365-2478.13189
https://doi.org/10.1016/J.GEOTHERMICS.2015.01.009
https://doi.org/10.1016/J.GEOTHERMICS.2015.01.009


REFERENCES 146

method. Near Surface Geophysics, 16, 206–217. https://doi.org/10.3997/

1873-0604.2017064

Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E. W., Klessen, R. S.,

Maier-Hein, L., Rother, C., & Köthe, U. (2019). Analyzing inverse problems

with invertible neural networks. ICLR 2019. http://arxiv.org/abs/1808.

04730

Aster, R. C., Borchers, B., & Thurber, C. H. (2013). Parameter estimation and

inverse problems (2nd). Elsevier Inc. https://doi.org/10.1016/C2009-0-

61134-X

Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N., & Sørensen, K. I. (2005).

Piecewise 1D laterally constrained inversion of resistivity data. Geophysical

Prospecting, 53, 497–506. https://doi.org/10.1111/J.1365-2478.2005.00486.

X

Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behrooz-

mand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen,

K., Foged, N., & Vignoli, G. (2015). An overview of a highly versatile forward

and stable inverse algorithm for airborne, ground-based and borehole elec-

tromagnetic and electric data. Exploration Geophysics, 46, 223–235. https:

//doi.org/10.1071/EG13097

Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam-Thong,

T., Siebourg-Polster, J., Steiert, B., & Zhang, J. D. (2020). An introduction

to machine learning. Clinical Pharmacology and Therapeutics, 107, 871–885.

https://doi.org/10.1002/CPT.1796

Bagdassarov, N. (2021). Fundamentals of rock physics. Cambridge University Press.

https://doi.org/10.1017/9781108380713

https://doi.org/10.3997/1873-0604.2017064
https://doi.org/10.3997/1873-0604.2017064
http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/1808.04730
https://doi.org/10.1016/C2009-0-61134-X
https://doi.org/10.1016/C2009-0-61134-X
https://doi.org/10.1111/J.1365-2478.2005.00486.X
https://doi.org/10.1111/J.1365-2478.2005.00486.X
https://doi.org/10.1071/EG13097
https://doi.org/10.1071/EG13097
https://doi.org/10.1002/CPT.1796
https://doi.org/10.1017/9781108380713


REFERENCES 147

Bauer, K., Muñoz, G., & Moeck, I. (2012). Pattern recognition and lithological

interpretation of collocated seismic and magnetotelluric models using self-

organizing maps. Geophysical Journal International, 189, 984–998. https :

//doi.org/10.1111/J.1365-246X.2012.05402.X

Behroozmand, A. A., Auken, E., Fiandaca, G., & Rejkjaer, S. (2016). Increasing

the resolution and the signal-to-noise ratio of magnetic resonance sounding

data using a central loop configuration. Geophysical Journal International,

205, 243–256. https://doi.org/10.1093/GJI/GGW004

Behroozmand, A. A., Keating, K., & Auken, E. (2015). A review of the principles

and applications of the NMR technique for near-surface characterization.

Surveys in Geophysics, 36, 27–85. https://doi.org/10.1007/S10712-014-

9304-0

Bhowmick, D., Gupta, D. K., Maiti, S., & Shankar, U. (2019). Stacked autoen-

coders based machine learning for noise reduction and signal reconstruction

in geophysical data. arVix. https://doi.org/10.48550/arXiv.1907.03278

Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods.

In Y. Rubin & S. Hubbard (Eds.), Hydrogeophysics (pp. 129–156, Vol. 50).

Springer Netherlands. https://doi.org/10.1007/1-4020-3102-5_5

Binley, A., & Slater, L. (2020). Resistivity and induced polarization : Theory and

applications to the near-surface earth. Cambridge University Press.

Bishop, C. M. (1995). Neural networks for pattern recognition. Clarendon Press.

Boaga, J., Vignoli, G., & Cassiani, G. (2011). Shear wave profiles from surface

wave inversion: The impact of uncertainty on seismic site response analysis.

Journal of Geophysics and Engineering, 8, 162–174. https ://doi .org/10.

1088/1742-2132/8/2/004

https://doi.org/10.1111/J.1365-246X.2012.05402.X
https://doi.org/10.1111/J.1365-246X.2012.05402.X
https://doi.org/10.1093/GJI/GGW004
https://doi.org/10.1007/S10712-014-9304-0
https://doi.org/10.1007/S10712-014-9304-0
https://doi.org/10.48550/arXiv.1907.03278
https://doi.org/10.1007/1-4020-3102-5_5
https://doi.org/10.1088/1742-2132/8/2/004
https://doi.org/10.1088/1742-2132/8/2/004


REFERENCES 148

Bobe, C., Vijver, E. V. D., Keller, J., Hanssens, D., Meirvenne, M. V., & Smedt,

P. D. (2020). Probabilistic one-dimensional inversion of frequency-domain

electromagnetic data using a Kalman ensemble generator. IEEE Transac-

tions on Geoscience and Remote Sensing, 58, 3287–3297. https://doi.org/

10.1109/TGRS.2019.2953004

Böhning, D. (1992). Multinomial logistic regression algorithm. Annals of the Insti-

tute of Statistical Mathematics 1992 44:1, 44, 197–200. https://doi.org/10.

1007/BF00048682

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. Proceedings of the fifth annual workshop on Computational

learning theory - COLT ’92, 144–152. https://doi.org/10.1145/130385

Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data ana-

lysis : The kernel approach with s-plus illustrations. Clarendon Press; Oxford

University Press.

Bressan, T. S., de Souza, M. K., Girelli, T. J., & Junior, F. C. (2020). Evaluation of

machine learning methods for lithology classification using geophysical data.

Computers & Geosciences, 139, 104475. https://doi.org/10.1016/J.CAGEO.

2020.104475

Brogi, C., Huisman, J. A., Pätzold, S., von Hebel, C., Weihermüller, L., Kaufmann,

M. S., van der Kruk, J., & Vereecken, H. (2019). Large-scale soil mapping us-

ing multi-configuration EMI and supervised image classification. Geoderma,

335, 133–148. https://doi.org/10.1016/J.GEODERMA.2018.08.001

Campbell, A., Fryer, A., & Wakeman, S. (2005). Vertical seismic profiles—more

than just a corridor stack. The Leading Edge, 24, 694–697. https://doi.org/

10.1190/1.1993259

https://doi.org/10.1109/TGRS.2019.2953004
https://doi.org/10.1109/TGRS.2019.2953004
https://doi.org/10.1007/BF00048682
https://doi.org/10.1007/BF00048682
https://doi.org/10.1145/130385
https://doi.org/10.1016/J.CAGEO.2020.104475
https://doi.org/10.1016/J.CAGEO.2020.104475
https://doi.org/10.1016/J.GEODERMA.2018.08.001
https://doi.org/10.1190/1.1993259
https://doi.org/10.1190/1.1993259


REFERENCES 149

Caumon, G. (2018). Geological objects and physical parameter fields in the subsur-

face: A review. In B. Daya Sagar, Q. Cheng & F. Agterberg (Eds.), Handbook

of mathematical geosciences: Fifty years of iamg (pp. 567–588). Springer In-

ternational Publishing. https://doi.org/10.1007/978-3-319-78999-6_28

Chen, J., Kemna, A., & Hubbard, S. S. (2008). A comparison between Gauss-

Newton and Markov-chain Monte Carlo - based methods for inverting spec-

tral induced-polarization data for Cole-Cole parameters. Geophysics, 73.

https://doi.org/10.1190/1.2976115

Chen, Y., & Oliver, D. S. (2011). Ensemble randomized maximum likelihood method

as an iterative ensemble smoother. Mathematical Geosciences 2011 44:1, 44,

1–26. https://doi.org/10.1007/S11004-011-9376-Z

Chilès, J.-P., & Delfiner, P. (2012). Geostatistics : Modeling spatial uncertainty.

John Wiley & Sons.

Christensen, C. W., Pfaffhuber, A. A., Skurdal, G. H., Lysdahl, A. O. K., & Vöge,

M. (2020). Large scale & efficient geotechnical soil investigations: Applying

machine learning on airborne geophysical models to map sensitive glaciomar-

ine clay. Proceedings of the 6th International Conference on Geotechnical and

Geophysical Site Characterization, Budapest, Hungary, 7–11.

