
1

Generating Multiple Conceptual Models from Behavior-Driven

Development Scenarios

Abstract

Researchers have proposed that generating conceptual models automatically from user stories
might be useful for agile software development. It is, however, unclear from the state-of-the-
art what a consistent and complementary set of models to generate is, how these models can be
generated such that relationships and dependencies in a set of related user stories are unveiled,
and why these models are useful in agile software development projects. In this paper, we
address these questions through a Design Science research study. First, we define four stylized
versions of Unified Modeling Language (UML) diagrams (i.e., use case diagram, class
diagram, activity diagram, state machine diagram) that will be the target of the model
generation. Although these stylized UML diagrams have a reduced abstract syntax, they offer
different perspectives on the software system in focus with potential usefulness for
requirements and software engineering. Second, we develop an automated model generation
approach based on different design artefacts including a Natural Language Processing (NLP)
tool that implements our approach. Key to our solution is the use of the Behavior-Driven
Development (BDD) scenario template to document user stories. Using an example set of BDD
scenarios as source of the model generation, we demonstrate the feasibility of our approach via
the NLP tool that implements our approach. Third, we conduct an empirical study with experts
in agile software development involving the researcher-guided interactive use of our tool to
explore the use of the generated models. This study shows the perceived usefulness of the
models that our tool can generate and identifies different uses and benefits of the models for
requirements analysis, system design, software implementation, and testing in projects that
employ agile methods.

Keywords: conceptual modeling, user stories, agile software development, behavior-driven
development, automated model generation

2

1 Introduction

In Agile software development, requirements documentation is mainly limited to user stories
[1]. A user story is a simple description of a feature of the working software as it is expected
by a user [2, 3]. Because of the substantial number of user stories that are written in Agile
software development projects (e.g., in SAFe projects that involve multiple teams [4]), the
project team may encounter difficulties in maintaining, tracing, and managing user stories [5].
While the focus of requirements engineering in Agile development is on facilitating the transfer
of ideas from the customer to the development team [5], it has been shown that a deep
understanding of the domain and sharing the domain knowledge are crucial factors for the
success of software development projects [6]. Considering that user stories might be the only
documentation available to the project team, acquiring an overall understanding of the system’s
required features and their dependencies is challenging.
The further specification of requirements described by user stories is usually done using
Behavior-Driven Development (BDD) scenarios. A BDD scenario describes how the system
behaves in response to what is required as described in a user story [7]. BDD scenarios and
their associated user stories contain domain information and business logic that drives the
design of the system’s architecture. Recently, research on Agile software development is
addressing the challenge of how to make user stories ‘executable’ to more efficiently, and
ideally automatically, capture that knowledge to generate working software [8, 9].
This paper posits that the use of conceptual models generated from BDD scenarios helps
addressing such challenges related to requirements analysis and software design in Agile
software development. In software engineering, conceptual models support requirements
analysis and system design activities [10]. Conceptual models are graphical representations of
a domain to be supported by a system that help acquiring and sharing the understanding of the
requirements and maintaining an overview [11, 12]. Furthermore, they are required in model-
driven development approaches that aim at reducing the time and cost needed to produce
software [13].
It is well understood that, despite not being promoted by the Agile paradigm, the use of
conceptual models is beneficial for requirements engineering, system design, and software
testing in Agile software development [14]. For instance, Trkman et al. [15] suggest that
process models should be used to better understand the dependencies among user stories.
Wautelet et al. [16] suggest a process for transforming sets of user stories into use case models
that allow for a visual representation of the system functions. Jacqueira et al. [17] provide
heuristics to map user stories into goal models that provide additional documentation for the
project team. Elallaoui et al. [18] develop sequence diagrams from user stories to automatically
generate test cases. Gilson et al.[19] create robustness diagrams that visualize use case
scenarios to analyse how user stories impact design decisions during sprint planning and
implementation. These referenced papers are just examples. A recent systematic literature
review by Raharjana et al. [20] established the Natural Language Processing (NLP) based
generation of conceptual models (e.g. [21]) and other software engineering artifacts from user
stories as a distinct research topic.
Reviewing the state-of-the-art in creating conceptual models from user stories, we identify
three research gaps. First, apart from Wautelet et al. [22], studies focus on generating just one
kind of conceptual model (e.g., use case model [18], [23], [24]; class diagram [25], [26]; goal
model [27], [28]; OWL model [29]) whereas in software development different conceptual
models are used to cover different perspectives (e.g., data, process, function, interaction) of the
software system in development. Second, models are generated from user stories for a

3

particular use (e.g., generating test cases [18], reasoning over requirements [30], obtaining a
domain model [29]) or the intended use is implicit (e.g., [31]). There is a need to explore more
deeply the different ways that models generated from user stories could be useful in Agile
software development. Third, the information on the user stories that is the input to the model
generation algorithms is not sufficient to identify dependencies between user stories. For
instance, despite the usefulness of process models shown by Trkman et al. [15], none of the
reviewed studies aims to generate a process model that shows how the system functionality
described by a set of related user stories is embedded into the logic of a process that is to be
performed. Similarly, there are no approaches to create models that show how the
informational objects maintained by a system change state through the actions described by
related user stories.
These three research gaps lead us to the following questions that guide our research.
RQ1: what conceptual models rich in information about the user stories and their dependencies
are useful for Agile software development?

RQ2: how to generate these conceptual models?
RQ3: why are the generated models useful, or stated differently, what is their use?
Based on these questions, we formulate our research objectives. First, we aim at defining a set
of conceptual models for requirements analysis and system design to be generated from user
stories, that is consistent, meaning that the information in the different models is not
contradictory, and that is complementary, meaning that the models offer different perspectives
on the software system and do not overlap too much in information content. To ensure this
complementarity and consistency, we define these models as ‘stylized’ versions of UML
diagrams such that all models use the same standard modeling language for software
engineering (i.e., UML) and resemble standard UML diagrams as close as possible based on
the information available in the user stories (i.e., ‘stylized’). Second, we develop a technique
to generate these models. Novel in our approach is that, to capture information on dependencies
between user stories, we do not generate the models directly from the user stories but from
BDD scenarios, which not only specify user stories but also their precondition, trigger, and
postcondition. Third, we show how these models are useful, though we restrict this
demonstration to selected requirements validation and analysis use cases as showing this for
all possible use cases requires a study on its own which does not fit the scope of this paper but
could be taken up in future research. Instead of systematically exploring all possible uses of
the models that we generate from BDD scenarios, we present in this paper a first empirical
validation by assessing the usefulness of the generated models as perceived by experts in Agile
software development.
For our research, we follow the Design Science paradigm [32, 33] to achieve our objectives
and accordingly we develop several artifacts. A first artifact is a theoretical framework that
allows interpreting dependencies between user stories and provides a uniform representation
format for a set of BDD scenarios that document related user stories (e.g., a theme or epic as
used in the Scrum or SAFe methodologies) to be used as input for the model generation. A
second artifact is a set of mappings, operationalized as mapping rules that can be automated,
between the concepts of BDD scenarios and the concepts of the stylized UML diagrams that
we wish to generate. A third artifact are the algorithms that implement the mapping rules and
are coded in an executable software program that we use as research tool for investigating the
usefulness of the generated models.
The paper is structured as follows. Section 2 presents the background of the paper. The
Connextra template for writing user stories and the Gherkin format for Behavior-Driven

4

Development (BDD) scenarios are introduced here. Section 3 presents our research methods
and process which is guided by the Design Science. Section 4 presents the selection of
conceptual models that we generate from a set of related user stories. Section 5 presents an
agent-based framework that we use to interpret user stories and their dependencies based on
the information in the BDD scenarios. This section also presents the structured representation
format that we use for mapping the information found in a set of BDD scenarios that document
related user stories to the concepts of the agent-based framework. Section 6 then presents and
illustrates the rules for generating from the BDD scenarios, stylized UML diagrams that
correspond to the selected conceptual models. Section 7 demonstrates the application of the
tool that executes the algorithms that implement the mapping rules. As a proof of concept of
the usefulness of the models for Agile software development, we sketch scenarios of how the
generated models can be used for validating and analyzing requirements expressed in related
user stories. While these scenarios demonstrate the assumed usefulness of models generated
from BDD scenarios, Section 8 presents an empirical study in which seasoned practitioners of
Agile software development express their opinion on the perceived usefulness of models
generated using the tool. Section 9 is the discussion section that states our contribution related
to the state-of-the-art and discusses limitations and future research. Finally, section 10 is the
conclusion.

2 Background

2.1 User stories written using the Connextra template

User stories express three distinct aspects of the features that users expect from a software
system: (1) who wants the feature; (2) what functionality the user wants the system to provide;
and (3) why the users need this functionality [16] . The structure of a user story can thus be
divided into three parts – role, means, and ends, which map to the interrogatives of who, what,
and why respectively.
In a survey on the use of user stories by practitioners, Lucassen et al. [34] found that around
60% of the respondents use the Connextra template. In the Connextra template [2] for writing
user stories, each part (interrogative) has a distinctive indicator to separate that part from other
parts. The role (who), with indicator “As a”, describes a user of the system. This user role can
represent a person that directly interacts with the system's interfaces (e.g., an end user) or
represent any other system stakeholder that requires the functionality described in the user story
(e.g., a manager that requires a secretary to generate a report using the system). The role can
refer to a type of user or to an instance of such type. The means (what), with indicator “I want
to”, consists of an object and an action to be performed on this object (e.g., create report). The
ends (why), with indicator “so that”, describes the benefits of the functionality for the user
from which perspective the user story is formulated (e.g., the manager wants to be informed
about something).
An example user story written in the Connextra template is:

As a customer, I want to cancel a service request so that the team can focus on other
active requests.

