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Abstract—Kubernetes’ high resource requirements hamper its
adoption in constrained environments such as the edge and
fog. Its extensible control plane is a significant contributor to
this, consisting of long-lived processes called "controllers" that
constantly listen for state changes and use resources even when
they are not needed. This paper presents a WebAssembly-based
framework for running lightweight controllers on-demand, only
when they are needed. This framework extends the WebAssembly
System Interface (WASI), in order to run Kubernetes controllers
as lightweight Wasm modules. The framework runs these Wasm
controllers in a modified version of Wasmtime, the reference
WebAssembly (Wasm) runtime, that swaps idle controllers to disk
and activates them when needed. A thorough evaluation shows
this framework achieves a 64% memory reduction compared to
traditional container-based controller frameworks.

Index Terms—Kubernetes, Webassembly, WASI, controllers,
operators, edge computing

I. INTRODUCTION

The adoption of new technologies relies heavily on poten-
tial resulting cost savings. Financial and environmental cost
reductions have been achieved by increasing computational
density in cloud computing. Lower latency costs have stemmed
from advancements in telecommunications, such as 5G, and
the dispersion of cloud to fog, edge and IoT. These two
innovation flows have independently led to widely accepted
solutions. Combining these two ideas, however, poses a great
opportunity. Adopting cloud computing techniques in the edge
has the potential to greatly improve reliability, release software
faster and expedite operations. Cloud computing utilizes cloud
orchestration for optimal resource allocation and server cluster
management such as Kubernetes [1], a Google-led open source
project inspired by their internal Borg orchestrator [2, 3]. Its
extensible architecture parts a cluster in a control plane and
a worker plane. Edge environments, which are typically large
complex clusters with limited resources, can benefit signifi-
cantly from having an orchestrator to manage complexity and
size.

The primary orchestration targets of Kubernetes, however,
are high-resource cloud clusters. Running Kubernetes on low-
resource clusters suffers from relatively high control plane
overhead costs, which hinders adaptation in the edge market
segment. In complex cloud-native application deployments,
operators [4] are used to automate actions on the Kubernetes
cluster state, that would otherwise be performed by a human
operator. These operators are one of the main cost drivers

of the Kubernetes control plane. To react to changes in the
Kubernetes cluster state, the operators have to run as long-
living processes. Even if the operator’s control loop is idle, the
container and process still use cluster resources. For complex
applications that use many operators, these overhead costs
quickly accumulate and account for a significant portion of
the resource utilization. This is especially problematic for low-
resource deployments.

Since global edge application configuration and deployment
is a complex task, it is often abstracted by the service
provider and included in a Function as a Service (FaaS)
offering. FaaS applications are better suited for low-resource
edge environments thanks to their fast on-demand scaling
properties. Specifically, some edge FaaS platforms use Web-
Assembly (WASM) [5], a browser technology designed as a
portable binary code format that can be assembled from a
range of programming languages and that is well suited to
resource-constrained environments. On edge FaaS platforms,
like Cloudflare Workers [6] and Fastly Compute@Edge [7, 8],
WebAssembly is used to securely isolate workloads with
reduced overhead and scale-to-zero capabilities.

This research aims to make Kubernetes more suitable to
resource-constrained edge environments by running its control
plane in a FaaS platform based on WebAssembly. Specifically,
the research aims to answer the following questions:

RQ 1: How can Kubernetes use WebAssembly to run parts
of its control plane?

RQ 2: How does running the Kubernetes control plane in
WebAssembly impact its overhead?

RQ 3: What situations affect the overhead difference be-
tween WebAssembly and regular operators?

RQ 4: What is the effect on resource usage of running this
control plane in an on-demand manner on a FaaS platform?

Section II investigates the state of the art concerning
adapting Kubernetes to the edge. Section III explains the
architecture of our WebAssembly-based operator solution and
Section IV discusses how this architecture is implemented. In
Section V, our benchmark results of the WebAssembly runtime
are discussed, as well as the methodology to achieve these
results.