Christensen, N. B., Reid, J. E., & Halkjaer, M. (2009). Fast, laterally smooth inver-

sion of airborne time-domain electromagnetic data. Near Surface Geophysics,

599–612.

Christiansen, A. V., Auken, E., & Sørensen, K. (2008). The transient electromag-

netic method. In R. Kirsch (Ed.), Groundwater geophysics (pp. 179–226).

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88405-7_6

https://doi.org/10.1007/978-3-319-78999-6_28
https://doi.org/10.1190/1.2976115
https://doi.org/10.1007/S11004-011-9376-Z
https://doi.org/10.1007/978-3-540-88405-7_6


REFERENCES 150

Clark, J. A., & Page, R. (2011). Inexpensive geophysical instruments supporting

groundwater exploration in developing nations. Journal of Water Resource

and Protection, 03, 768–780. https://doi.org/10.4236/jwarp.2011.310087

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015).

Simpeg: An open source framework for simulation and gradient based para-

meter estimation in geophysical applications. Computers & Geosciences, 85,

142–154. https://doi.org/10.1016/J.CAGEO.2015.09.015

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion:

A practical algorithm for generating smooth models from electromagnetic

sounding data. GEOPHYSICS, 52, 289–300.

Conway, D., Alexander, B., King, M., Heinson, G., & Kee, Y. (2019). Inverting mag-

netotelluric responses in a three-dimensional earth using fast forward approx-

imations based on artificial neural networks. Computers and Geosciences,

127, 44–52. https://doi.org/10.1016/j.cageo.2019.03.002

Cox, B. R., & Teague, D. P. (2016). Layering ratios: A systematic approach to

the inversion of surface wave data in the absence of a priori information.

Geophysical Journal International, 207, 422–438. https://doi.org/10.1093/

GJI/GGW282

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal

Statistical Society: Series B (Methodological), 20, 215–232. https://doi.org/

10.1111/J.2517-6161.1958.TB00292.X

Cox, D. R., Newton, A. M., & Huuse, M. (2020). An introduction to seismic reflec-

tion data: Acquisition, processing and interpretation (N. Scarselli, J. Adam,

D. Chiarella, D. G. Roberts & A. W. Bally, Eds.; 2nd). https://doi.org/10.

1016/B978-0-444-64134-2.00020-1

https://doi.org/10.4236/jwarp.2011.310087
https://doi.org/10.1016/J.CAGEO.2015.09.015
https://doi.org/10.1016/j.cageo.2019.03.002
https://doi.org/10.1093/GJI/GGW282
https://doi.org/10.1093/GJI/GGW282
https://doi.org/10.1111/J.2517-6161.1958.TB00292.X
https://doi.org/10.1111/J.2517-6161.1958.TB00292.X
https://doi.org/10.1016/B978-0-444-64134-2.00020-1
https://doi.org/10.1016/B978-0-444-64134-2.00020-1


REFERENCES 151

Cox, L. H., Wilson, G. A., & Zhdanov, M. S. (2010). 3D inversion of airborne

electromagnetic data using a moving footprint. Exploration Geophysics, 41,

250–259. https://doi.org/10.1071/EG10003

Cracknell, M. J., & Reading, A. M. (2013). The upside of uncertainty: Identifica-

tion of lithology contact zones from airborne geophysics and satellite data

using random forests and support vector machines. Geophysics, 78, WB113–

WB126. https://doi.org/10.1190/geo2012-0411.1

Devilee, R. J. R., Curtis, A., & Roy-Chowdhury, K. (1999). An efficient, probabil-

istic neural network approach to solving inverse problems’ inverting surface

wave velocities for eurasian crustal thickness. JOURNAL OF GEOPHYS-

ICAL RESEARCH, 104, 841–869. https://doi.org/10.1029/1999JB900273

Devroy, L. (1986). Non-uniform random variate generation. Springer-Verlag.

Di, H., Gao, D., & Alregib, G. (2019). Developing a seismic texture analysis neural

network for machine-aided seismic pattern recognition and classification.

Geophysical Journal International, 218, 1262–1275. https : / /doi . org / 10 .

1093/GJI/GGZ226

Digital Science. (2018-). Dimensions [Software]. https://app.dimensions.ai

Dike, H. U., Zhou, Y., Deveerasetty, K. K., & Wu, Q. (2019). Unsupervised learn-

ing based on artificial neural network: A review. 2018 IEEE International

Conference on Cyborg and Bionic Systems, CBS 2018, 322–327. https://doi.

org/10.1109/CBS.2018.8612259

Dosne, A.-G., Bergstrand, M., Harling, K., & Karlsson, M. O. (2016). Improving the

estimation of parameter uncertainty distributions in nonlinear mixed effects

models using sampling importance resampling. Journal of Pharmacokinetics

and Pharmacodynamics 2016 43:6, 43, 583–596. https://doi.org/10.1007/

S10928-016-9487-8

https://doi.org/10.1071/EG10003
https://doi.org/10.1190/geo2012-0411.1
https://doi.org/10.1029/1999JB900273
https://doi.org/10.1093/GJI/GGZ226
https://doi.org/10.1093/GJI/GGZ226
https://app.dimensions.ai
https://doi.org/10.1109/CBS.2018.8612259
https://doi.org/10.1109/CBS.2018.8612259
https://doi.org/10.1007/S10928-016-9487-8
https://doi.org/10.1007/S10928-016-9487-8


REFERENCES 152

Dramsch, J. S. (2020). 70 years of machine learning in geoscience in review. Advances

in Geophysics, 61, 1–55. https://doi.org/10.1016/BS.AGPH.2020.08.002

Emerick, A. A., & Reynolds, A. C. (2013). Ensemble smoother with multiple data

assimilation. Computers & Geosciences, 55, 3–15. https://doi.org/10.1016/

J.CAGEO.2012.03.011

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. Journal of

Geophysical Research: Oceans, 99, 10143–10162. https://doi.org/10.1029/

94JC00572

Farquharson, C. G., & Craven, J. A. (2009). Three-dimensional inversion of mag-

netotelluric data for mineral exploration: An example from the McArthur

river uranium deposit, Saskatchewan, Canada. Journal of Applied Geophys-

ics, 68, 450–458. https://doi.org/10.1016/J.JAPPGEO.2008.02.002

Farquharson, C. G., Oldenburg, D. W., & Routh, P. S. (2003). Simultaneous 1D

inversion of loop–loop electromagnetic data for magnetic susceptibility and

electrical conductivity. Geophysics, 68, 1857–1869. https://doi.org/10.1190/

1.1635038

Flinchum, B. A., Holbrook, W. S., & Carr, B. J. (2022). What do P-Wave velocities

tell us about the critical zone? Frontiers in Water, 3, 187. https://doi.org/

10.3389/FRWA.2021.772185

Gaikwad, S., Pawar, N. J., Bedse, P., Wagh, V., & Kadam, A. (2021). Delineation

of groundwater potential zones using vertical electrical sounding (VES) in a

complex bedrock geological setting of the west coast of India. Modeling Earth

Systems and Environment, 8, 2233–2247. https://doi.org/10.1007/S40808-

021-01223-3

https://doi.org/10.1016/BS.AGPH.2020.08.002
https://doi.org/10.1016/J.CAGEO.2012.03.011
https://doi.org/10.1016/J.CAGEO.2012.03.011
https://doi.org/10.1029/94JC00572
https://doi.org/10.1029/94JC00572
https://doi.org/10.1016/J.JAPPGEO.2008.02.002
https://doi.org/10.1190/1.1635038
https://doi.org/10.1190/1.1635038
https://doi.org/10.3389/FRWA.2021.772185
https://doi.org/10.3389/FRWA.2021.772185
https://doi.org/10.1007/S40808-021-01223-3
https://doi.org/10.1007/S40808-021-01223-3


REFERENCES 153

Galley, C. G., Lelièvre, P. G., & Farquharson, C. G. (2020). Geophysical inversion

for 3D contact surface geometry. https://doi.org/10.1190/geo2019-0614.1,

85, K27–K45. https://doi.org/10.1190/GEO2019-0614.1

García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F. J., Luzón, F., & Perton, M.

(2016). A computer code for forward calculation and inversion of the H/V

spectral ratio under the diffuse field assumption. Computers and Geosciences,

97, 67–78. https://doi.org/10.1016/j.cageo.2016.06.016

Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., Dechamp,

A., Ohrnberger, M., Perron, V., Sicilia, D., Teague, D., & Vergniault, C.