This user story could for instance be taken from a Scrum epic that describes required
functionality of a software system supporting service request management (e.g., a system
supporting the ITIL 4 service request management practice [35]. The user role is a customer.
The user story describes that the customer expects the system to support the action of cancelling
a service request (i.e., an information object to be stored and processed by the system).

5

Cancelling a service request is a means to achieve the desired end of freeing up resources of
the team that is responsible for handling service requests.

2.2 Behavior-Driven Development scenarios written in the Gherkin language

A BDD scenario consists of a feature title, an associated user story, and the actual scenario that
defines the system behavior. Using the Gherkin format, this scenario is marked by three
keywords – “Given”, “When”, and “Then” [7], for three distinct parts of the scenario –
precondition, trigger and postcondition. The “Given” indicator marks the precondition part in
the scenario, in which the context is described that is assumed by the user story. The action to
be performed on the object as described in the means part of the user story, can only be
triggered in this context, which is expressed in terms of one or more system objects and their
states, where object states can be the result of actions described in other user stories (i.e., thus
indicating dependencies between user stories). The trigger part, with indicator “when”,
describes one or more events that trigger the action described in the user story to be performed.
Finally, the “then” indicator marks the postcondition part of the scenario that describes the
outcome(s) of the user story in terms of object states achieved. Within each of the parts of a
scenario, the conjunction operator “and” can be used.
For the feature service request cancellation, a scenario for the example user story of sub-
section 2.1 could be:

Given a service request is submitted or fixed, when the customer decides to cancel the
service request, then the service request should be canceled.

The scenario specifies that the customer can request to cancel a service request only when this
service request is submitted or fixed, which are the states of the service request object in which
the cancel action described by the user story is allowed. The outcome of the user story is that
the service request object is in state canceled.
The template that we assume is used for writing BDD scenarios, is shown in Table 1 along
with the example. Note that this scenario embeds both the Connextra template for writing user
stories and the Gherkin format for writing scenarios.

BDD Scenario Template

Example

As a [role],
I want to [means]

so that [ends].

Given [context] and/or [some more context],

when [some event occurs] and/or [some other
event occurs],
then [outcome] and [some other outcome].

As a customer,
I want to cancel a service request
so that the team can focus on other active
requests.
Given a service request is submitted or
fixed,
when the customer decides to cancel the
service request,
then the service request should be
cancelled.

Table 1. The BDD Scenario Template (based on [7])
Although templates for writing user stories are widely used [36], there are no specific
guidelines on how to use them, and often user stories are not complete (e.g., missing indicators)
and are not written in a single sentence [37]. We therefore make certain assumptions about the
use of the BDD scenario template shown in Table 1. These assumptions were inspired by good
quality principles for BDD scenarios [38].

6

First, we assume that the role, means, context, and outcome elements of the template are always
filled. Exceptionally, the context is not specified but we believe this situation is rare (e.g., a
user story that describes the very first action to be performed with the system).
Second, although users can perform (or have the system perform) different actions affecting
different system objects, we define the granularity of a BDD scenario as restricted to a single
type of user performing a single action on one specific object. Hence, we assume the
combination of user, action, and object to be unique in each BDD scenario in scope (i.e., within
the set of related user stories considered). If more than one type of user desires the same action
to be performed on the same object, then a separate BDD scenario is written for each type of
user. If more than one object or one action is involved, then it is assumed that the BDD scenario
can be broken down into several BDD scenario, each modeling one action to be performed on
one object. An example is a supervisor who can approve a personal leave and a sick leave for
an employee. In this case, there should be two separate BDD scenario, one for approving the
personal leave and the other for approving the sick leave.
Third, although many scenarios can be associated to the same user story, describing different
contexts, triggers, or outcomes for the user story, we assume a one-to-one mapping of user
story and scenario. In other words, we assume that each BDD scenario is composed of a unique
user story and a unique scenario. For instance, the example scenario could be split into two
separate scenarios with respective contexts service request is submitted and service request is
fixed, however, this would result in a one-to-many mapping of user story and scenarios, and
thus two BDD scenarios each with a different scenario but with the same user story. Therefore,
as shown in Table 1, we accept disjunctions (i.e., “or”) in the “Given” and “when” parts of the
scenario. However, we do not extend the template to include a disjunction in the user story
postcondition (i.e., “then”) as we expect user stories to have a deterministic outcome.

3 Methodology

As achieving our research objectives requires creating different artifacts (i.e., (1) an agent-
based framework to interpret user stories and dependencies between user stories based on the
information in BDD scenarios; (2) mappings from a structured representation of this
information to concepts of stylized UML diagrams; (3) algorithms and a tool to implement the
mapping rules), our research approach follows the Design Science methodology [32]. Figure 1
shows how we applied the Design Science Research (DSR) process prescribed by [33]. The
DSR process allows for iterative design of the artifacts with an explicit loop back after the
‘Evaluation’ and ‘Communication’ steps. While we applied iterative design in the ‘Define
objectives for a solution’, ‘Design and development’, and ‘Demonstration’ steps, for which the
paper presents the consolidated results, possible further design iterations after ‘Evaluation’ and
‘Communication’ are yet to be performed.
The DSR process entry point [39] for the research presented in this paper is the Define
objectives for a solution step. Our actual research process started with a problem investigation
employing systematic literature review and expert interviews, based on which the research gaps
stated in Section 1 (Introduction) were identified. The research design, activities. and results
of this ‘Identify problem and motivate’ DSR process step are available in a technical report
that is submitted for publication.1
The solution objectives for the artifacts are defined by the models we wish to generate from a
set of related user stories to support requirements analysis and system design activities in Agile
software development. This requires an investigation of our first research objective, the results

1 https://github.com/conceptualmodel/modelsfromuserstory/tree/paper-1.

7

of which are presented in Section 4. The selection of a consistent and complementary set of
models to generate, is based on a conceptual analysis of conceptual model types related to the
different perspectives of a software system in development.
Our second research objective aims at developing a technique to generate the required models
from related user stories as documented in a set of BDD scenarios. This development required
two steps. First, we designed a framework and associated data structure for uniformly
representing the information in the BDD scenarios. As theoretical foundation for the
framework we used concepts from agent-oriented modelling. Our agent-based framework and
structured representation of BDD scenarios are presented in Section 5. Second, we designed
mappings from this structured representation to the concepts of stylized versions of UML
diagrams that correspond to the selected conceptual models. These mappings were
operationalized by defining mapping rules, which are presented along with the concept
mappings in Section 6.
To demonstrate the model generation technique, a Natural Language Processing (NLP)-based
tool was developed. This tool implements the creation of a structured representation of a set of
related user stories based on the information in their BDD scenarios (and interpreted using the
agent-based framework) and the algorithms for generating stylized UML diagrams from this
structured representation. While demonstrating this tool in Section 7, some examples are
elaborated that show how the generated models can be useful in Agile software development.
As identifying and showing all use cases of the models requires a study on its own, the
demonstration focuses on the use of the models for validating user stories and assuring
requirements quality, leaving the exploration and demonstration of other use cases for future
research.
To evaluate whether the models generated by our tool are also perceived as useful (and for
which purposes) by practitioners, we conducted semi-structured interviews with eleven experts
in Agile software development. This empirical evaluation is presented in Section 8. While the
tool demonstration (Section 7) shows that our approach works given certain assumptions about
the completeness and well-formedness of the BDD scenarios that are inputted to the tool, the
empirical evaluation (Section 8) questions whether a consistent and complementary set of
models can be generated that is perceived as useful for supporting Agile software development.
Regarding communication of the research results, the current paper is intended as a scholarly
communication of our 'conceptual' solution that addresses the identified research gaps, while
we aim at publishing in the future a more practitioner-oriented paper, focused on the actual use
of the tool, as well as an academic paper that dives in the NLP-based techniques of our tool.

8

Figure . D
esign Science R

esearch process (based on [33])

9

4 Selection of Conceptual Models

The solution objectives for our design artefacts are defined by the selection of conceptual
models we wish to generate from user stories. From our problem investigation and the
identified research gaps, we learned that to be potentially useful for supporting requirements
analysis and system design activities in Agile software development practice, this selection
needs to satisfy the following requirements regarding the consistency and complementarity of
the generated conceptual models:

• The generated models should cover different perspectives of the software system in
development – basically this means covering at least a structural perspective (i.e., what
data to be stored by the system?) and a behavioral perspective (i.e., how to process the
data to produce useful outcomes?);

• To be useful for requirements analysis, the selection of models should include models
that allow analyzing dependencies between related user stories;

• To be useful for system design, the selection of models should include models that
provide a high-level overview of the software system’s functions and architecture;

• To facilitate their use and ensure consistency and complementarity, the models should
be represented using a standard software engineering modelling language that supports
different software perspectives with related types of models.