II. RELATED WORK

WebAssembly is used by a number of large edge com-
puting platforms such as Cloudflare Workers [6] and Fastly
Compute@Edge [7] to securely isolate workloads with re-
duced overhead and scale-to-zero capabilities. Although Web-Pre-print of article accepted to IEEE CloudNet 2022] ©2022 IEEE



Assembly runtimes generally incur a performance hit com-
pared to native code, this is not inherent to WebAssembly it-
self, as some runtimes such as Wasmachine show performance
improvements of up to 21% compared to native code [9].
WebAssembly is especially useful in a Serverless or FaaS set-
ting because of its quick startup times. The Sledge serverless
platform, for example, uses WebAssembly to achieve up to 4
times higher throughput and 4 times lower latencies compared
to the state of the art [10].

As more and more computation moves towards the edge, so
do supporting components such as Kubernetes [11]. Efforts to
reduce the footprint of Kubernetes in the edge have shown
some success [12]. Although it is possible to reduce the
footprint of the existing Kubernetes codebase, the best per-
formance improvements require a complete re-implementation
of core Kubernetes components [13]. The overhead of Ku-
bernetes is larger than its core implementation, however, as
many microservice deployments and frameworks use custom
controllers for management, which add significant memory
strain.

Recent additions to the Kubernetes ecosystem, like Krust-
let [14] and Wasmedge [15], add support for WebAssembly
workloads as an alternative to OCI containers. Efforts to
use WebAssembly for extending control-plane components is
also underway, such as in the Kubewarden project, which
allows writing custom Kubernetes policies in any language
and compile them to WebAssembly. [16] Finally, some strides
have been made towards using WebAssembly for writing
any control logic, by creating Wasm Operators [17]. This
effort, however, still requires controllers to continuously run,
regardless of whether any changes need to be processed. Thus,
a solution is needed which combines Kubernetes controllers
with WebAssembly and Serverless in order to have a truly
event-based Kubernetes control plane which only activates
when needed and gets unloaded after execution.

III. SOLUTION ARCHITECTURE: WASM OPERATOR

Because of Kubernetes’ can-always-fail design, an operator
application is not supposed to hold any internal state across
reconciliation iterations except for caches. The operator gener-
ally uses the Kubernetes API to store state. This theoretically
allows running each iteration of the reconciliation loop without
storing state in between. This property also holds for FaaS
systems, where there is no guarantee for state preservation
in between function calls. FaaS solutions for constrained
edge environments often utilize Software-based Fault Isolation
(SFI) instead of process isolation. WebAssembly lets you
create SFI applications based on code written in existing high-
level languages.

The WASM operator architecture presented in this paper
and visualized in Figure 1 attempts to realize all the beneficial
aspects that solutions in prior work have achieved [18, 19, 20].
The main parts of the architecture are the parent operator
and the child operators. The child operators run as WASM
instances in the WASM runtime embedded in the parent

Fig. 1. Design of our WASM operator architecture.

operator. We use an existing WASM runtime implementation
as embedded runtime. The beneficial aspects are listed below.

• Isolation overhead: All child operators run in the same
process as the parent operator. This process runs inside a
single container in a single Kubernetes pod. Isolation is
provided by the WASM engine, eliminating the overhead
due to container isolation.

• Modularity: The WASM runtime makes it possible to
add or remove child operators without interfering with
the other active child operators.

• Simple child operator: In our architecture, the parent
operator extends the WASM runtime with host functions
that can be used by the child operators to communicate
with the Kubernetes API. Low-level operator logic is
moved to the parent operator. This reduces the complexity
and overhead of the client operators.

• Scale-to-zero: To limit the overhead of inactive operators,
our architecture allows to dynamically unload inactive
operators.

In order to efficiently make Kubernetes API requests, we
want child operators to perform them asynchronously. Existing
WASM runtimes offer no support for asynchronous calls
or offer a solution that is incompatible with idle module
unloading. Therefore, we created a new solution that adds
support for asynchronous operations to the WASM runtime
that is embedded in our parent operator. By extending the
WASM runtime, we allow the child operators to wait for host
functions asynchronously.