(2016). InterPACIFIC project: Comparison of invasive and non-invasive meth-

ods for seismic site characterization. Part II: Inter-comparison between surface-

wave and borehole methods. Soil Dynamics and Earthquake Engineering, 82,

241–254. https://doi.org/10.1016/J.SOILDYN.2015.12.009

Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., Ohrnber-

ger, M., Sicilia, D., Asten, M., Giulio, G. D., Forbriger, T., Guillier, B., Hay-

ashi, K., Martin, A., Matsushima, S., Mercerat, D., Poggi, V., & Yamanaka,

H. (2016). InterPACIFIC project: Comparison of invasive and non-invasive

methods for seismic site characterization. Part I: Intra-comparison of sur-

face wave methods. Soil Dynamics and Earthquake Engineering, 82, 222–

240. https://doi.org/10.1016/J.SOILDYN.2015.12.010

Giannakis, I., Giannopoulos, A., & Warren, C. (2019). A machine learning-based

fast-forward solver for ground penetrating radar with application to full-

waveform inversion. IEEE Transactions on Geoscience and Remote Sensing,

57, 4417–4426. https://doi.org/10.1109/TGRS.2019.2891206

Gilson, M., Briers, P., Ruthy, I., & Dassargues, A. (2017). Carte hydrogéologique de

wallonie - Elsenborn- Langert - Dreiherrenwald (50/3-4; 50a/1). SPW.

https://doi.org/10.1190/GEO2019-0614.1
https://doi.org/10.1016/j.cageo.2016.06.016
https://doi.org/10.1016/J.SOILDYN.2015.12.009
https://doi.org/10.1016/J.SOILDYN.2015.12.010
https://doi.org/10.1109/TGRS.2019.2891206


REFERENCES 154

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gorban, A. N., Kégl, B., Wunsch, D. C., & Zinovyev, A. Y. (Eds.). (2008). Principal

manifolds for data visualization and dimension reduction (Vol. 58). Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73750-6

Gottschalk, I., & Knight, R. (2022). The development of a machine-learning ap-

proach to construct a field-scale rock-physics transform. Geophysics, 87,

MR35–MR48. https://doi.org/10.1190/GEO2020-0811.1

Grana, D., Azevedo, L., & Liu, M. (2020). A comparison of deep machine learning

and Monte Carlo methods for facies classification from seismic data. Geo-

physics, 85, WA41–WA52. https://doi.org/10.1190/GEO2019-0405.1

Green, R. (1974). The seismic refraction method—a review. Geoexploration, 12,

259–284. https://doi.org/10.1016/0016-7142(74)90015-5

Grombacher, D., Liu, L., Griffiths, M. P., Vang, M., & Larsen, J. J. (2021). Steady-

state surface NMR for mapping of groundwater. Geophysical Research Let-

ters, 48, e2021GL095381. https://doi.org/10.1029/2021GL095381

Guo, J., Li, Y., Jessell, M. W., Giraud, J., Li, C., Wu, L., Li, F., & Liu, S. (2021).

3D geological structure inversion from Noddy-generated magnetic data using

deep learning methods. Computers and Geosciences, 149. https://doi.org/

10.1016/J.CAGEO.2021.104701

Hansen, T. M., & Cordua, K. S. (2017). Efficient Monte Carlo sampling of in-

verse problems using a neural network-based forward-applied to gpr crosshole

traveltime inversion. Geophysical Journal International, 211, 1524–1533. https:

//doi.org/10.1093/GJI/GGX380

Hanssens, D., Delefortrie, S., Bobe, C., Hermans, T., & Smedt, P. D. (2019). Improv-

ing the reliability of soil EC-mapping: Robust apparent electrical conductiv-

https://doi.org/10.1007/978-3-540-73750-6
https://doi.org/10.1190/GEO2020-0811.1
https://doi.org/10.1190/GEO2019-0405.1
https://doi.org/10.1016/0016-7142(74)90015-5
https://doi.org/10.1029/2021GL095381
https://doi.org/10.1016/J.CAGEO.2021.104701
https://doi.org/10.1016/J.CAGEO.2021.104701
https://doi.org/10.1093/GJI/GGX380
https://doi.org/10.1093/GJI/GGX380


REFERENCES 155

ity (rECa) estimation in ground-based frequency domain electromagnetics.

Geoderma, 337, 1155–1163. https://doi.org/10.1016/j.geoderma.2018.11.030

Heagy, L. J., Cockett, R., Kang, S., Rosenkjaer, G. K., & Oldenburg, D. W. (2017).

A framework for simulation and inversion in electromagnetics. Computers &

Geosciences, 107, 1–19. https://doi.org/10.1016/J.CAGEO.2017.06.018

Hearst, M., Dumais, S., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector

machines. IEEE Intelligent Systems and their Applications, 13 (4), 18–28.

https://doi.org/10.1109/5254.708428

Hermans, T., Compaire, N., Thibaut, R., & Lesparre, N. (2021). Bayesian evid-

ential learning: An alternative to hydrogeophysical coupled inversion. First

International Meeting for Applied Geoscience & Energy Expanded Abstracts,

2021-September, 3125–3129. https://doi.org/10.1190/segam2021-3580979.1

Hermans, T., Lesparre, N., Schepper, G. D., & Robert, T. (2019). Bayesian eviden-

tial learning: A field validation using push-pull tests. Hydrogeology Journal,

27, 1661–1672. https://doi.org/10.1007/S10040-019-01962-9

Hermans, T., Nguyen, F., Klepikova, M., Dassargues, A., & Caers, J. (2018). Un-

certainty quantification of medium-term heat storage from short-term geo-

physical experiments using Bayesian Evidential Learning. Water Resources

Research, 54, 2931–2948. https://doi.org/10.1002/2017WR022135

Hermans, T., Oware, E., & Caers, J. (2016). Direct prediction of spatially and

temporally varying physical properties from time-lapse electrical resistance

data. Water Resources Research, 52, 7262–7283. https://doi.org/10.1002/

2016WR019126

Hermans, T., Wildemeersch, S., Jamin, P., Orban, P., Brouyère, S., Dassargues,

A., & Nguyen, F. (2015). Quantitative temperature monitoring of a heat

https://doi.org/10.1016/j.geoderma.2018.11.030
https://doi.org/10.1016/J.CAGEO.2017.06.018
https://doi.org/10.1109/5254.708428
https://doi.org/10.1190/segam2021-3580979.1
https://doi.org/10.1007/S10040-019-01962-9
https://doi.org/10.1002/2017WR022135
https://doi.org/10.1002/2016WR019126
https://doi.org/10.1002/2016WR019126


REFERENCES 156

tracing experiment using cross-borehole ert. Geothermics, 53, 14–26. https:

//doi.org/10.1016/J.GEOTHERMICS.2014.03.013

Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for in-

struction and research. Seismological Research Letters, 84, 1081–1088. https:

//doi.org/10.1785/0220110096

Hertrich, M., Braun, M., Günther, T., Green, A. G., & Yaramanci, U. (2007). Sur-

face nuclear magnetic resonance tomography. IEEE Transactions on Geoscience

and Remote Sensing, 45, 3752–3759. https://doi.org/10.1109/TGRS.2007.

903829

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. Science, 313, 504–507. https : //doi . org/10 . 1126/

SCIENCE.1127647

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24, 417–441. https://doi.

org/10.1037/H0071325

Hurich, C., & Deemer, S. (2013). Combined surface and borehole seismic imaging

in a hard rock terrain: A field test of seismic interferometry. Geophysics, 78,

B103–B110. https://doi.org/10.1190/GEO2012-0325.1

Isunza Manrique, I., Caterina, D., Dumont, M., Benoît, M., Antoine, M., Pauline,

K., & Nguyen, F. (2022). Characterization of past metalurgical residues using

geophysical imaging: A case study of Duferco site (Belgium). 6th Symposium

on circular economy and urban mining (SUM2022).