Guided by these requirements, our choice of modelling language is UML as this language
supports the uniform modelling of different perspectives related to the structure and behavior
of a software system that are relevant for systems analysis and design. Furthermore, UML is
the standard language used by software engineers, which increases the chances that Agile
software development practitioners are knowledgeable about the language. We therefore
decided to select out of existing UML diagrams the types of conceptual model to generate from
user stories, considering not only the requirements but also the information that is available in
a set of BDD scenarios that document related user stories.
After a conceptual analysis of the different UML diagrams, we selected four different types of
models: use case models (for what purposes systems are used by users), process models (what
actions are performed by/for which users and in what order), domain models (what objects the
system needs to store data about, how these objects are related, and which actions change their
data), and state machines (how the state of objects, as represented by their data, changes
through actions). These model types correspond respectively to the Use Case Diagram, Activity
Diagram, Class Diagram, and State Machine Diagram included in UML.
The domain model (UML Class Diagram) is a structural diagram that shows the concepts of
the domain and that serves as a base model for the software system’s architecture. State
machines (UML State Machine Diagram) offer a dynamic perspective of the objects modelled
in the domain model showing how these objects change state through the functioning of the
system. For every type of object modelled in the domain model (i.e., for every class in the
UML Class Diagram), a state machine can be developed. Both types of models can further be
used in the model-driven software development process [40].
While the domain model and state machines also offer opportunities for requirements analysis
(i.e., acquiring and sharing an understanding of the structure and dynamics of a domain to be
supported by a software system), two other types of conceptual model that are included in the
selection are behavioral diagrams that support analyzing the relationships and dependencies
between user stories. The use case model (UML Use Case Diagram) groups the functions
required of the system as described in the user stories by user role, whereas the process model
(UML Activity Diagram) can be used to analyze how the performance of functions depends on

10

the performance of other functions. To generate the models that show the dynamics of the
system (i.e., process model and state machine), the information captured by BDD scenarios is
needed.
A short description of the selected types of conceptual models is found in Table 2. These
descriptions clarify the purpose and information content of the models and their relationships
based on this purpose and content.

Conceptual model
type

Description

Use Case Model The UML Use Case Diagram is a conceptual model that shows how
system users intend to use a system [41]. Each type of system use
aimed at achieving some purpose is a use case and each type of
direct or indirect system user is an actor. The model not only relates
actors to use cases (by means of associations) but also use cases to
other use cases to express relationships amongst those use cases
(e.g., a use case may be included in another use case or extend
another use case). Together, the use cases within the system’s
boundary describe what the system does and for which actors this is
done [42].

Domain Model

The UML Class Diagram is used to show the concepts or different
types of object (i.e., classes) that exist in a domain, their properties
including attributes (i.e., class variables), relationships (i.e.,
associations between classes), and the actions (i.e., class methods)
that can be performed on the objects [43]. Systems supporting a
domain are used to store property values (i.e., data storage) and
invoke actions (related to use cases as represented in the UML Use
Case Diagram) that change these values (i.e., data processing).

Process Model

The UML Activity Diagram focuses on the activities performed by
actors (modelled as swimlanes) to achieve some purpose in a
domain of interest [44]. Activities represent actions on objects that
are represented in the UML Class Diagram. The UML Activity
Diagram is specifically used to model the events that trigger,
interrupt or end these activities, and the sequence flows of the
activities [45]. Non-sequential ordering of activities (e.g., choice,
repetition, parallelism) is modelled through gateways (i.e., decision,
fork, merge, and join nodes that implement XOR and AND logic
operators for splitting or joining sequence flows).

State Machine

While the Process Model focuses on the sequencing of activities to
achieve a purpose, an UML State Machine Diagram focuses on a
single type of object (i.e., a class in the UML Class Diagram) and
models how objects of this type change state through the actions
modelled in the UML Activity Diagram [42]. The state of an object
represents the values of its properties (i.e., the data that describes
the object). Actions that change this state are represented as
transitions [46].

Table 2: Selection of a consistent and complementary set of conceptual models to generate
from a set of user stories

11

5 Theoretical Framework

Our first design artifact is a framework that helps interpreting the information captured in a set
of related user stories that are written as BDD scenarios. This framework provides the
theoretical basis for mapping the concepts of user stories to the concepts of the conceptual
models selected in Section 4.
Models or ontologies that describe the concepts of user stories have been developed before.
The model of Wautelet et al. [30] maps the three elements of the Connextra template on roles,
activities or capabilities, and goals respectively. The model of Robeer et al. [47] distinguishes
among the role, means, and ends parts of a user story as found in the Connextra template. A
unified model of user stories, as per the Connextra template, and scenarios, as per the Gherkin
format, is presented by Snoeck and Wautelet [40], based on Tsilionis et al. [48] and Wautelet
et al. [49]. This model describes the concepts of BDD scenarios where a set of scenarios is
associated to a user story, which differs from our definition of a BDD scenario as being
composed of one user story (described using the Connextra template) and one scenario
(described in the Gherkin format). All these proposed models describe the syntax of the
templates used to document user stories (and scenarios in the case of the unified model). The
semantic concepts found in these models (e.g., role, activity, goal, context, user behavior,
outcome) are, however, not used to describe relationships and dependencies between user
stories. Therefore, we developed a new model for interpreting the information about expected
system functionalities captured in BDD scenarios, including dependencies and relationships
between user stories.
As theoretical framework for this model we use concepts related to agent-oriented modelling
[50]. An extensive literature exists about agents that describes various properties of agents. An
agent acts in an environment (e.g., an organization) and can perform actions that will affect
itself and its environment [51]. An agent can respond to stimuli and make choices among
possible actions to achieve goals [52]. Wooldridge [53] describes agents as being autonomous,
exhibiting goal-directed (proactive) behavior, responding to changes in the environment
(reactive), and being able to interact. By understanding the role element of a user story as an
agent, elements of BDD scenarios can be interpreted as agent-related concepts which will
elucidate relationships and dependencies between user stories as we will explain further on in
this section.
Based on this description of agents and related concepts, we propose in Table 3 a set of
propositions. These propositions define the agent-based framework that we use to model a set
of BDD scenarios that document related user stories. Figure 2 visualizes these propositions
using an Extended Entity-Relationship (EER) Diagram. The constraint that the postcondition
of an action should include the object on which the action is performed, and the intended state
change of that action (part of proposition 6) cannot be shown due to limitations of the semantic
expressiveness of EER Diagrams. Also, proposition 5 is not shown as it requires a behavioral
diagram to represent state changes.

No. Propositions
1 Agents operate in an organizational environment where they perform actions on

objects to achieve goals.
2 An action is always performed by one agent. Agents can perform many actions.
3 An action is always performed on one object. Many actions can be performed on an

object.
4 An object has one state at any given time.
5 An action performed on an object may cause a state transition for that object.

12

6 A postcondition of an action is comprised of one or more objects and their
corresponding states after the action is performed. The postcondition should at least
include the object on which the action is performed and the intended state change of
that action.

7 A precondition of an action is comprised of zero or more objects and their
corresponding states before the action can be performed.

8 An object in a state can be part of many preconditions and many postconditions.
Table 3. Agent-related propositions for BDD scenarios

Figure 2. Agent-Based Framework for BDD Scenarios
We now map the elements of the BDD scenario template defined in Section 2 (Table 1) to the
concepts of the agent-based framework as follows:

• The role referring to the (type of) user is mapped to the agent concept. In a BDD
scenario, a (type of) user wishes to achieve certain goals using the system, so is an
agent.

• The means is mapped to an action performed on an object.
• The ends is not mapped to a concept of the agent-based framework, as the concept of

goal is not defined. Nevertheless, whatever the goal might be, the effect of the means
is described in the postcondition.

• The context (and/or some more context) is mapped to a precondition, which consists of
zero, one or many objects in certain states. In the exceptional case that no context is
specified we make use of an empty precondition (i.e., one that consists of no objects in
a certain state).

• Some event occurs (and/or some other event occurs) is not mapped to a concept of the
agent-based framework, as the concept of triggering event is not defined.

• The outcome (and some other outcome) is mapped to a postcondition, which consists
of one or many objects in certain states.

Table 4 illustrates this mapping for the example BDD scenario that was introduced in Section
2 (Table 1).

13

BDD Scenario Concepts of the Agent-
Based Framework

Instances of Concepts of the
Agent-Based Framework

As a customer, Agent (that performs the
action)

customer (agent)

I want to cancel a service
request

Action performed on
Object

cancel (action)
service request (object)

so that the team can focus
on other active requests.

/ /

Given a service request is
submitted or fixed,

Precondition (of action)
consisting of zero or more
Object has State pairs

service request (object)
submitted (state),
service request (object)
fixed (state)

when the customer decides
to cancel the service
request,

/ /

then the service request
should be cancelled.