A. Parent operator asynchronous runtime

Figure 2 shows how the parent operator manages the
asynchronous operations of a child operator and unloads an
inactive child operator after a long period of inactivity. The
main components of the parent operator are the WASM engine,
the host functions exposed to the WASM instance and the work
queue. For the WASM engine component and some of the host
functions, existing solutions can be used.

The solution works as follows: Each WASM module has
an entry point that executes the main function in the child
operator, shown in Figure 2 as 1⃝. Environment interactions
happen through the calling of WASM host functions 2⃝. Some
of these actions are asynchronous and do not directly yield a
result. These asynchronous actions are started and added to
the work queue 3⃝, directly returning control to the WASM



Fig. 2. The design of the parent operator incorporates a WASM runtime
event loop which repeatedly performs actions 1-8; making it possible to
asynchronously call host functions from within a WASM instance.

module 4⃝. After executing all synchronous logic, the WASM
execution stops and the control is returned to the event loop
5⃝. This loop checks if any of the actions in the work queue

finished 6⃝ and passes the results of that finished action 7⃝
back to the WASM engine 1⃝, reloading the child operator in
case it had been previously unloaded 8⃝. When returning to
WASM, a new set of synchronous actions are performed by the
engine. Long-running operators repeat this process indefinitely.
These operators are always waiting for new asynchronous
inputs, like events in a watch stream.

The runtime might detect that a certain child operator has
not been receiving any asynchronous results over a long period
(marked as �). This is indicative for an operator that reached
a steady state in its reconciliation process. Most likely, it will
only restart its logic after external applications changed the
state of the Kubernetes resources that it manages. This could
mean that the operator remains idle for multiple hours. In such
cases, it can be more resource-efficient to unload and swap the
WASM instance to disk.

B. Child operator asynchronous client

All client operators run as single-threaded asynchronous
WASM instances. The child operator is started by the host
which calls the start function that is exposed by the
WASM module. This initial function starts the operator rec-
onciliation loop, which makes asynchronous requests. These
asynchronous futures [21] are awaited by the child operator,
but some of these futures await asynchronous host function
results from the parent runtime. If the child operator cannot
continue without new results from the host environment, it
stops the execution and returns to the host. If none of the
pending asynchronous requests have finished already, the host
waits for one of them to finish, as described in Section III-A.
Once a request finishes, the host returns the result to the child
operator, such that the child operator can finish the linked
asynchronous request. This restarts the whole process.

IV. IMPLEMENTATION

We implemented this architecture as an open source run-
time, released under the Apache 2.0 license on GitHub [22].
Operators running in this runtime need to use a modified
version of kube-rs, which contains the necessary bindings to
communicate with the runtime [23].

A. Prior work
Our operator implementation builds upon the proof of

concept (PoC) made by Francesco Guardiani and Markus
Thömmes [17]. This PoC provides a WASM operator solution
based on the Wasmer [24] WASM runtime and a hacked
version of the kube-rs [25] library. However, at the time of
writing, it has been 2 years since this project was updated.
Since the API of the Wasmer runtime drastically changed after
its v1 release, and the hacks applied to the kube-rs project
are not well documented, upgrading the PoC was not straight
forward. Furthermore, the Wasmer project lacks the future
potential that other open-source initiatives, like Wasmtime,
can offer. To update kube-rs more easily in the future, a new
project structure was required. Moreover, the original version
of the PoC cannot unload inactive operators as its architecture
is different from the architecture proposed in Section III.
We refactored the PoC and updated it to implement the
aforementioned architecture. Finally, we implemented several
improvements to further optimize the PoC implementation,
such as adding support for caching compiled WASM modules
for later reuse.