Isunza Manrique, I., Caterina, D., Hermans, T., & Nguyen, F. (2019). Probabil-

istic joint interpretation of geoelectrical and passive source seismic data for

landfill characterization. AGU Fall Meeting.

https://doi.org/10.1016/J.GEOTHERMICS.2014.03.013
https://doi.org/10.1016/J.GEOTHERMICS.2014.03.013
https://doi.org/10.1785/0220110096
https://doi.org/10.1785/0220110096
https://doi.org/10.1109/TGRS.2007.903829
https://doi.org/10.1109/TGRS.2007.903829
https://doi.org/10.1126/SCIENCE.1127647
https://doi.org/10.1126/SCIENCE.1127647
https://doi.org/10.1037/H0071325
https://doi.org/10.1037/H0071325
https://doi.org/10.1190/GEO2012-0325.1


REFERENCES 157

Jeong, C., Mukerji, T., & Mariethoz, G. (2017). A fast approximation for seismic

inverse modeling: Adaptive spatial resampling. Mathematical Geosciences

2017 49:7, 49, 845–869. https://doi.org/10.1007/S11004-017-9693-Y

Jessell, M., Guo, J., Li, Y., Lindsay, M., Scalzo, R., Giraud, J., Pirot, G., Cripps,

E., & Ogarko, V. (2022). Into the Noddyverse: A massive data store of

3D geological models for machine learning and inversion applications. Earth

System Science Data, 14, 381–392. https://doi.org/10.5194/ESSD-14-381-

2022

Jha, M. K., Kumar, S., & Chowdhury, A. (2008). Vertical electrical sounding sur-

vey and resistivity inversion using genetic algorithm optimization technique.

Journal of Hydrology, 359, 71–87. https://doi.org/10.1016/j.jhydrol.2008.

06.018

Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C., & Robertsson, J. O. (2018).

Geostatistical regularization operators for geophysical inverse problems on

irregular meshes. Geophysical Journal International, 213, 1374–1386. https:

//doi.org/10.1093/GJI/GGY055

Joshi, D., Patidar, A. K., Mishra, A., Mishra, A., Agarwal, S., Pandey, A., Dewan-

gan, B. K., & Choudhury, T. (2021). Prediction of sonic log and correlation

of lithology by comparing geophysical well log data using machine learning

principles. GeoJournal, 1–22. https://doi.org/10.1007/S10708-021-10502-6

Justesen, N., Bontrager, P., Togelius, J., & Risi, S. (2020). Deep learning for video

game playing. IEEE Transactions on Games, 12, 1–20. https://doi.org/10.

1109/TG.2019.2896986

Kaipio, J. P., & Somersalo, E. (2005). Statistical and computational inverse problems

(Vol. 160). Springer-Verlag. https://doi.org/10.1007/b138659

https://doi.org/10.1007/S11004-017-9693-Y
https://doi.org/10.5194/ESSD-14-381-2022
https://doi.org/10.5194/ESSD-14-381-2022
https://doi.org/10.1016/j.jhydrol.2008.06.018
https://doi.org/10.1016/j.jhydrol.2008.06.018
https://doi.org/10.1093/GJI/GGY055
https://doi.org/10.1093/GJI/GGY055
https://doi.org/10.1007/S10708-021-10502-6
https://doi.org/10.1109/TG.2019.2896986
https://doi.org/10.1109/TG.2019.2896986
https://doi.org/10.1007/b138659


REFERENCES 158

Kemna, A., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of

subsurface solute transport using electrical resistivity tomography (ERT)

and equivalent transport models. Journal of Hydrology, 267, 125–146. https:

//doi.org/10.1016/S0022-1694(02)00145-2

Kennett, P., Ireson, R. L., & Conn, P. J. (1980). Vertical seismic profiles: Their

applications in exploration geophysics. Geophysical Prospecting, 28, 676–699.

https://doi.org/10.1111/J.1365-2478.1980.TB01254.X

Kim, Y., & Nakata, N. (2018). Geophysical inversion versus machine learning in

inverse problems. The Leading Edge, 37, 894–901. https://doi.org/10.1190/

TLE37120894.1

Kirkby, A., Heinson, G., Holford, S., & Thiel, S. (2015). Mapping fractures using 1D

anisotropic modelling of magnetotelluric data: A case study from the otway

basin, victoria, australia. Geophysical Journal International, 201, 1961–1976.

https://doi.org/10.1093/GJI/GGV116

Kirsch, R., & Yaramanci, U. (2008). Geoelectrical methods. In R. Kirsch (Ed.),

Groundwater geophysics (pp. 85–117). Springer Berlin Heidelberg. https :

//doi.org/10.1007/978-3-540-88405-7_3

Koefoed, O. (1979). Geosounding principles, 1 : Resistivity sounding measurements.

Elsevier Scientifc Pub. Co.

Kramer, O. (2013). K-nearest neighbors. In Dimensionality reduction with unsu-

pervised nearest neighbours (pp. 13–23). Springer, Berlin, Heidelberg. https:

//doi.org/10.1007/978-3-642-38652-7_2

Kremer, T., Müller-Petke, M., Michel, H., Dlugosch, R., Irons, T., Hermans, T.,

& Nguyen, F. (2020). Improving the accuracy of 1D surface nuclear mag-

netic resonance surveys using the multi-central-loop configuration. Journal

of Applied Geophysics, 177. https://doi.org/10.1016/j.jappgeo.2020.104042

https://doi.org/10.1016/S0022-1694(02)00145-2
https://doi.org/10.1016/S0022-1694(02)00145-2
https://doi.org/10.1111/J.1365-2478.1980.TB01254.X
https://doi.org/10.1190/TLE37120894.1
https://doi.org/10.1190/TLE37120894.1
https://doi.org/10.1093/GJI/GGV116
https://doi.org/10.1007/978-3-540-88405-7_3
https://doi.org/10.1007/978-3-540-88405-7_3
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1016/j.jappgeo.2020.104042


REFERENCES 159

Kremer, T., Irons, T., Müller-Petke, M., & Larsen, J. J. (2022). Review of ac-

quisition and signal processing methods for electromagnetic noise reduction

and retrieval of surface nuclear magnetic resonance parameters. Surveys in

Geophysics, 43, 999–1053. https://doi.org/10.1007/S10712-022-09695-3

Krzanowski, W. (2000). Principles of multivariate analysis (2nd). Oxford University

Press.

LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., & Owen, E. (1996). The

effects of noise on Occam’s inversion of resistivity tomography data. Geo-

physics, 61, 538–548. https://doi.org/10.1190/1.1443980

Lai, P. L., & Fyfe, C. (2000). Kernel and nonlinear canonical correlation analysis.

International Journal of Neural Systems, 10, 365–377. https://doi.org/10.

1142/S012906570000034X

Laloy, E., Hérault, R., Jacques, D., & Linde, N. (2018). Training-image based

geostatistical inversion using a spatial generative adversarial neural net-

work. Water Resources Research, 54, 381–406. https://doi .org/10.1002/

2017WR022148

Laloy, E., Hérault, R., Lee, J., Jacques, D., & Linde, N. (2017). Inversion using

a new low-dimensional representation of complex binary geological media

based on a deep neural network. Advances in Water Resources, 110, 387–

405. https://doi.org/10.1016/j.advwatres.2017.09.029

Larki, E., Tanha, A. A., Parizad, A., Soulgani, B. S., & Bagheri, H. (2021). Invest-

igation of quality factor frequency content in vertical seismic profile for gas

reservoirs. Petroleum Research, 6, 57–65. https://doi.org/10.1016/J.PTLRS.

2020.10.002

Lavrentev, M., Romanov, V., & Shishatski, S. (1986). Ill-posed problems of math-

ematical physics and analysis (Vol. 64). American Mathematical Society.

https://doi.org/10.1007/S10712-022-09695-3
https://doi.org/10.1190/1.1443980
https://doi.org/10.1142/S012906570000034X
https://doi.org/10.1142/S012906570000034X
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1016/J.PTLRS.2020.10.002
https://doi.org/10.1016/J.PTLRS.2020.10.002


REFERENCES 160

Lawrence, N. D. (2012). A unifying probabilistic perspective for spectral dimen-

sionality reduction: Insights and new models. Journal of Machine Learning

Research, 13, 1609–1638.

Lawyer, L. C. (, Bates, C. C., & Rice, R. B. (2001). Geophysics in the affairs of man-

kind: A personalized history of exploration geophysics. Society of Exploration

Geophysicists. https://doi.org/10.1190/1.9781560801788

Lebedev, S., Adam, J., & Meier, T. (2013). Mapping the Moho with seismic surface

waves: A review, resolution analysis, and recommended inversion strategies.

Tectonophysics, 609, 377–394. https://doi.org/10.1016/J.TECTO.2012.12.