Postcondition (of action)
consisting of one or more
Object has State pairs

service request (object)
cancelled (state)

Table 4. Example mapping of BDD Scenario elements on the concepts of the Agent-Based
Framework
What sets this model apart from the reviewed models is that it shows that user stories involve
performing actions on objects. These actions change the state of the objects. Some actions are
only allowed when objects are in a particular state. If we now consider a set of related user
stories, then the actions of those user stories may have agents, objects, (parts of) preconditions
and (parts of) postconditions in common. In such a set of user stories that have a common
objective of defining proposed functionality for the system in focus, agents collaborate to
achieve common goals. Through the actions of agents, object states are transitioned towards
intended states that achieve those common goals. Postconditions of actions will be (part of)
preconditions of other actions, thus indicating dependencies between the user stories that are
considered. Hence, modelling preconditions and postconditions of user stories as specified in
BDD scenarios in terms of object-state pairs allows identifying dependencies between user
stories. User stories can also be related in other ways, for instance, user stories are related if
they concern the same agent or if they involve actions on a same object.
To identify dependencies and relationships between user stories, it is useful to represent entire
sets of related user stories in terms of the agent-based framework. To this end, we propose
based on the agent-based framework a structured representation of a set of BDD scenarios that
document related user stories. This structured representation will serve as a uniform data format
for inputting the information contained in the BDD scenarios to the algorithms that generate
conceptual models (see Section 6).
To demonstrate the proposed structured representation, we work with an example set of four
BDD scenarios (Table 5). For the sake of genericity, we formulate these BDD scenarios in
abstract, domain/application-independent terms. If the user stories documented in these BDD
scenarios are related, for instance, are part of the same Scrum feature or epic containing
interdependent functions, then many of these terms will refer to the same instance of a concept
in the agent-based framework (e.g., <object_1> = <object_1A>). We will state an example of
these equivalences in Section 6 where the same set of BDD scenarios is used to illustrate the
mapping onto conceptual models.

14

We also include in Table 5 an instance of each of the four basic types of BDD scenarios, based
on a possible disjunction or conjunction of object-state pairs in the precondition and a possible
conjunction of object-state pairs in the postcondition, conforming to our assumptions regarding
the use of the BDD scenario template as defined in Section 2 (Table 1). All possible BDD
scenarios can be created by combining instances of these basic types. Also, but not included in
the examples, conjunctions and disjunctions of more than two object-state pairs are possible.
We do not consider more complex situations where a precondition involves a combination of
disjunctions and conjunctions of object-state pairs.

BDD scenario Example
Simple scenario BDD scenario 1: As an <agent_1>, I want to perform

<action_1> on <object_1> so that <goal_1> is achieved. Given
<object_1A> is in <state_1A>, when <action_1> is triggered,
then <object_1> is in <state_1B>.

With conjunction
(AND) in the
postcondition

BDD scenario 2: As an <agent_2>, I want to perform
<action_2> on <object_2> so that <goal_2> is achieved. Given
<object_2A> is in <state_2A>, when <action_2> is triggered,
then <object_2> is in <state_2B> and <object_2C> is in
<state_2C>.

With conjunction
(AND) in the
precondition

BDD scenario 3: As an <agent_3>, I want to perform
<action_3> on <object_3> so that <goal_3> is achieved. Given
<object_3A> is in <state_3A> and <object_3B> is in
<state_3B>, when <action_3> is triggered, then <object_3> is
in <state_3C>.

With disjunction (OR)
in the precondition

BDD scenario 4: As an <agent_4>, I want to perform
<action_4> on <object_4> so that <goal_4> is achieved. Given
<object_4A> is in <state_4A> or <object_4B> is in
<state_4B>, when <action_4> is triggered, then <object_4> is
in <state_4C>.

Table 5. Basic types of BDD scenarios and abstracted examples

To create the structured representation of a set of BDD scenarios, we define a table (Table
6Table) with columns agent, action, object, precondition object, precondition state,
postcondition object and postcondition state. Each BDD scenario in the set is represented by
one or more rows in this table, based on the mapping of the elements of the BDD scenarios on
the concepts of the agent-based framework. An instance of a simple BDD scenario will occupy
exactly one row in the table. However, when there are multiple object-state pairs in the
precondition or postcondition, additional row(s) is(are) used, keeping all other column values
unchanged. The logical operators AND and XOR are added to all precondition or postcondition
objects that are part of multiple object-state pairs in preconditions and postconditions
respectively.

15

BDD
scenario

Agent Action Object Pre-
condition
Object

Pre-
condition
State

Post-
condition
Object

Post-
condition
State

1 agent_1 action_1 object_1 object_1A state_1A object_1 state_1B

2 agent_2 action_2 object_2 object_2A state_2A object_2
(AND)

state_2B

2 agent_2 action_2 object_2 object_2A state_2A object_2C
(AND)

state_2C

3 agent_3 action_3 object_3 object_3A
(AND)

state_3A object_3 state_3C

3 agent_3 action_3 object_3 object_3B
(AND)

state_3B object_3 state_3C

4 agent_4 action_4 object_4 object_4A
(XOR)

state_4A object_4 state_4C

4 agent_4 action_4 object_4 object_4B
(XOR)

state_4B object_4 state_4C

Table 6. Structured representation of a set of abstract BDD scenarios

6 Generating Conceptual Models from BDD Scenarios

Our second design artefact is a set of concept mappings, operationalized by mapping rules,
from the structured representation of a set of BDD scenarios (Section 5) to the conceptual
models that we selected (Section 4). We present these models here as stylized versions of the
selected UML diagrams (i.e., Use Case Diagram, Activity Diagram, Class Diagram, and State
Machine Diagram) as not all model constructs for these diagram types are used in the mapping.
The stylized diagrams are still recognizable as their corresponding standard UML diagrams,
however, because of the constraint that all information to generate the models should be present
in the BDD scenarios, allowing for the automation of the mapping rules, the abstract syntax of
the standard UML diagrams is simplified.
Before presenting the concept mappings and mapping rules, we first extend the abstracted
examples of Table 6. As we generate conceptual models for a set of BDD scenarios that
document related user stories, these user stories are aggregated by the same Scrum epic or
theme (or equivalent Agile development construct) and share at least some of the instances of
the concepts of the agent-based framework. We therefore state in Table 7Table Table several
equivalences of concept instances for the sake of demonstrating the generation of conceptual
models.

16

Assumed equivalences of agent-based framework concept instances
agent_1 = agent_3

object_1 = object_1A = object_2C =object_3 = object_3A = object_4 = object_4A =
object_4B
object_2 = object_2A = object_3B
state_1B = state_3A = state_4A
state_2B = state_3B
state_2C = state_4B

Table 7. Equivalent concept instances for the abstracted examples of Table 6
Applying the equivalences of concept instances of Table 7Table to the structured
representation of Table 6 results in Table 8, which is the structured representation that we will
use to illustrate in the next four sub-sections the concept mappings and mapping rules for the
four different types of stylized UML diagram that we selected.

BDD
scenario

Agent
(1)

Action
(2)

Object
(3)

Precondition Postcondition

Object
(4)

State
(5)

Object
(6)

State
(7)

1 agent_1 action_1 object_1 object_1 state_1A object_1 state_1B

2 agent_2 action_2 object_2 object_2 state_2A object_2
(AND)

state_2B

2 agent_2 action_2 object_2 object_2 state_2A object_1
(AND)

state_2C

3 agent_1 action_3 object_1 object_1
(AND)

state_1B object_1 state_3C

3 agent_1 action_3 object_1 object_2
(AND)

state_2B object_1 state_3C

4 agent_4 action_4 object_1 object_1
(XOR)

state_1B object_1 state_4C

4 agent_4 action_4 object_1 object_1
(XOR)

state_2C object_1 state_4C

Table 8. Structured representation of a set of abstract BDD scenarios (modified from Table 6
for illustrating the model generation mapping rules)

7.1 Use Case Model

In the proposed agent-based framework, agents perform actions on objects to achieve goals
(i.e., proposition 1 of the Agent-based Framework (Table 1)). A use case model expresses what
actors expect as functionality, represented as a use case, from a system. Hence, we map agents
to actors and actions performed on objects to use cases (Table 9).
The system boundary construct is not used in the stylized use case diagrams as we generate
models from a set of user stories that are related, hence they are assumed to capture

17

requirements related to a same system. We further assume that such related set of user stories
is described at a level of granularity that restricts the scope of each user story to a single type
of user performing a single action on one specific object (see our assumptions for the use of
the BDD scenario template in sub-section 2.2). It is therefore unlikely that these fine-grained
user stories may contain the information needed to derive includes and extends relationships,
which would require defining user stories at different granularity levels (as for instance
proposed by Wautelet et al. [30]). We believe that a use case diagram with only actors, use
cases, and their associations is essentially still a use case model that provides a graphical
overview of user roles and types of system use, so captures at a high-level of abstraction the
system’s required functionality as grouped by user roles.

Structured Representation of a Set of
BDD Scenarios

Use Case Diagram

Agent Actor

Action - Object Use Case

Table 9. Concept mapping for the structured representation of a set of BDD Scenarios and
Use Case Diagram
To perform the mapping of concepts such that a use case diagram can be generated, the
following rules are proposed. The third rule is needed to link actors to use cases.

• Mapping rule 1.1: For each unique agent in the structured representation of a set of
BDD scenarios, add an actor to the use case diagram.

• Mapping rule 1.2: For each unique action – object combination (i.e., the action is
performed on the object) in the structured representation of a set of BDD scenarios, add
a use case to the use case diagram.

• Mapping rule 1.3: For each agent that performs an action on an object in the structured
representation of a set of BDD scenarios, draw an association between the actor that
represents the agent and the use case that represents the action-object combination.

The use case diagram shown in Figure 3 was obtained by applying these mapping rules to the
example structured representation of Table 8.2 There are three unique agents in the structured
representation (i.e., agent_1, agent_2 and agent_4), hence these three agents are modelled as
actors in the use case diagram. There are four unique combinations of actions performed on
objects in the structured representation (i.e., one per BDD scenario), so these are shown as use
cases. Agent_1 is associated to two of those use cases, while the other agents are associated
each to a single use case.