B. Parent operator: WASM runtime
The parent operator extends the Wasmtime WASM runtime.

Wasmtime was chosen over other WASM runtimes, because it
is the flagship WASM engine from the Bytecode Alliance, with
support from some of the biggest players in the technology
industry. Our implementation configures Wasmtime to compile
ahead of time (AOT) new WASM modules to machine code
to eliminate the compiler memory overhead at runtime. These
compiled modules are cached on disk and can be reused when
possible. To initiate these compiled modules, Wasmtime only
has to map the file to memory and provide the necessary
tools to communicate with this initiated module. Because
of the use of file-backed memory, for idle operators, these
memory locations can be dropped from memory by the kernel
when needed. If the memory region needs to be accessed
again, a page-fault will be triggered, and the kernel will
load the file back into memory. However, the dynamically
populated memory of the WASM module will not be unloaded
automatically from memory. That is why our implementation
adds a custom unloading and disk swapping implementation
in the parent operator. This makes unloading and swapping
possible, even on systems without swap enabled at operating
system level.

C. Parent operator: host functions
WASM host functions are functions exposed by the Web-

Assembly runtime to the WASM instances. The Web As-
sembly System Interface (WASI) is a standardized set of



Fig. 3. The operator libraries are split between the parent and child operator
and consist out of existing WASI libraries and our own custom libraries based
on kube-rs.

these host functions. Our implementation can benefit from the
existing Wasmtime library that readily implements these WASI
host functions, reducing the implementation and maintenance
burden of our solution. A core aspect of Kubernetes operators
is communicating with the Kubernetes API server. However,
at the time of writing, the WASI spec has not yet standardized
sockets as part of the interface [26]. This means that for
our implementation, we had to implement custom HTTP host
functions to create a working WASM operator setup. As shown
in Figure 3, our implementation uses the low-level part of
kube-rs for the Kubernetes host function implementation. The
high-level kube-rs functionality is implemented in the child
operator. The added host functions are asynchronous functions,
meaning that they return control to the WASM module imme-
diately, while returning an async_id that references a task
in the work-queue as described in Section III-A.

D. Child operator: client libraries

All Kubernetes operator domain knowledge is implemented
in the custom reconciliation loops, that are defined in the child
operators. Our language preference for the child operators
is Rust since the Rust standard libraries best support the
WASI host function calls. Golang, which is normally used in
Kubernetes, has no support for WASI in its default compiler.
Additionally, Golang is a garbage collected language, which
have been shown to use more memory [27]. Another advantage
of choosing Rust as language is that an easier interoper-
ability between the parent and child operator is obtained.
The (de)serialization logic mentioned in Section IV-C, can
be reused for both the parent and child, since they are both
implemented in Rust.

V. RESOURCE UTILIZATION

A. Test setup

The test synthetic-operator, as shown in Figure 4, simulates
a workload with N different operators, which depend on
each other’s actions and are idle for most of the time. Each
operator watches a namespace for TestResources and only
reconciles, once a resource is created or updated. It then
updates/ creates the resource in its destination namespace.
For a full update of all resources, all operators must update

Fig. 4. The test setup for the synthetic-operator workload, each operator is
responsible for the propagation of changes from one namespace to another.

their resource one-by-one. This means the full end-to-end
latency equals the accumulated individual operator latencies.
This synthetic workload simulates a highly dependent and
interactive operator setup.

Measuring the memory footprint of a workload execution,
requires accounting all the memory usage effects that the
process has on the system. This is a non-trivial problem.
The memory utilization measure that we use is determined
by limiting the memory usage, as determined by cgroup v2
[28], until the application is being slowed down as determined
by the Linux PSI metric [29]. For each run, we determine a
upper bound memory limit. Each upper bound is defined as the
memory limit that is not exceeded for 95% of the selected time
range duration. For each configuration, which is defined by an
operator type and number of operators, five independent runs
were performed, each yielding one upper bound for the active
and one for the idle period. Per operator type, we tested the
number of operators from 10 to 100, in increments of 10. For
the active and idle selection separate, based on the resulting
50 upper bounds for each operator type, we trained a linear
regression model. Using this linear model, we determined the
95% prediction interval in which we expect with 95% certainty
the upper bound memory usage of a new run with the given
configuration, as described by Neter et al. [30].