030

Lee, J., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Springer.

Legault, J. (2015). Airborne electromagnetic systems: State of the art and future

directions. CSEG Recorder, 38–49.

Legchenko, A., Vincent, C., Baltassat, J. M., Garambois, S., Thibert, E., Gilbert,

A., Descloitres, M., Girard, J. F., Gagliardini, O., & Guyard, H. (2012).

Monitoring of water accumulation in the Tête Rousse glacier (French Alps)

using 3D magnetic resonance imaging. Near Surface Geoscience, cp-306–

00007. https://doi.org/10.3997/2214-4609.20143314

Legchenko, A., Baltassat, J. M., Duwig, C., Boucher, M., Girard, J. F., Soruco, A.,

Beauce, A., Mathieu, F., Legout, C., Descloitres, M., & Patricia, F. A. G.

(2020). Time-lapse magnetic resonance sounding measurements for numer-

ical modeling of water flow in variably saturated media. Journal of Applied

Geophysics, 175, 103984. https://doi.org/10.1016/J.JAPPGEO.2020.103984

Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M., &

Flores-Orozco, A. (2017). A new approach for time-lapse data weighting in

https://doi.org/10.1190/1.9781560801788
https://doi.org/10.1016/J.TECTO.2012.12.030
https://doi.org/10.1016/J.TECTO.2012.12.030
https://doi.org/10.3997/2214-4609.20143314
https://doi.org/10.1016/J.JAPPGEO.2020.103984


REFERENCES 161

electrical resistivity tomography. Geophysics, 82, E325–E333. https://doi.

org/10.1190/GEO2017-0024.1

Leung, F. H., Lam, H. K., Ling, S. H., & Tam, P. K. (2003). Tuning of the structure

and parameters of a neural network using an improved genetic algorithm.

IEEE Transactions on Neural Networks, 14, 79–88. https://doi.org/10.1109/

TNN.2002.804317

Li, J., Lu, X., Farquharson, C. G., & Hu, X. (2018). A finite-element time-domain

forward solver for electromagnetic methods with complex-shaped loop sources.

Geophysics, 83, E117–E132. https://doi.org/10.1190/GEO2017-0216.1

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering al-

gorithm. Pattern Recognition, 36, 451–461. https://doi.org/10.1016/S0031-

3203(02)00060-2

Linde, N., Ginsbourger, D., Irving, J., Nobile, F., & Doucet, A. (2017). On un-

certainty quantification in hydrogeology and hydrogeophysics. Advances in

Water Resources, 110, 166–181. https://doi.org/10.1016/J.ADVWATRES.

2017.10.014

Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydro-

geological and geophysical inverse modeling: A review. Advances in Water

Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019

Lindsey, J. K. (1996). Parametric statistical inference. Clarendon Press.

Loke, M., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky

inversion methods in 2d electrical imaging surveys. Exploration Geophysics,

34, 182–187. https://doi.org/10.1071/EG03182

Lopez-Alvis, J., Nguyen, F., Looms, M. C., & Hermans, T. (2022). Geophysical in-

version using a variational autoencoder to model an assembled spatial prior

https://doi.org/10.1190/GEO2017-0024.1
https://doi.org/10.1190/GEO2017-0024.1
https://doi.org/10.1109/TNN.2002.804317
https://doi.org/10.1109/TNN.2002.804317
https://doi.org/10.1190/GEO2017-0216.1
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/J.ADVWATRES.2017.10.014
https://doi.org/10.1016/J.ADVWATRES.2017.10.014
https://doi.org/10.1016/j.advwatres.2015.09.019
https://doi.org/10.1071/EG03182


REFERENCES 162

uncertainty. Journal of Geophysical Research: Solid Earth, 127, e2021JB022581.

https://doi.org/10.1029/2021JB022581

Lopez-Alvis, J., Laloy, E., Nguyen, F., & Hermans, T. (2021). Deep generative

models in inversion: The impact of the generator’s nonlinearity and develop-

ment of a new approach based on a variational autoencoder. Computers &

Geosciences, 152, 104762. https://doi.org/10.1016/J.CAGEO.2021.104762

Mackie, R. L., & Madden, T. R. (1993). Three-dimensional magnetotelluric inver-

sion using conjugate gradients. Geophysical Journal International, 115, 215–

229. https://doi.org/10.1111/J.1365-246X.1993.TB05600.X

Maiti, S., Erram, V. C., Gupta, G., Tiwari, R. K., Kulkarni, U. D., & Sangpal,

R. R. (2013). Assessment of groundwater quality: A fusion of geochemical

and geophysical information via Bayesian neural networks. Environmental

Monitoring and Assessment, 185, 3445–3465. https : //doi . org/10 . 1007/

s10661-012-2802-y

Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion

in a nonlinear geophysical problem. Geophysical Journal International, 151,

675–688. https://doi.org/10.1046/J.1365-246X.2002.01847.X

Mariethoz, G., Renard, P., & Caers, J. (2010). Bayesian inverse problem and op-

timization with iterative spatial resampling. Water Resources Research, 46,

11530. https://doi.org/10.1029/2010WR009274

Marzan, I., Martí, D., Lobo, A., Alcalde, J., Ruiz, M., Alvarez-Marron, J., & Car-

bonell, R. (2021). Joint interpretation of geophysical data: Applying machine

learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain).

Engineering Geology, 288, 106126. https://doi.org/10.1016/J.ENGGEO.

2021.106126

https://doi.org/10.1029/2021JB022581
https://doi.org/10.1016/J.CAGEO.2021.104762
https://doi.org/10.1111/J.1365-246X.1993.TB05600.X
https://doi.org/10.1007/s10661-012-2802-y
https://doi.org/10.1007/s10661-012-2802-y
https://doi.org/10.1046/J.1365-246X.2002.01847.X
https://doi.org/10.1029/2010WR009274
https://doi.org/10.1016/J.ENGGEO.2021.106126
https://doi.org/10.1016/J.ENGGEO.2021.106126


REFERENCES 163

Matsushima, J., Ali, M. Y., & Bouchaala, F. (2016). Seismic attenuation estimation

from zero-offset VSP data using seismic interferometry. Geophysical Journal

International, 204, 1288–1307. https://doi.org/10.1093/GJI/GGV522

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three

methods for selecting values of input variables in the analysis of output from

a computer code. Technometrics, 21, 239. https://doi.org/10.2307/1268522

Meier, R., & Rix, G. (1993). An initial study of surface wave inversion using artificial

neural networks. Geotechnical Testing Journal, 16, 425–431. https://doi.org/

10.1520/GTJ10282J

Meier, U., Curtis, A., & Trampert, J. (2007). Global crustal thickness from neural

network inversion of surface wave data. Geophysical Journal International,

169, 706–722. https://doi.org/10.1111/J.1365-246X.2007.03373.X

Michel, H. (2020). BEL1D: Matlab toolboxes for the application of Bayesian Evid-

ential Learning 1D imaging. https://github.com/hadrienmichel/BEL1D

Michel, H. (2022). pyBEL1D: A Python implementation of BEL1D. https://doi.

org/10.5281/ZENODO.6833249

Michel, H., Hermans, T., Kremer, T., & Nguyen, F. (2021). Application of BEL1D

for sNMR data interpretation. MRS2021 - 8th International Workshop on

Magnetic Resonance, 59–62.

Michel, H., Hermans, T., & Nguyen, F. (2022). Iterative Prior Resampling and

rejection sampling to improve 1D geophysical imaging based on Bayesian

Evidential Learning (BEL1D). Geophysical Journal International. https://

doi.org/10.1093/GJI/GGAC372

Michel, H., Hermans, T., Kremer, T., & Nguyen, F. (2020). Improving BEL1D

accuracy for geophysical imaging of the subsurface. SEG Technical Program

https://doi.org/10.1093/GJI/GGV522
https://doi.org/10.2307/1268522
https://doi.org/10.1520/GTJ10282J
https://doi.org/10.1520/GTJ10282J
https://doi.org/10.1111/J.1365-246X.2007.03373.X
https://github.com/hadrienmichel/BEL1D
https://doi.org/10.5281/ZENODO.6833249
https://doi.org/10.5281/ZENODO.6833249
https://doi.org/10.1093/GJI/GGAC372
https://doi.org/10.1093/GJI/GGAC372


REFERENCES 164

Expanded Abstracts, 2020-October, 3562–3566. https ://doi .org/10.1190/

SEGAM2020-3426204.1

Michel, H., Nguyen, F., Kremer, T., Elen, A., & Hermans, T. (2020). 1D geological

imaging of the subsurface from geophysical data with Bayesian Evidential

Learning. Computers & Geosciences, 138, 104456. https://doi.org/10.1016/

j.cageo.2020.104456

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

Moghadas, D., Jadoon, K. Z., & McCabe, M. F. (2019). Spatiotemporal monitoring

of soil moisture from EMI data using dct-based bayesian inference and neural

network. Journal of Applied Geophysics, 169, 226–238. https://doi.org/10.