2 The stylized UML diagrams shown as illustration in this section are similar to the diagrams that are automatically
generated by the tool that executes the algorithms for implementing the mapping rules. The concrete syntax used
does not fully conform to UML. The application of the tool to a real set of BDD scenarios is demonstrated in
Section 7.

18

Figure 3. Use case diagram created from the example structured representation of Table 8.

7.2 Domain Model

In the proposed agent-based framework, objects have states (i.e., proposition 4 of the Agent-
based Framework (Table 3)), so correspond to entities in the domain model. We can derive
from the definition of agents that they also have states, even if we decided that the modelling
of agent states is currently out of scope of the agent-based framework. Hence, in a domain
model, agents can also be modelled as entities. Actions link agents to objects (i.e., propositions
2 and 3 of the Agent-based Framework (Table 3)), so we can model them as relationships
between agent entities and object entities in the domain model. If the domain model is
represented as a class diagram, then entities and relationships are modelled as classes and
associations respectively (Table10).
Since we do not assume that BDD scenarios are specified at a level of detail where individual
data attributes are identifiable (instead we assume a more abstract description of object states
as explained in sub-section 2.2), the stylized class diagrams will not include class variables.
Information on actions is available, however, we decided not to model actions as class methods
in our stylized class diagrams as actions are already captured by the other types of conceptual
models. Discovering multiplicities in user stories and associated BDD scenarios will be
challenging (and we are not sure this is possible at all). Further, we decided not to include
semantic relationships between classes such as specialization, aggregation, and composition as
this requires advanced NLP techniques for the interpretation of the semantics of user roles and
objects, which is outside our current scope of research. Hence, the stylized class diagrams only
include classes and associations, where classes model the domain concepts and associations
the relationships between these domain concepts. Domain concepts such as user roles and
objects, and relationships such as a user role using or expecting the system to perform an action
on an object, can thus be shown in the graphical overview of the domain provided by the
stylized class diagram.

Structured Representation of a Set of BDD Scenarios Class Diagram

Agent Class

Object Class

Action Association

Table 10. Concept mapping for the structured representation of a set of BDD Scenarios and
Class Diagram
Based on this concept mapping, we propose the following rules for mapping a set of BDD
scenarios to a class diagram.

19

• Mapping rule 2.1: For each unique agent in the structured representation of a set of
BDD scenarios, add a class to the class diagram.

• Mapping rule 2.2: For each unique object in the structured representation of a set of
BDD scenarios, add a class to the class diagram.

• Mapping rule 2.3: For each agent that performs an action on an object the structured
representation of a set of BDD scenarios, draw an association between the class that
represents the agent and the class that represents the object. Label the association
with the action performed by the agent on the object.

Applying these mapping rules to the example structured representation (Table 8) results in
Figure 4. We can see that agent_1 is linked to object_1 via two associations, representing
action_1 and action_3. Deviating from standard UML, only one association line is drawn,
however, this association line has two labels (i.e., action_1 and action_3) signifying the
presences of two associations. Further, Agent_4 is also related to object_1, now via the
association that represents action_4. Finally, agent_2 is related via action_2 to object_2.

Figure 4. Class diagram created from the example structured representation of Table 8.

7.3 State Machine

The concept mapping for state machine diagrams is shown in Table 11. For each object in the
structured representation of a set of BDD scenarios on which an action is performed, a state
machine is modelled. The states in these state machines are the precondition and postcondition
states of these objects in the BDD scenarios. Actions performed on objects result in state
transitions (i.e., proposition 5 of the Agent-based Framework (Table 3)). We did not investigate
the use of other UML concepts for modelling state machines (e.g., entry/do/exit activities).
Even without these concepts, the stylized state machine diagrams show how related user stories
(as documented in a set of BDD scenarios) move objects through different states such that
agents achieve their goals.

20

Structured Representation of a Set
of BDD Scenarios

State Machine Diagram for Objecti (i Î{1, .., n},
with n = number of unique objects on which
actions are performed in the structured
representation of a set of BDD scenarios)

Precondition State of Precondition
Objecti

State

Postcondition State of Postcondition
Objecti

State

Action on Objecti Transition
Table 11. Concept Mapping for the structured representation of a set of BDD Scenarios and
State Machine Diagrams

The following three mapping rules are directly derived from this concept mapping.

• Mapping rule 3.1: For each unique object on which an action is performed in the
structured representation of a set of BDD scenarios, create a state machine diagram.

• Mapping rule 3.2: For each unique precondition or postcondition state of a specific
object in the structured representation of a set of BDD scenarios, add a state to the
corresponding state machine diagram.

• Mapping rule 3.3: If a state of an object is in the precondition of a BDD scenario and
a different state of the same object is in the postcondition of the same BDD scenario,
draw a transition from the state that represents the precondition state to the state that
represents the postcondition state in the state machine diagram for that object. The
label of the transition is the action performed on the object.

It is common to indicate initial states and final states on UML state machine diagrams (although
such states can also be identified as states with no incoming, respectively no outgoing
transitions). We therefore introduce mapping rules 3.4 and 3.5. Further, to apply the concept
mapping correctly and completely, an additional mapping rule is needed. Whereas an action
on an object as described in a BDD scenario always changes the state of that object (i.e.,
proposition 6 of the Agent-based Framework (Table 3)), the state of an object can also change
because of an action performed on another object, as described in another BDD scenario. To
model this in the state machine diagram of an object, we introduce ‘unknown’ states in mapping
rule 3.6. Note that mapping rules 3.4, 3.5 and 3.6 are only applied for objects for which state
machine diagrams are created (i.e., mapping rule 3.1). In other words, we do not create state
machine diagrams for objects whose state is changed just as a side-effect of the set of BDD
scenarios considered.

• Mapping rule 3.4: If a state of an object is in the precondition of a BDD scenario and
this state is not in the postcondition of any other BDD scenario, then indicate in the
state machine diagram for the object that this is an initial state.

• Mapping rule 3.5: If a state of an object is in the postcondition of a BDD scenario,
and this state is not in the precondition of any other a BDD scenario or it is in the
precondition of another BDD scenario but not in the postcondition of that other a BDD
scenario, then indicate in the state machine diagram for the object that this is a final
state.

• Mapping rule 3.6: If a state of an object is in the postcondition of a BDD scenario
and this object is not in the precondition of the same BDD scenario, then create a
‘unknown’ state in the state machine diagram of the object and draw a transition from
this ‘unknown’ state to the state representing the postcondition state in the state
machine diagram for the object. The label of the transition is the action of the user
story documented in the BDD scenario.

21

Applying these mapping rules to the example structured representation (Table 8) results in
Figure 5. Mapping rule 3.1 creates state machine diagrams for object_1 (top of Figure 5) and
object_2 (bottom of Figure 5). Mapping rule 3.2 adds state_1A, state_1B, state_2C, state_3C
and state_4C as states to the state machine diagram for object_1. The same mapping rule adds
states state_2A and state_2B to the state machine diagram for object_2. Mapping rule 3.3 adds
transitions from state_1A to state_1B (label: ‘action_1’), from state_1B to state_3C (label:
‘action_3’), from state_1B to state_4C (label: ‘action_4’), and from state_2C to state_4C
(label: ‘action_4’) in the state machine diagram for object_1, and a transition from state_2A to
state_2B (label: ‘action_2’) in the state machine diagram for object_2. Mapping rule 3.4
identifies state_1A and state_2A as initial states. Mapping rule 3.5 identifies as final states,
state_3C and state_4C in the state machine diagram for object_1 and state_2B in the state
machine diagram for object_2. Finally, mapping rule 3.6 adds an unknown state to the state
machine diagram for object_1 and a transition from that unknown state to state_2C with label
‘action_2’.

Figure 5. State machine diagrams created from the example structured representation of
Table 8.

7.4 Process Model

We use an activity diagram to show dependencies between the user stories that are documented
in a set of BDD scenarios. Within a set BDD scenarios, a user story x depends on a user story
y, if the action of y needs to be performed as a condition for performing the action of x, which
is information we can derive from the BDD scenarios. For modelling these dependencies, the
activity diagram uses control flows. As we will show, such conditions might be combined in a
conjunction or disjunction as allowed by the BDD scenario template (Table 1) and our
assumptions regarding its use as discussed in Section 2. These conditions might also be absent.
There can also be user stories that are not depended on by other user stories. We will show that
all this information is captured by the structured representation of a set of BDD scenarios and
can be represented in the activity diagram using start nodes and end nodes, and using the split
and join, and the AND and XOR semantics, of the UML merge nodes (XOR-join), join nodes
(AND-join), and fork nodes (AND-split). As the main purpose we assign to the process model
is to show dependencies between user stories, we did not investigate whether more advanced
UML concepts for modeling data flow (e.g., object node, object flow) and temporal behavior
(e.g., send signal action, accept change event action, accept time event action) could be used
in the mapping.