The end-to-end latency is measured by the synthetic-
operator test for the active period of the test. Each set of
reconciliations starts from an update of the TestResource
in namespace 1 until the TestResource in namespace N
is updated. The time from start to end is measured and each
reconciliation set is repeated 500 times per run, resulting in
500N reconciliation iterations. As described in Section V-A,
for each configuration, which is defined by an operator type
and a number of operators, five independent runs are per-
formed.

The raw results of the benchmarks and the analysis and
visualization code are available on GitHub [31].

B. Golang container, Rust container and Rust WASM com-
pared

Figure 5 shows the obtained memory upper bounds for
container-isolated operators written in Golang and Rust and a
WASM-isolated Rust operator. The colored areas represent the
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Fig. 5. The memory 95% upper bounds of the different languages/ isolation
techniques are ordered as follows: Rust WASM < Rust container < Golang
container; all operators use less memory when idle.

95% prediction intervals for the regression models as described
in Section V-A.

Figure 5a shows the results for the active period. The
Golang-based operator clearly uses the most memory. For 100
active operators, switching from Golang to Rust resulted in
a 56.06% upper bound memory reduction. WASM operators
even yielded an 83.81% reduction compared to Golang oper-
ators. Compared to Golang, the Rust operators use entirely
different operator library and framework implementations.
Each implementation has its own memory trade-offs, which
can lead to large differences in memory usage. Additionally,
as discussed in Section V-A, garbage collected languages like
Golang, typically are less memory efficient than languages
without garbage collector like Rust. The Rust container-based
operator and the WASM-based operator share much of their
source code. However, the WASM-based operators use less
memory than container-based operators. This is due to the
reduced complexity of the WASM child operator, as much of
its low-level operator logic is moved to the parent operator.
Moreover, the different isolation techniques used result in a
net reduced isolation overhead, which is further explored in
Section V-C.

Figure 5b shows that, as expected, all operator types utilize
less memory in case of idle workloads, we observed a 14.21%
reduction on average. Compared to 100 idle Golang operators,
100 idle Rust operators utilized 48.04% less memory, which
is a smaller reduction than when comparing active operators.
However, 100 idle WASM operators still used 83.65% less
memory compared to idle Golang operators, similar to the
active situation. The smaller reduction in memory usage of
container-based Rust operators versus Golang operators is due
to Golang experiencing a higher relative reduction in memory
consumption when going from active to idle. Based on the
typical usage pattern of an operator, which can be idle for
a long period of time, it is clear that idle memory usage is
important.

In Figure 6, the obtained latency distributions for the
different operator types are displayed, which were obtained
as described in Section V-A. Based on Jangda et al. [32],
WASM performance can be 2.5x slower worst-case compared
to native execution. The WASM version of the synthetic-
operator, however, did not experience any latency penalties.
The latency for the Golang operator increased more than the
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Fig. 6. The end-to-end latency of WASM operators is identical to Rust
operators.

other operators with increased number of operators. However,
this is most likely due to the memory pressuring algorithm that
adds more latency to Golang because its less memory efficient.
There was no measured useful difference in the average latency
between the WASM and Rust implementations that was greater
than the measured noise. The main bottleneck in the operator’s
execution is I/O. Therefore, the latencies that occur in CPU-
heavy workloads do not affect the synthetic-operator workload
much.

C. Cost of isolation

Figure 7 shows the obtained memory upper bounds for
Rust operators using no isolation, using containers and using
WASM. The colored areas represent the 95% prediction inter-
vals for the regression models as described in Section V-A.

The solution with no isolation is the most resource efficient.
This operator is able to scale to 100 control loops without
significant additional memory overhead. Both the WASM-
based and container-based setups experience significant per-
operator overhead. Additionally, the WASM-based operator
has a higher initial constant memory overhead. However, since
the container-based solution performs worse per-container, this
initial overhead can be compensated. In case of the active
situation, the WASM-based solution is more memory efficient
than the container-based solution with 95% certainty starting
from six operators. For the idle operators, this starts from eight
operators.