1016/J.JAPPGEO.2019.07.004

Moss, R. (2008). Quantifying measurement uncertainty of thirty-meter shear-wave

velocity. Bulletin of the Seismological Society of America, 98, 1399–1411.

https://doi.org/10.1785/0120070101

Mosser, L., Dubrule, O., & Blunt, M. J. (2020). Stochastic seismic waveform inver-

sion using generative adversarial networks as a geological prior. Mathematical

Geosciences, 52, 53–79. https://doi.org/10.1007/s11004-019-09832-6

Mreyen, A. S., Cauchie, L., Micu, M., Onaca, A., & Havenith, H. B. (2021). Mul-

tiple geophysical investigations to characterize massive slope failure deposits:

Application to the Balta rockslide, Carpathians. Geophysical Journal Inter-

national, 225, 1032–1047. https://doi.org/10.1093/GJI/GGAB028

Müller-Petke, M., Braun, M., Hertrich, M., Costabel, S., & Walbrecker, J. (2016).

MRSmatlab — a software tool for processing, modeling, and inversion of

magnetic resonance sounding data. Geophysics, 81, WB9–WB21. https://

doi.org/10.1190/GEO2015-0461.1

https://doi.org/10.1190/SEGAM2020-3426204.1
https://doi.org/10.1190/SEGAM2020-3426204.1
https://doi.org/10.1016/j.cageo.2020.104456
https://doi.org/10.1016/j.cageo.2020.104456
https://doi.org/10.1016/J.JAPPGEO.2019.07.004
https://doi.org/10.1016/J.JAPPGEO.2019.07.004
https://doi.org/10.1785/0120070101
https://doi.org/10.1007/s11004-019-09832-6
https://doi.org/10.1093/GJI/GGAB028
https://doi.org/10.1190/GEO2015-0461.1
https://doi.org/10.1190/GEO2015-0461.1


REFERENCES 165

Müller-Petke, M., & Yaramanci, U. (2010). QT inversion - comprehensive use of the

complete surface NMR data set. Geophysics, 75. https://doi.org/10.1190/1.

3471523

Nabighian, M. (1987). Electromagnetic methods in applied geophysics: Volume 1,

theory. Society of Exploration Geophysicists. https://doi.org/10.1190/1.

9781560802631

Nabighian, M. (1991). Electromagnetic methods in applied geophysics: Volume 2,

application, parts a and b. Society of Exploration Geophysicists. https://

doi.org/10.1190/1.9781560802686

Nabighian, M. N., & Macnae, J. C. (1991). Chapter 6. Time domain electromagnetic

prospecting methods. In M. N. Nabighian (Ed.), Electromagnetic methods

in applied geophysics: Volume 2, application, parts a and b (pp. 427–520,

Vol. 2). Society of Exploration Geophysicists. https://doi.org/10.1190/1.

9781560802686.CH6

Nguyen, F., Kemna, A., Robert, T., & Hermans, T. (2016). Data-driven selection

of the minimum-gradient support parameter in time-lapse focused electric

imaging. Geophysics, 81, A1–A5. https://doi.org/10.1190/GEO2015-0226.1

Noble, W. S. (2006). What is a support vector machine? NATURE BIOTECHNO-

LOGY, 24. https://doi.org/10.1038/nbt1206-1565

Omre, H. (1984). The variogram and its estimation. In G. Verly, M. David, A.

Journel & A. Marechal (Eds.), Geostatistics for natural resources character-

ization (pp. 107–125). Springer, Dordrecht. https://doi.org/10.1007/978-

94-009-3699-7_7

Osisanwo, F., Akinsola, J., Awodele, O., & Hinmikaiye, J. (2017). Supervised ma-

chine learning algorithms: Classification and comparison. International Journal

https://doi.org/10.1190/1.3471523
https://doi.org/10.1190/1.3471523
https://doi.org/10.1190/1.9781560802631
https://doi.org/10.1190/1.9781560802631
https://doi.org/10.1190/1.9781560802686
https://doi.org/10.1190/1.9781560802686
https://doi.org/10.1190/1.9781560802686.CH6
https://doi.org/10.1190/1.9781560802686.CH6
https://doi.org/10.1190/GEO2015-0226.1
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1007/978-94-009-3699-7_7
https://doi.org/10.1007/978-94-009-3699-7_7


REFERENCES 166

of Computer Trends and Technology (IJCTT), 48, 128–138. https://doi.org/

10.14445/22312803/IJCTT-V48P126

Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves.

GEOPHYSICS, 64.

Park, J., & Caers, J. (2020). Direct forecasting of global and spatial model para-

meters from dynamic data. Computers & Geosciences, 143. https://doi.org/

10.1016/J.CAGEO.2020.104567

Park, J., Yang, G., Satija, A., Scheidt, C., & Caers, J. (2016). Dgsa: A matlab tool-

box for distance-based generalized sensitivity analysis of geoscientific com-

puter experiments. Computers and Geosciences, 97, 15–29. https://doi.org/

10.1016/j.cageo.2016.08.021

Patro, P. K. (2017). Magnetotelluric studies for hydrocarbon and geothermal re-

sources: Examples from the asian region. Surveys in Geophysics, 38, 1005–

1041. https://doi.org/10.1007/S10712-017-9439-X

Phelps, G., Scheidt, C., & Caers, J. (2018). Exploring viable geologic interpretations

of gravity models using distance-based global sensitivity analysis and kernel

methods. Geophysics, 83, G79–G92. https://doi.org/10.1190/GEO2017-

0742.1

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New

England Journal of Medicine, 380, 1347–1358. https://doi .org/10.1056/

NEJMRA1814259

Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library

for modelling and inversion in geophysics. Computers and Geosciences, 109,

106–123. https://doi.org/10.1016/j.cageo.2017.07.011

Russell, B. (2019). Machine learning and geophysical inversion — a numerical study.

The Leading Edge, 38, 512–519. https://doi.org/10.1190/TLE38070512.1

https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://doi.org/10.1016/J.CAGEO.2020.104567
https://doi.org/10.1016/J.CAGEO.2020.104567
https://doi.org/10.1016/j.cageo.2016.08.021
https://doi.org/10.1016/j.cageo.2016.08.021
https://doi.org/10.1007/S10712-017-9439-X
https://doi.org/10.1190/GEO2017-0742.1
https://doi.org/10.1190/GEO2017-0742.1
https://doi.org/10.1056/NEJMRA1814259
https://doi.org/10.1056/NEJMRA1814259
https://doi.org/10.1016/j.cageo.2017.07.011
https://doi.org/10.1190/TLE38070512.1


REFERENCES 167

Satija, A., & Caers, J. (2015). Direct forecasting of subsurface flow response from

non-linear dynamic data by linear least-squares in canonical functional prin-

cipal component space. Advances in Water Resources, 77, 69–81. https://

doi.org/10.1016/j.advwatres.2015.01.002

Satija, A., Scheidt, C., Li, L., & Caers, J. (2017). Direct forecasting of reservoir per-

formance using production data without history matching. Computational

Geosciences 2017 21:2, 21, 315–333. https://doi.org/10.1007/S10596-017-

9614-7

Scheidt, C., Li, L., & Caers, J. (2018). Quantifying uncertainty in subsurface systems

(Vol. 182). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119325888

Scheidt, C., Renard, P., & Caers, J. (2015). Prediction-focused subsurface modeling:

Investigating the need for accuracy in flow-based inverse modeling. Mathem-

atical Geosciences, 47, 173–191. https://doi.org/10.1007/S11004-014-9521-6

Scheiter, M., Valentine, A., & Sambridge, M. (2022). Upscaling and downscaling

Monte Carlo ensembles with generative models. Geophysical Journal Inter-

national, 230, 916–931. https://doi.org/10.1093/GJI/GGAC100

Schmitt, D. R. (2015). Geophysical properties of the near surface earth: Seismic

properties. In G. Schubert (Ed.), Treatise on geophysics (Second Edition,

pp. 43–87, Vol. 11). Elsevier. https://doi.org/10.1016/B978-0-444-53802-

4.00190-1

Schubert, G. (2015). Treatise on geophysics (Second Edition). Elsevier.