22

To create a stylized activity diagram from a structured representation of a set of BDD scenarios,
we use the concept mapping presented in Table 12. According to proposition 1 in the Agent-
based Framework (Table 3), agents perform actions (using the system for which the user stories
are formulated), hence agents map to swimlanes in activity diagrams. Actions are performed
on objects (i.e., proposition 3 of the Agent-based Framework (Table 3)) and are always
performed by one agent (i.e., proposition 2 of the Agent-based Framework (Table 3)).
Accordingly, the action-object pair in a BDD scenario is mapped onto the UML concept of
activity, where an activity is always positioned within one swimlane (that represents the agent
performing the action on the object).
A match between the state of an object in the postcondition of one BDD scenario and the same
object in the same state in the precondition of another BDD scenario (i.e., proposition 8 of the
Agent-based Framework (Table 1)), is mapped to a control flow, as this means that after the
action of the first user story is performed, the action of the second user story can possibly be
performed. If no such match can be found for an object in a state in a precondition of a BDD
scenario, then a start node is identified. Similarly, if no such match can be found for an object
in a state in a postcondition of a BDD scenario, then an end node is identified. How these events
are connected to the other elements of the activity diagram, is explained in the mapping rules
(confer infra).
Finally, if there is more than one object-state pair in the precondition or postcondition of a
BDD scenario (i.e., propositions 6 and 7 of the Agent-based Framework (Table 3)), then a non-
sequential control flow needs to be modelled preceding, respectively succeeding the activity
that represents the action of the user story. The precise nature of the non-sequential control
flow (i.e., AND or XOR, join or split semantics) is determined by the mapping rules (confer
infra).

Structured Representation of a Set of BDD Scenarios Activity Diagram
Agent Swimlane
Action - Object Activity
Postcondition State of Postcondition Object in a BDD
scenario is equal to Precondition State of Precondition Object
in some other BDD scenario

Control Flow

Precondition State of Precondition Object in a BDD scenario
is not equal to Postcondition State of Postcondition Object in
any other BDD scenario

Start Node

Postcondition State of Postcondition Object in a BDD
scenario is not equal to Precondition State of Precondition
Object in any other a BDD scenario

End Node

Multiple Object – State pairs in the Precondition of a BDD
scenario

XOR-join (Merge Node)
AND-join (Join Node)

Multiple Object – State pairs in the Postcondition of a BDD
scenario

AND-split (Fork Node)

Table 12. Concept mapping for the structured representation of a set of BDD Scenarios and
Activity Diagram
We present and illustrate the mapping rules in four stages. In the first stage, activities and
swimlanes are identified. In the second stage, activities are connected by control flows. In the
third stage, start and end nodes are identified. In the fourth stage, non-sequential control flow
is identified and inserted in the model using the appropriate UML constructs.
The rules for the first stage of the mapping are:

23

• Mapping rule 4.1: For each unique agent in the structured representation of a set of
BDD scenarios, add a swimlane to the activity diagram.

• Mapping rule 4.2: For each unique action – object pair (i.e., the action is performed
on the object) in the structured representation of a set of BDD scenarios, add an activity
to the activity diagram in the swimlane for the agent who performs the action on the
object.

Appling these two mapping rules to the example structured representation (Table 8)Table
results in Figure 6, which shows that agent_1 performs action_1 and action_3, agent_2
performs action_2, and agent_4 performs action_4. Note that the labels of the actions should
also mention the object on which the action is performed (e.g., action_1 object_1) but we omit
this here in order not to overload the diagrams which are just used for the sake of illustration.

Figure 6. Activity diagram (Stage 1) created from the structured representation of Table 8
The mapping rule for the second stage is:

• Mapping rule 4.3: If the state of an object in the postcondition of a BDD scenario is
equal to the state of that object in the precondition of another BDD scenario, then add
a control flow from the activity corresponding to the action – object pair of the first
user story to the activity corresponding to the action – object pair of the second user
story.

We now apply this mapping rule to the example structured representation (Table 8Table) to
add control flows to the Stage 1 activity diagram. The resulting State 2 activity diagram is
shown in Figure 7. In total, four control flows were identified as matches were found between
rows 1 (BDD scenario 1) and 4 (BDD scenario 3), rows 1 (BDD scenario 1) and 6 (BDD
scenario 4), rows 2 (BDD scenario 2) and 5 (BDD scenario 3), and rows 3 (BDD scenario 2)
and 7 (BDD scenario 4).

24

Figure 7. Activity diagram (Stage 2) created from the structured representation of Table 8
In the third stage of generating the activity diagram, start and end nodes are identified. This
can be done using the following mapping rules:

• Mapping rule 4.4: If the state of an object in the precondition of a BDD scenario is not
equal to the state of that object in the postcondition of any other BDD scenario, then
add a start node to the activity diagram and connect it with a control flow to the activity
representing the action described in the BDD scenario which precondition was
considered.

• Mapping rule 4.5: If the state of an object in the postcondition of a BDD scenario is
not equal to the state of that object in the precondition of any other BDD scenario, then
add an end node to the activity diagram and connect the activity representing the action
described in the BDD scenario which postcondition was considered with a control flow
to this end node.

The result of applying these mapping rules to the example structured representation (Table
8Table) is the Stage 3 activity diagram that is shown in Figure 8. Two start nodes were
identified because of the unmatched preconditions in rows 1 (BDD scenario 1) and 2 (BDD
scenario 2). Two end nodes were identified because of the unmatched postconditions in rows
4 (BDD scenario 3) and 6 (BDD scenario 4). Note that the notation for start and end nodes in
Figure 8 differs slightly from the standard UML notation.

Figure 8. Activity diagram (Stage 3) created from the structured representation of Table 8

25

Finally, we present the mapping rules to introduce non-sequential control flow in the activity
diagram. These rules consider the logical operators AND and XOR that were added in the
structured representation of a set of BDD scenarios to all precondition or postcondition objects
that are part of object-state pairs in preconditions, respectively postconditions with multiple
object-state pairs.

• Mapping rule 4.6: If there is a disjunction of object-state pairs in the precondition of
a BDD scenario, then add a merge node (i.e., XOR-join) before the activity representing
the action-object pair of the user story. This merge node merges the incoming control
flows of the activity.

• Mapping rule 4.7: If there is a conjunction of object-state pairs in the precondition of
a BDD scenario, then add a join node (i.e., AND-join) before the activity representing
the action-object pair of the user story. This join node merges the incoming control
flows of the activity.

• Mapping rule 4.8: If there is a conjunction of object-state pairs in the postcondition of
a BDD scenario, then add a fork node (i.e., AND-split) after the activity representing
the action-object pair of the user story. This fork node splits the outgoing control flows
of the activity.

Applying these mapping rules to the example structured representation (Table 8Table) results
in the Stage 4 activity diagram that is shown in Figure 9, which is the final process model
resulting from the mapping. Note that the symbols for merge, join, and fork nodes deviate from
standard UML. The merge node is modelled using an empty diamond with two or more
incoming control flows and one outgoing control flow, similar to the XOR-join gateway
symbol of BPMN. The join node has as symbol a diamond with a plus sign and two or more
incoming control flows and one outgoing control flow, similar to the AND-join gateway in
BPMN. Finally, the fork node also has a plus sign inside diamond symbol but now with two or
more outgoing control flows and a single incoming control flow, like the AND-split gateway
of BPMN.

BDD scenario 4 states that action_4 is performed on object_1 if that object is in state_1B or
state_2C. These states are the outcomes of respectively action_1 (BDD scenario 1) and
action_2 (BDD scenario 2). Mapping rule 4.6 adds a merge node (i.e., XOR- join semantics of
the non-sequential control flow) to the activity diagram that merges the control flows coming
from these two actions into one control flow going into action_4. This merge node thus
indicates that action_4 is preceded by either action_1 or action_2.

BDD scenario 3 specifies that action_3 is performed on object_1 if object_1 is in state_1B and
object_2 is in state_2B, which are the outcomes of respectively action_1 (BDD scenario 1) and
action_2 (BDD scenario 2). Mapping rule 4.7 adds a join node (i.e., AND- join semantics of
the non-sequential control flow) to the activity diagram that merges the control flows coming
from action_1 and action_2 into one control flow going into action_3. The activity diagram
thus specifies that action_3 is preceded by both action_1 and action_2.

Finally, BDD scenario 2 states that the outcome of action_2 is object_2 in state_2B and
object_1 in state_2C. Mapping rule 4.8 inserts a fork node (i.e., AND-split semantics of the
non-sequential control flow) into the activity diagram that splits a control flow going out of
action_2 into two separate control flows, each signifying the context of an object in a particular
state, respectively object_2 in state_2B and object_1 in state_2C. The first control flow coming
out of this fork node goes into the join node that was added by mapping rule 4.7 as object_2 in
state_2B is part of the conjunction in the precondition of BDD scenario 3, hence action_3 must
be preceded by action_2. The second control flow coming out of the fork node goes into the

26

merge node that was added by mapping rule 4.6 as object_1 in state_2C is part of the
disjunction in the precondition of BDD scenario 4, hence action_2 results in a context in which
action_4 can be performed but is not the only action that fulfills the precondition of action_4.

Figure 9. Final activity diagram (Stage 4) created from the structured representation (Table 8)

7 Demonstration and Proof of Concept

Our third design artefact are the algorithms that implement the mapping rules defined in
Section 6. These algorithms were coded in a software tool that first employs NLP-techniques
to create a structured representation of a set of BDD scenarios that document related user
stories, as proposed in Section 5, and next executes the algorithms to generate the stylized
UML diagrams corresponding to the conceptual models selected in Section 4. Using this tool,
a use case diagram, class diagram, activity diagram, and state machine diagrams can be
generated from a set of BDD scenarios if these are written using the BDD scenario template
presented in Table 1 and the assumptions hold regarding the use of this template as discussed
in sub-section 2.2.
The tool is conceived as a working prototype that can automatically generate conceptual
models as output when BDD scenarios (for which our assumptions hold) are provided as input.
The tool was developed in Python. Guidelines on how to use the tool (Setup.txt), sample user
stories (Input.txt), and sample models (i.e., stylized UML diagrams) as outputs can be found
online.3. The pseudo-code algorithms for implementing the mapping rules can also be found
here and in Appendix A.
To demonstrate the tool, we inputted the following set of BDD scenarios:

1. As a customer, I want to create a service request so that I can have my problem
solved. Given that the customer is active, when they decide to submit a service
request, then a service request should be submitted.