The container-based operators are managed by Kubernetes
and each run in a separate Kubernetes pod. Our Kubernetes
setup uses containerd [33] to manage the containers. In
our tests, the biggest overhead contributor was the per-pod
containerd-shim process which equates to about 5MiB per
pod. The WASM runtime can isolate the modules without
introducing such a big overhead. Instead, it introduces a
constant initial overhead that does not depend on the number
of operators. This memory overhead is due to the WASM
runtime, including the low-level operator logic.

Our tests showed that a major memory usage reduction
can be achieved by using no isolation. However, having no
isolation between operators means that all operators should be
fully trusted even for not having errors. Additionally, it results
in a lack of modularity: it is not possible to dynamically add or
remove controllers. In an operator design based on Kubernetes
pods, operators can be added and removed dynamically. Also,
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Fig. 7. The memory 95% upper bounds of non-modular, container-modular
and WASM-modular operators show that WASM outperforms container-based
isolation, but additional improvements are possible since having no isolation
is still much more efficient.
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Fig. 8. The memory 95% upper bounds of the WASM operator with
automatic unloading enabled/ disabled; very frequent unloading causes more
memory usage, for idle operators it can save memory.

WASM modules can be loaded dynamically by the parent
operator, without having to restart the parent operator process.
WASM is a good intermediate solution, providing isolation
and modularity while still being more memory efficient than
the container-based solution.

D. Automatically unloading WASM modules

Figure 8 shows the obtained memory upper bounds for the
synthetic-operator running as WASM modules. Two versions
of the WASM operator are compared: one does not unload
the WASM instances and the other unloads each WASM
instance in-between each iteration of the reconciliation loop.
The colored areas represent the 95% prediction intervals for
the regression models as described in Section V-A.

Figure 8a shows that the effect of constantly unloading and
reloading active WASM operator was an 80.49% increase in
memory usage for 100 operators. In Figure 9, the effect of
actively unloading and reloading operators on the measured
end-to-end latencies is displayed, this figure was obtained as
described in V-A. Figure 8b shows, running 100 operators, we
achieved a 52.66% reduction for idle operators compared to
not unloading.

Unloading the modules reduces memory usage in case of
idle operators. The parent operator writes the memory of
idle WASM instances to disk and reloads it later when a
Kubernetes watch event is received, as described in Sec-
tion III-A. Since most operators often stay idle for a long
time, this can greatly optimize resource utilization in memory-
constrained environments. However, in case of a worst-case
unload and reload pattern, memory usage is higher than in case
no unloading and reloading takes place. Frequent unloading
also introduces a large end-to-end latency penalty due to the
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disk overhead of swapping the WASM instance, as shown in
Figure 9.

To properly benefit from automatic WASM module unload-
ing in a mixed active-idle situation, a predictive scheduler is a
necessity, this is considered as future work in this paper. Such
a scheduler could help unloading only when it is beneficial to
unload a WASM module instead of unloading it in-between
each control loop iteration. The optimization opportunity
also greatly depends on the heap memory allocated by the
operators, necessary for Kubernetes API state caches. This
relationship is further discussed in Section V-E.

E. Dynamically allocated memory

Figure 10 shows the average memory upper bound increase
per operator due to a 1MiB increase in dynamically allocated
memory. The metric is obtained based on the slope of the
linear regression models trained on 20 upper bound memory
usage samples obtained for experiments with allocation sizes
of 0MiB to 3MiB, with 5 runs per experiments. Also indicated
are the 95% confidence intervals for these slopes.

Figure 10a shows that dynamically allocating 1MiB addi-
tional heap memory in each operator resulted in in a memory
upper bound increase of roughly 100MiB for 100 active opera-
tors with unloading disabled, and in an increase of 130MiB for
active WASM operators with unloading enabled. The 30MiB
extra overhead originates from the additional memory required
to reload the WASM module.

Figure 10b shows that the memory consumption for idle
operators only increased with 0.35MiB when using our un-



loading and swapping solution. This is significantly lower than
the memory increases for operators without unloading and
swapping.