Siahkoohi, A., Louboutin, M., & Herrmann, F. J. (2019). The importance of transfer

learning in seismic modeling and imaging. Geophysics, 84, A47–A52. https:

//doi.org/10.1190/GEO2019-0056.1

Siemon, B., Auken, E., & Christiansen, A. V. (2009). Laterally constrained inver-

sion of helicopter-borne frequency-domain electromagnetic data. Journal of

https://doi.org/10.1016/j.advwatres.2015.01.002
https://doi.org/10.1016/j.advwatres.2015.01.002
https://doi.org/10.1007/S10596-017-9614-7
https://doi.org/10.1007/S10596-017-9614-7
https://doi.org/10.1002/9781119325888
https://doi.org/10.1007/S11004-014-9521-6
https://doi.org/10.1093/GJI/GGAC100
https://doi.org/10.1016/B978-0-444-53802-4.00190-1
https://doi.org/10.1016/B978-0-444-53802-4.00190-1
https://doi.org/10.1190/GEO2019-0056.1
https://doi.org/10.1190/GEO2019-0056.1


REFERENCES 168

Applied Geophysics, 67, 259–268. https://doi.org/10.1016/J.JAPPGEO.

2007.11.003

Smedt, P. D., Meirvenne, M. V., Saey, T., Baldwin, E., Gaffney, C., & Gaffney,

V. (2014). Unveiling the prehistoric landscape at Stonehenge through multi-

receiver EMI. Journal of Archaeological Science, 50, 16–23. https://doi.org/

10.1016/J.JAS.2014.06.020

Socco, L. V., Foti, S., & Boiero, D. (2010). Surface-wave analysis for building near-

surface velocity models - established approaches and new perspectives. Geo-

physics, 75. https://doi.org/10.1190/1.3479491

Spies, B. R., & Frischknecht, F. C. (1991). Chapter 5. Electromagnetic sounding.

In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics:

Volume 2, application, parts a and b (pp. 285–425, Vol. 2). Society of Ex-

ploration Geophysicists. https://doi.org/10.1190/1.9781560802686.CH5

Sun, B., & Alkhalifah, T. (2020). ML-descent: An optimization algorithm for full-

waveform inversion using machine learning. Geophysics, 85, R477–R492.

https://doi.org/10.1190/GEO2019-0641.1

Suthaharan, S. (2016). Decision tree learning. In Machine learning models and al-

gorithms for big data classification (pp. 237–269). Springer, Boston, MA.

https://doi.org/10.1007/978-1-4899-7641-3_10

Tarantola, A. (2006). Popper, bayes and the inverse problem. Nature Physics 2006

2:8, 2, 492–494. https://doi.org/10.1038/nphys375

Tezkan, B. (1999). A review of environmental applications of quasi-stationary elec-

tromagnetic techniques. Surveys in Geophysics 1999 20:3, 20, 279–308. https:

//doi.org/10.1023/A:1006669218545

https://doi.org/10.1016/J.JAPPGEO.2007.11.003
https://doi.org/10.1016/J.JAPPGEO.2007.11.003
https://doi.org/10.1016/J.JAS.2014.06.020
https://doi.org/10.1016/J.JAS.2014.06.020
https://doi.org/10.1190/1.3479491
https://doi.org/10.1190/1.9781560802686.CH5
https://doi.org/10.1190/GEO2019-0641.1
https://doi.org/10.1007/978-1-4899-7641-3_10
https://doi.org/10.1038/nphys375
https://doi.org/10.1023/A:1006669218545
https://doi.org/10.1023/A:1006669218545


REFERENCES 169

Tezkan, B. (2008). Radiomagnetotellurics. In R. Kirsch (Ed.), Groundwater geophys-

ics (pp. 295–317). Springer Berlin Heidelberg. https://doi.org/10.1007/978-

3-540-88405-7_10

Thas, O. (2010). Comparing distributions. https://doi.org/10.1007/978-0-387-

92710-7

Thibaut, R., Laloy, E., & Hermans, T. (2021). A new framework for experimental

design using Bayesian Evidential Learning: The case of wellhead protec-

tion area. Journal of Hydrology, 603, 126903. https://doi.org/10.1016/J.

JHYDROL.2021.126903

Trainor-Guitton, W., & Hoversten, G. M. (2011). Stochastic inversion for electro-

magnetic geophysics: Practical challenges and improving convergence effi-

ciency. Geophysics, 76. https://doi.org/10.1190/GEO2010-0223.1

Uieda, L., Jr, V. C. O., & Barbosa, V. C. F. (2013). Modeling the Earth with Fa-

tiando a Terra. In S. van der Walt, J. Millman & K. Huff (Eds.), Proceedings

of the 12th Python in Science Conference (pp. 92–98). https://doi.org/10.

25080/Majora-8b375195-010

Ulrych, T. J., Sacchi, M. D., & Woodbury, A. (2001). A Bayes tour of inversion: A

tutorial. GEOPHYSICS, 66, 55–69. https://doi.org/10.1190/1.1444923

Valentine, A., & Sambridge, M. (2017). Using machine learning to accelerate sampling-

based inversion. AGU Fall Meeting 2017.

Van De Vijver, E. (2017). Proximal soil sensing in the context of urban (re)development

: An evaluation of multi-receiver electromagnetic induction and stepped-frequency

ground penetrating radar at landfills and industrial sites.

van Leeuwen, J., & Evenson, G. (1996). Data assimilation and inverse methods in

terms of a probabilistic formulation. Monthly Weather Review, 124, 2898–

2913.

https://doi.org/10.1007/978-3-540-88405-7_10
https://doi.org/10.1007/978-3-540-88405-7_10
https://doi.org/10.1007/978-0-387-92710-7
https://doi.org/10.1007/978-0-387-92710-7
https://doi.org/10.1016/J.JHYDROL.2021.126903
https://doi.org/10.1016/J.JHYDROL.2021.126903
https://doi.org/10.1190/GEO2010-0223.1
https://doi.org/10.25080/Majora-8b375195-010
https://doi.org/10.25080/Majora-8b375195-010
https://doi.org/10.1190/1.1444923


REFERENCES 170

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of Machine Learning Research, 11,

3371–3408.

Vozoff, K. (1991). Chapter 8: The magnetotelluric method. In M. N. Nabighian

(Ed.), Electromagnetic methods in applied geophysics: Volume 2, application,

parts a and b (pp. 641–712, Vol. 2). Society of Exploration Geophysicists.

https://doi.org/10.1190/1.9781560802686.CH8

Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM soft-

ware package: Theory, concepts, and MATLAB implementation. Environ-

mental Modelling & Software, 75, 273–316. https ://doi . org/10 .1016/J .

ENVSOFT.2015.08.013

Wallet, B. C., & Hardisty, R. (2019). Unsupervised seismic facies using gaussian

mixture models. Interpretation, 7, SE93–SE111. https://doi.org/10.1190/

INT-2018-0119.1

Wand, M. P., & Jones, M. C. (1993). Comparison of smoothing parameterizations

in bivariate kernel density estimation. Journal of the American Statistical

Association, 88, 520. https://doi.org/10.2307/2290332

Wastiaux, C., & Schumacker, R. (2003). Topographie de surface et de subsurface

des zones tourbeuses des réserves naturelles domaniales des Hautes-Fagnes

(No. C60/1-2-3). Université de Liège, Service de phytosociologie, flore et

végétations des Hautes-Fagnes.

Wastiaux, C. (2008). Les tourbières sont-elles des éponges régularisant l’écoulement

? Bulletin de la Société géographique de Liège, 50, 57–66.

https://doi.org/10.1190/1.9781560802686.CH8
https://doi.org/10.1016/J.ENVSOFT.2015.08.013
https://doi.org/10.1016/J.ENVSOFT.2015.08.013
https://doi.org/10.1190/INT-2018-0119.1
https://doi.org/10.1190/INT-2018-0119.1
https://doi.org/10.2307/2290332


REFERENCES 171

Wathelet, M. (2008). An improved neighborhood algorithm: Parameter conditions

and dynamic scaling. Geophysical Research Letters, 35, 9301. https://doi.

org/10.1029/2008GL033256

Wei, M., Zhang, Y., Fan, T., & Lin, T. (2021). Noise attenuation of magnetic res-

onancesounding signal using fully convolutional networks. 8th International

Workshop on Magnetic Resonance, 81–83.