2. As a support assistant, I want to accept a service request so that the team can start
working on the service request. Given a service request is submitted, when the team
agrees working on the service request, then the service request should be open.

3 https://github.com/conceptualmodel/modelsfromuserstory

27

3. As a support assistant, I want to resolve a service request so that the customer’s
problem is solved. Given a service request is open, when the team solves the problem
described in the service request, then the service request should be fixed.

4. As a customer, I want to approve a service request so that it can be closed. Given a
service request is fixed, when I approve the solution to my problem, then the service
request should be closed.

5. As a customer, I want to reject a service request so that it can be reopened. Given a
service request is fixed, when I reject the solution to my problem, then the service
request should be open.

6. As a customer, I want to cancel a service request so that the team can focus on other
active requests. Given a service request is submitted or fixed, when the customer
decides to cancel the service request, then the service request should be canceled.

These BDD scenarios document user stories that could for instance be a Scrum theme that
describes required functionality of a software system supporting service request management
(e.g., a system supporting the ITIL 4 service request management practice [35]). Note that
BDD scenario 6 was already introduced as example user story and scenario in Section 2. The
user roles in this theme are customer and support assistant. The overall goal is to develop a
workflow driven application to handle customer service requests. The scope of the theme is
deliberately kept small to enable traceability between the generated models and the BDD
scenarios they are generated from.
The tool creates as an internal data structure the structured representation of the inputted BDD
scenarios (Table 13). There are two rows in this data structure for BDD scenario 6 as its
precondition has two object-state pairs that are combined in a disjunction. The context for
performing the cancel action on the service request object is either the service request object
in state submitted or the service request object in state fixed. All other BDD scenarios are
simple scenarios as in the abstract example of Table 5.

BDD
scen.

Agent
(1)

Action
(2)

Object
(3)

Precondition Postcondition

Object
(4)

State
(5)

Object
(6)

State
(7)

1 customer create service
request

customer active service
request

submitted

2 support
assistant

accept service
request

service
request

submitted service
request

open

3 support
assistant

resolve service
request

service
request

open service
request

fixed

4 customer approve service
request

service
request

fixed service
request

closed

5 customer reject service
request

service
request

fixed service
request

open

6 customer cancel service
request

service
request
(XOR)

submitted service
request

canceled

28

6 customer cancel service
request

service
request
(XOR)

fixed service
request

canceled

Table 13. Structured representation of the customer service request handling BDD scenarios
Figures 10 – 13 show the diagrams created by the tool. Note that the layout of the activity
diagram (Figure 13) differs from the activity diagrams shown in Section 6 regarding the
symbols for the non-sequential control flow constructs. A merge node is shown as a ´ marker
in the upper left corner of the activity of which the incoming control flows are merged (as in
Figure 13). A join node is represented the same way but with a + marker. A fork node is shown
as a + marker in the upper right corner of the activity of which the outgoing control flows are
split. Also, start and end nodes are shown as lollypops that are sticked to activities, respectively
on the left side and right side of these activities.
The use case diagram (Figure 10) shows user stories (as use cases) grouped per user role (as
actor). This model provides a first graphical overview of the expected functionality of the
system. The class diagram (Figure 11) emphasizes the service request object on which the
system performs actions as requested by the agents in the different user roles. As service
request is the only object on which actions are performed, the tool generates just one state
machine diagram (Figure 12). This state machine diagram shows that a service request is
created by a customer, and next moves through different states until it is cancelled or closed.
The model shows when a certain action can be performed and what the result of this action is
(in terms of a state change). For instance, a service request can be approved only if it is fixed.
When the service request is approved, it is closed, and no further actions can be performed with
it. Finally, the activity diagram (Figure 13) shows which user roles perform these actions and
what actions may or must precede an action. For instance, the model shows that a customer
can cancel a service request if that customer has created the service request and it has not been
accepted by a support assistant or if the service request has been resolved by a support assistant
but has not been approved by the customer.

Figure 10. Use case diagram generated from the structured representation of Table 13

29

Figure 11. Class diagram generated from the structured representation of Table 13

Figure 12. State machine diagram generated from the structured representation of Table 13

30

Figure 13. Activity diagram generated from the structured representation of Table 13
To illustrate how these models could be useful for requirements analysis, consider again BDD
scenario 6:

As a customer, I want to cancel a service request so that the team can focus on other
active requests. Given a service request is submitted or fixed, when the customer decides
to cancel the service request, then the service request should be canceled.

While this user story with its precondition, trigger and postcondition may express a perfectly
valid requirement for the system in focus, the models may trigger questions related to the
validity of this requirement. For instance, the activity diagram shows that the cancel service
request activity by the customer may be preceded by the resolve service request activity by the
support assistant. Also, the state machine diagram clearly shows that service requests may be
cancelled when they are fixed. This means that after a support assistant resolved a service
request, the customer can still decide to cancel it, which means that the effort to resolve the
service request has been wasted. Again, this might be a valid requirement, but it could also
signify an inaccuracy in the BDD scenario. The activity diagram shows that after the support
assistant has resolved the service request, the customer can approve or reject it. So, should
canceling the service request really be a third option?
Furthermore, the state machine diagram clearly shows that a service request cannot be
cancelled in state open. Once a service request is open, the only next state allowed is fixed
which means that a support assistant needs to spend effort to resolve the service request. This
raises the question why a customer is not allowed to cancel a service request that is open. The
state machine and activity diagrams further show that the open state of the service request may
be the result of rejecting the service request after a support assistant has resolved it. This means
that a support assistant again needs to spend effort on resolving the service request as it cannot
be cancelled. Is this really a desirable situation? Or is the precondition of BDD scenario 6
inaccurate and should state fixed be state open? Or is the precondition incomplete, and should
state open be added in disjunction to the submitted and fixed states?
To reason further, the use case diagram shows that only a customer can cancel a service request,
which can also be inferred from the class diagram and activity diagram. This means that,
hypothetically, a customer can continue rejecting service requests each time they have been
resolved by a support assistant. The state machine diagram and activity diagram clearly show
this loop in the behavior of the system. Currently, only the customer can break this loop by
approving or canceling the service request. But maybe the requirements are incomplete, and a
support assistant should be allowed to close an open service request to avoid endlessly spending
effort on a service request that was submitted by an unsatisfiable customer? If that is the case,
then a new BDD scenario may be added to the theme.

31

These illustrative situations show how the models generated from the BDD scenarios may help
reasoning about the validity and quality of the requirements captured by the user stories and
their preconditions, triggers, and postconditions. The models do not indicate that the
requirements are inaccurate or incomplete per se, but they trigger questions that help to analyze
these requirements. An analysis of the BDD scenarios themselves might of course also trigger
such questions, but we posit that the graphical overview of the system’s functionality and the
different perspectives of this functionality that inheres in the selection of UML diagrams,
makes the generated conceptual models useful when analyzing requirements. The next section
evaluates whether this hypothesized usefulness is empirically supported.

8 Evaluation

To assess whether and how practitioners find the models generated by our tool useful for Agile
software development, we conducted interviews with IT professionals. Given that we had a
specific target group in mind (i.e., seasoned practitioners of Agile software development), we
used a purposive sampling approach to select practitioners that could be considered experts in
Agile software development. Table 14 shows the profiles of the eleven professionals we
selected to participate in our study. These participants had an average of nineteen years of
experience in IT jobs of which on average eleven years of Agile software development
experience.

Participant
ID

Years
in IT

Years in Agile
development

Current Job Title

F1 12 10 Senior Manager- Technology Transformation
F2 20 8 Application and Scrum Master
F3 21 11 Delivery Manager
F4 24 12 Delivery Lead
F5 24 12 Deputy Chief Microsoft Technology Associate
F6 20 18 Senior Manager- QA Delivery
F7 12 8 Delivery Lead
F8 16 10 Senior Project Manager
F9 30 14 Agile Transformation Coach
F10 15 11 Project Manager
F11 21 8 AVP Project Manager

Table 14. Participant profiles
We conducted semi-structured interviews with these participants via online Zoom sessions.
These interviews were conducted in three stages. In the first stage, the participants were asked
how conceptual models can help in Agile software development projects. In the second stage,
a sample of BDD scenarios (the same six BDD scenarios as in Section 7) were shown and the
four stylized UML diagrams were generated with the tool in front of the participants. The
benefits of using conceptual models in Agile software development projects were then asked
again. In the third stage, specific changes were made to BDD scenarios reflecting what could
have been the outcome of requirements analysis activities (e.g., deleting a user story, changing
a scenario). Participants were asked if they could detect those changes (which were applied
without them seeing it). The revised BDD scenarios were then fed into the tool to regenerate
the diagrams. Participants were shown both versions of the models (prior to change and after
change) and were asked again the benefits of using conceptual models in Agile software
development projects.