As discussed in Section V-D, adding swapping also adds
end-to-end latency. For our experiments, it took about 26ms
to swap 1MiB of data to disk per operator, which can be fully
attributed to the disk read and write overhead of the hard disk
drive in the test server. No latency increase was experienced
when using the containerized solution or the WASM solution
without unloading.

Operators that watch a large amount of Kubernetes cluster
resources will typically keep many of these resources in a
cache that they update once the Kubernetes API notifies that
a resource change took place. This means that these operators
have large amounts of dynamically allocated memory, which
directly translates to a memory upper bound increase, as
discussed in this section. To reduce this memory usage, it is
possible to use our unloading implementation in combination
with a tuned scheduler. However, such a solution will result in
larger latency overhead due to disk writes. Another solution
is to move all operator caches to the parent operator and to
deduplicate the resources in these caches.

VI. CONCLUSION

Complex Kubernetes operator workloads are often too
heavy for constrained environments. In this article, a novel
WebAssembly-based Kubernetes operator solution is pro-
posed. This solution demonstrates that WebAssembly, a tech-
nology used by edge FaaS solutions, can also be used to reduce
the overhead associated with Kubernetes cluster management.
It therefore extends the Wasmtime runtime, adding support
for asynchronous Kubernetes API interaction and unloading
of idle operators. Our test results show a reduction in memory
footprint of 100 active synthetic operators from 1405MiB to
227MiB and of 100 idle operators from 1131MiB to 86MiB
by using WASM operators instead of traditional operators.
This reduction is due to reduced child operator complexity
and the lower WebAssembly isolation overhead. We also
found that CPU overhead, identified as a drawback of WASM
in prior work [32], does not affect end-to-end latency for
our synthetic-operator workload. Unloading WASM operators
reduces memory usage for idle operators, while increasing
memory usage and end-to-end latency for idle operators.
Therefore, future work is needed to add a predictive scheduler
that fully optimizes this feature.

Our WASM architecture and implementation demonstrate
that initiatives, such as the metacontroller project [19], can
integrate a WASM runtime as an alternative to their current
WebHook solution and benefit from reduced complexity and
resource usage. Resource-constrained edge environments are
able to run more WebAssembly operators than traditional
operators, enabling complex workloads. Cloud deployments
become more resource efficient by replacing existing operators
with WASM-based operators. The shared benefits of our
solution across both edge and cloud segments help accelerate
research and adoption.

The biggest open challenges for developing new WASM
operators are the WASM and WASI specifications that are
still under development. In addition, Golang lacks proper
support for WASI, making it more difficult to write operators
in Golang. However, Rust operators can more easily take
advantage of running as WASM modules. We further propose
to obtain additional reductions in memory usage by moving
caching logic from the child to the parent operators.
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[19] A. Yeh, G. G\ląb, Mike, J. X. Tee, S. Bartscher,
L. Villard, and others, “Metacontroller,” Apr. 2022.
[Online]. Available: https://github.com/metacontroller/
metacontroller

[20] C. Ferris and K. Schlosser, “controller-zero-scaler,”
May 2019. [Online]. Available: https://github.com/ibm/
controller-zero-scaler

[21] T. Cramer, xtutu, stephaneyfx, and I. Dmitrii, “The
Future Trait - Asynchronous Programming in Rust,”
Apr. 2022. [Online]. Available: https://rust-lang.github.
io/async-book/02_execution/02_future.html

[22] T. Ramlot, M. Thömmes, and F. Guardiani, “Kubernetes
Operators in WebAssembly,” Sep. 2022, original-
date: 2022-09-19T14:37:44Z. [Online]. Available: https:
//github.com/IBCNServices/wasm-operator

[23] T. Ramlot, “kube-rs patches for wasm-operator,” Sep.
2022, original-date: 2022-09-19T14:40:48Z. [Online].
Available: https://github.com/IBCNServices/kube-rs

[24] S. Akbary, I. Enderlin, M. McCaskey, and others,
“Wasmer,” Apr. 2022. [Online]. Available: https://github.
com/wasmerio/wasmer