Werthmüller, D. (2017). An open-source full 3D electromagnetic modeler for 1D

VTI media in Python: Empymod. GEOPHYSICS, 82, WB9–WB19. https:

//doi.org/10.1190/geo2016-0626.1

White, D. J. (1989). Two-dimensional seismic refraction tomography. Geophysical

Journal International, 97, 223–245. https://doi.org/10.1111/J.1365-246X.

1989.TB00498.X

Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near-surface shear-wave

velocity by inversion of rayleigh waves. https://doi.org/10.1190/1.1444578,

64. https://doi.org/10.1190/1.1444578

Yin, Z., Strebelle, S., & Caers, J. (2020). Automated Monte Carlo-based quanti-

fication and updating of geological uncertainty with borehole data (autobel

v1.0). Geoscientific Model Development, 13, 651–672. https://doi.org/10.

5194/GMD-13-651-2020

Yu, S., Ma, J., & Wang, W. (2019). Deep learning for denoising. Geophysics, 84,

V333–V350. https://doi.org/10.1190/GEO2018-0668.1

Zhang, H. (2004). The optimality of naive bayes. In V. Barr & Z. Markov (Eds.),

Proceedings of the seventeenth international florida artificial intelligence re-

search society conference (pp. 562–567). AAAI Press.

https://doi.org/10.1029/2008GL033256
https://doi.org/10.1029/2008GL033256
https://doi.org/10.1190/geo2016-0626.1
https://doi.org/10.1190/geo2016-0626.1
https://doi.org/10.1111/J.1365-246X.1989.TB00498.X
https://doi.org/10.1111/J.1365-246X.1989.TB00498.X
https://doi.org/10.1190/1.1444578
https://doi.org/10.5194/GMD-13-651-2020
https://doi.org/10.5194/GMD-13-651-2020
https://doi.org/10.1190/GEO2018-0668.1


REFERENCES 172

Zhang, X., & Curtis, A. (2021). Bayesian geophysical inversion using invertible

neural networks. Journal of Geophysical Research: Solid Earth. https://doi.

org/10.1029/2021JB022320

Zhao, J., Gao, J., Wang, D., & Zhang, M. (2014). Q-factor and velocity inversion

from zero-offset VSP data. Journal of Applied Geophysics, 101, 51–67. https:

//doi.org/10.1016/J.JAPPGEO.2013.11.005

Zhdanov, M. S. (2009). Electromagnetic properties of rocks and minerals. In Meth-

ods in geochemistry and geophysics (pp. 395–447, Vol. 43). Elsevier. https:

//doi.org/10.1016/S0076-6895(08)00210-2

Zonge, K. L., & Hughes, L. J. (1991). Chapter 9: Controlled source audio-frequency

magnetotellurics. In M. N. Nabighian (Ed.), Electromagnetic methods in ap-

plied geophysics: Volume 2, application, parts a and b (pp. 713–809, Vol. 2).

Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802686.

ch9

Zou, C., Zhao, L., Xu, M., Chen, Y., & Geng, J. (2021). Porosity prediction with

uncertainty quantification from multiple seismic attributes using random

forest. Journal of Geophysical Research: Solid Earth, 126. https://doi.org/

10.1029/2021JB021826

https://doi.org/10.1029/2021JB022320
https://doi.org/10.1029/2021JB022320
https://doi.org/10.1016/J.JAPPGEO.2013.11.005
https://doi.org/10.1016/J.JAPPGEO.2013.11.005
https://doi.org/10.1016/S0076-6895(08)00210-2
https://doi.org/10.1016/S0076-6895(08)00210-2
https://doi.org/10.1190/1.9781560802686.ch9
https://doi.org/10.1190/1.9781560802686.ch9
https://doi.org/10.1029/2021JB021826
https://doi.org/10.1029/2021JB021826


Appendix A

Testing BEL1D on a synthetic mind

experiment: oscillations of a

pendulum

M

l

h

X

Y

Figure A.1: Illustration of the pendulum experiment

In this purely theoretical case, we will demonstrate the ubiquity of BEL1D to

solve inverse problems with a limited number of unknown parameters as encountered

173



BEL1D ON A PENDULUM 174

in 1D geophysical data. We use a case not related to geosciences but a classical

example of college physics. This is a rather easy way to show the strength of the

BEL1D, as most of the readers will be familiar with the problem.

Imagine a pendulum, of unknown point mass (M) and unknown length (l),

that has been launched from an unknown height (h) with a null velocity (Figure

A.1). The height of the pendulum centre (H) is 10 m. Our experiment consists of

taking pictures of the pendulum to determine the bob’s Y position every second

for 1min50sec, beginning 10 seconds after the launch of the bob (at null velocity).

We will assume that the image processing induces a Gaussian uncertainty on the

measured position with a standard deviation equal to 0.1 m.

The forward model is described by the system of differential equations presented

in Equation A.1 where θ(t) is the angular position of the pendulum, θt(t) the velocity

of the bob and ω2 =
√
g/l, the natural frequency of the pendulum. The different

parameters of interest for the problem are all related to the value of θ(t), at the

exception of the mass (M) which does not appear in the equations.


∂
∂t
θ(t) = θt(t)

∂
∂t
θt(t) = −ω2 sin (θ(t))

(A.1)

For the presented example, the values of the parameters are:

• l = 3m

• h = 7.5m

• M = 40kg

The prior model space is defined by uniformly distributed variables that are

within the ranges described in Table A.1, with the additional constraint that the

sampled models should correspond to the criteria stated in Equation A.2.
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l + h >= H (A.2)

This latter condition guarantees that the pendulum is physically consistent.

l[m] h[m] M[kg]
Minimum 1 1 0
Maximum 9 9 50

Table A.1: Prior model space for the pendulum model

BEL1D was applied with 10000 prior realizations in order to produce 10000

models in the posterior model space. From the 111 dimensions in the original data

space (one point every second for 110 seconds), PCA enabled a reduction to 37

dimensions (while keeping at least 90% of the variance explained). In CCA model

space, the first two dimensions were mainly representing the length (l) and the

height of launch (h). The third dimension showed no correlation and represented

mainly the mass (M). To constitute the posterior, we ignored the effect of noise.

The results of BEL1D on this particular experiment showed that the values of

the length of the pendulum as well as the height of launch were reasonably solved

(Figure A.2). However, the distributions in mass for the prior and posterior model

spaces are similar. This is due to the intrinsic insensitivity of the experiment to

the mass. It is also observed that the height of launch (h) and the length of the

pendulum (l) are highly correlated in the posterior model space. Moreover, even if

the real value of the length is relatively small, hence less likely than larger values

in the prior model space, the BEL1D process is still able to produce an accurate

posterior distribution for this parameter. Some processing of these results enables to

retrieve an estimation of the probability distribution function of the launch position

in the (X, Y ) plane (Figure A.3, right). This estimation is very accurate, given the

real initial position is located in the zone of the highest probability. Analysing the
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Figure A.2: Results of BEL modelling on the pendulum experiment. The prior
space is presented in blue and the posterior in orange. The benchmark values are
represented by the dashed black lines in the histogram plots.

RMS error on the simulated data from the posterior (Figure A.3, left) showed that

the lowest RMS are observed closer to the real initial position, however with a larger

scattering.

The data distributions showed the reduction from the prior model space to the

posterior compared to the benchmark data (Figure A.4). It is observed that the

reduction is substantial and that the posterior data are centred on the true data.

In order to better reduce the uncertainty on the models, the experiment could
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Figure A.3: Results of the BEL modelling on the pendulum experiment: (left) RMS
error as a function of the initial position and (right) estimation of the probability
distribution for the initial position of the bob. The true initial position is represen-
ted by the white circle.

be improved, either by considering the X component of the position, refining the

time span, or reducing the noise on the data (better image processing). This is

not performed here, since the example already demonstrates the ubiquity of the

proposed algorithm which was the main objective.
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Figure A.4: Pendulum experiment, prior (grey) and posterior (blue) data spaces
compared to the true values (red).
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