[25] E. Albrigtsen, T. K. Röijezon, kazk, M. Bagishov,
R. Levick, and others, “kube-rs,” Apr. 2022. [Online].
Available: https://github.com/kube-rs/kube-rs

[26] D. Bakker and L. Clark, “The WASI sockets proposal,”
Mar. 2022. [Online]. Available: https://github.com/
WebAssembly/wasi-sockets

[27] M. Hertz and E. D. Berger, “Quantifying the performance
of garbage collection vs. explicit memory management,”
in Proceedings of the ACM 20th Conference on Ob-
ject Oriented Programming Systems and Applications.
ACM, 2005, pp. 313–326.

[28] T. Heo, “cgroupv2 memory,” Oct. 2015. [Online].
Available: https://www.kernel.org/doc/html/latest/admin-
guide/cgroup-v2.html#memory

[29] J. Weiner, “PSI - Pressure Stall Information,” Apr.
2018. [Online]. Available: https://www.kernel.org/doc/
html/latest/accounting/psi.html

[30] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasser-
man, “Applied Linear Regression Models,” in Applied
Linear Regression Models, ser. Irwin series in statistics.
Irwin, 2005, section: Chapter 2.6.

[31] T. Ramlot, “Raw experiment data and analysis
code of wasm-operator paper and master’s thesis,”
Sep. 2022, original-date: 2022-09-29T13:44:35Z.
[Online]. Available: https://github.com/IBCNServices/
wasm-operator-results

[32] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not
So Fast: Analyzing the Performance of WebAssembly
vs. Native Code,” in Proceedings of the USENIX 2019
Annual Technical Conference. USENIX Association,
Jul. 2019, pp. 107–120. [Online]. Available: https:
//www.usenix.org/conference/atc19/presentation/jangda

[33] M. Crosby, L. Liu, P. Estes, D. McGowan, S. Day,
A. Suda, and others, “containerd,” May 2022. [Online].
Available: https://github.com/containerd/containerd

[34] T. Ramlot, F. De Turck, and B. Volckaert,
“Optimising memory usage of Kubernetes operators
using WebAssembly,” Master’s thesis, Ghent Uni-
versity, 2022, publisher: 2022. [Online]. Available:
http://lib.ugent.be/catalog/rug01:003063694

https://doi.org/10.1007/s00607-020-00896-5
https://doi.org/10.1007/s00607-020-00896-5
https://doi.org/10.1007/s11227-022-04430-6
https://deislabs.io/posts/introducing-krustlet/
https://wasmedge.org/
https://www.kubewarden.io/
https://slinkydeveloper.com/Kubernetes-controllers-A-New-Hope/index.html
https://slinkydeveloper.com/Kubernetes-controllers-A-New-Hope/index.html
https://github.com/kubernetes/kube-controller-manager
https://github.com/metacontroller/metacontroller
https://github.com/metacontroller/metacontroller
https://github.com/ibm/controller-zero-scaler
https://github.com/ibm/controller-zero-scaler
https://rust-lang.github.io/async-book/02_execution/02_future.html
https://rust-lang.github.io/async-book/02_execution/02_future.html
https://github.com/IBCNServices/wasm-operator
https://github.com/IBCNServices/wasm-operator
https://github.com/IBCNServices/kube-rs
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/kube-rs/kube-rs
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-sockets
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://github.com/IBCNServices/wasm-operator-results
https://github.com/IBCNServices/wasm-operator-results
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://github.com/containerd/containerd
http://lib.ugent.be/catalog/rug01:003063694

	Introduction
	Related Work
	Solution architecture: WASM operator
	Parent operator asynchronous runtime
	Child operator asynchronous client

	Implementation
	Prior work
	Parent operator: WASM runtime
	Parent operator: host functions
	Child operator: client libraries

	Resource utilization
	Test setup
	Golang container, Rust container and Rust WASM compared
	Cost of isolation
	Automatically unloading WASM modules
	Dynamically allocated memory

	Conclusion
	Acknowledgements