32

In the first stage of the interview, participants were not able to mention many uses of conceptual
models in Agile software development. Nine out of eleven participants stated that they have
not used models in projects employing Agile methods. However, the interviewees started
mentioning potential general uses and benefits of the generated models in the second and third
stages (Table 15). Other than the class diagram, all other models were perceived as useful.

Model type Perceived usefulness of the generated models
Use Case
Diagram

to go back and review and relate the existing stories, brings visibility, to give
the high representation of the solution, can get the total view of the entire
solution, to identify the number of user stories, can help in writing test cases,
can help in defining the scenarios, checking whether all scenarios are
covered

Activity
Diagram

Training, high-level planning like backlog grooming, can tell the flow and
dependencies of the user stories, tells the entire process from end to end, can
help to write end to end test scenarios, can help if it is a new initiative, can
help in identifying the roles of people, develop navigational flow properly

State
Machine
Diagram

to verify the status of the stories that have been implemented, can help to
visualize what are the missing stories or the new stories that should be
added, can see if there are scenarios that they have to be covered while
coding or testing, helpful for software enhancements, to identify the
validation criteria and the criteria for exceptions

Table 15: Uses and benefits of the generated models for Agile software development
(verbatim from the interview transcripts)
From interview stage 2 onwards, some interviewees started reflecting specifically on the
sample of BDD scenarios shown to them and mentioned specific uses and benefits of the
generated models for supporting IT implementation (e.g., developing a software application
for managing customer service requests). Verbatim transcripts of these uses and benefits are
included in Table 16. These utterances demonstrate that the interviewees were getting engaged
in considering the use of conceptual models in actual development, even if most of them never
used conceptual models before in Agile software development.

Participant
ID (time in
the interview)

Specific uses and benefits of the generated models for software
development

F1 (25:17) “yes, with this [use case diagram], I think it will help the developers to
understand what kind of API they need to develop, or what kind of tables
or the what kind of class or what kind of .net mode or what kind of stored
procedures they can come up and write.”

F1 (33:56) “if I have this [state machine diagram] then I will be writing a get
method, which will be able to get the details from the service request and
then I’ll be able to put it into a database so there will be a put method
then once it goes by accept which will be another channel.”

F2 (18:59) “I think, if you talking about writing code and talking about different
classes and sub classes and all those things will be useful from it [state
machine diagram]. For example, when a request is submitted there'll be
a submit class. When requests get cancel there will be a class called
cancel and then, once the work is done and the work is accepted there
will be accepted class which will be super class.”

33

F5 (20:30) “I like the state machine one because it tells me the validation criteria
and the criteria for exceptions.”

F8 (7:45) “From the requirement traceability perspective and the requirement of
integrity, these models is helpful.”

F9(24:04) “The end user can see how we are trying to implement this and they can
provide feedback around this.”

Table 16: Specific uses and benefits of the generated models for software development
In stage 3 of the interview, after the experts were shown the modified conceptual models based
on the changed BDD scenarios, many benefits of the automatic generation of models from
BDD scenarios during requirements analysis were mentioned (Table 17). We learn from this
that the interviewees clearly understood that models can be created automatically whenever
there are changes in the BDD scenarios. The importance of writing clear user stories and
scenarios, and how the model generation helps in this, was highlighted.

Participant
ID (time in
the interview)

Benefits of automatically generating models from BDD scenarios
during requirements analysis.

F1 (42:17) “It actually automates the process rather than someone drawing it on
their own. The architect can save the time.”

F2 (28:25) “User would use his own intelligence to question those specific keywords
[that are changed in the user stories] so to write better requirements.”

F3 (20:33) “Definitely, the change in user stories will be much easier to identify. If I
have made some mistake in the story like some validation that from
‘close’ it should not go to ‘cancel’ that will be easier to identify from this
kind of diagram.”

F4 (24:32) “So one arrow [of the activity diagram] changes means not only just
rework on that particular story that you change, it's also rework on the
stories related to the fixed, closed, canceled and subsequently the testing
of all the scenarios.”

F5 (26:08) “It could be an innocuous or as simple change, but can have a significant
impact on the process and having a visual like this absolutely helps.”

F7 (24:54) “It will tell you what the word meant and how you missed that or
misinterpreted it. That's a good thing, because a lot of the time we miss
those small tiny things and then we end up delivering something else.”

F8 (22:51) “As you might take on additional stories and you know for future work,
you can see, side by side, a as a current state model compared to what
would be a future state model.”

F8 (23:04) “if you are doing any requirement change at that moment, you can,
especially highlight here in the model the changes and you know that
these changes are coming.”

F9 (22:03) “now that I have them side by side, I do see the model on the right, I do
see that it is beneficial in the sense that it captures the flow properly.”

F10 (25:44) “automating it is definitely going to help us in generating all these
models again and again that can be like many variations from our side.
Product management side will be able to analyze all the variations.”

Table 17: Benefits of automatically generating models from BDD scenarios during
requirements analysis
The main insight obtained from the interviews was that even if experts in Agile software
development had never used conceptual models in Agile software development projects, they

34

perceived the usefulness of the set of models that we automatically generated from the sample
set of BDD scenarios, which provides empirical support for the approach presented in this
paper.

9 Discussion

9.1 Our Contribution to the State-of-The-Art

Generating conceptual models from user stories is not new. However, the related work that we
reviewed generates, with few exceptions (e.g., Wautelet et al. [22]), just one type of model
from user stories, often for a specific purpose or the use of the model is not specified.
Furthermore, generated models fail to capture dependencies between user stories. The
approach that we present in this paper is novel as we generate conceptual models for a set of
related user stories (e.g., an epic or theme in Scrum) that is documented using BDD scenarios.
These BDD scenarios do not only embed the actual user stories, but also specify their
preconditions, triggers, and postconditions, and using this information we create models that
allow understanding and analyzing dependencies between user stories.
With this approach, we contribute to the state-of-the-art in different ways. First, we define a
consistent and complementary set of models to generate from BDD scenarios. We define these
models as stylized versions of the following UML diagrams: use case diagram, class diagram,
state machine diagram, and activity diagram. As far as we know, for state machine diagrams
and activity diagrams (or other types of process model like BPMN diagrams) no approaches to
automatically generate them from user stories have been proposed in the literature. While the
class diagram and use case diagram provide a high-level overview of the system’s
functionalities and architecture, the state machine diagram and activity diagram allow
analyzing dependencies between user stories. Together the four diagrams cover different
perspectives useful for software engineering, including requirements analysis and model-
driven software development.
Our second contribution is the design and implementation of an NLP-based text-to-model
software solution that automatically generates the selected types of models when a set of BDD
scenarios that document related user stories is inputted, given certain assumptions hold
regarding the use of the defined BDD template. This solution is based on three different design
artefacts: an agent-based framework to interpret a set of related user stories using a structured
representation, concept mappings operationalized by mapping rules, and algorithms to
implement those mapping rules along with a software tool that codes the algorithms. Using this
tool, we demonstrated the feasibility of our approach, and we explored its use for requirements
analysis.
The third contribution are the insights we provide on the usefulness of the models that we
automatically generate from BDD scenarios. While the use of models in Agile software
development is uncommon, an empirical study that we conducted with eleven expert
practitioners of Agile software development unveiled many possible uses and benefits
perceived by these experts, related to requirements analysis and software development in Agile
software development projects. Even when most of the study participants were not using
models in their practice, engaging with our tool inspired them to perceive usefulness in our
approach.

35

9.2 Limitations

We discern three limitations to the model generation approach that we designed. A first
limitation relates to the use of the theoretical framework based on agent-oriented modeling for
interpreting the information contained in a set of BDD scenarios that document related user
stories. Some agent-based concepts that could be related to BDD scenarios were not
considered:

1. As entities, agents have states. The framework currently only considers objects to have
states. Consequently, while both agents (i.e., user roles) and objects are modelled as
classes in the class diagram, only for classes representing objects, state machine
diagrams are created. As data storage and processing will focus on the objects, the
classes representing the objects are the main architectural components of the system.
However, modelling roles as agents, their state and behavior, can be interesting for
requirements elicitation, system navigation and user interface design, and system
security (e.g., authorization).

2. Agents pursue goals (i.e., proposition 1 of the Agent-based Framework (Table 3)). An
agent-based concept such as goal could be used to interpret the ends part or answer to
the ‘why?’ question of a user story. Also, the relationships between goals and objects
(and their states) could be further defined to link means and ends parts of user stories,
and possibly also the outcome part of BDD scenarios. As the generation of goal models
from user stories has been investigated before (e.g., [17], [27], [22], [28]) and a goal
model is not part of the selection of UML diagrams that our approach generates, the
ends part of user stories, and thus BDD scenarios, was not considered in the concept
mappings for the conceptual models.

3. Preconditions define when actions can be performed, but they do not trigger those
actions. The framework could be extended with the concept of events as triggers of
actions. The use of the trigger part of BDD scenarios for the creation of models as a
basis for model-driven software development has recently been explored by Snoeck
and Wautelet [40].

Second, we require that the user stories are formulated using the BDD scenario template of
Table 1. This means that we impose a consistent level of granularity or detail on the writing of
user stories (e.g., one-to-one mapping of user story and scenario). Also, we require the effect
of actions to be described in terms of objects affected, without further detailing the states of
these objects in terms of attributes. We further expect the standardized writing of a set of related
user stories using this template, as described by our assumptions in sub-section 2.2. We
recognize that these assumptions might not hold in practice, but how to deal with this is outside
the scope of this paper. In other words, we focus on presenting a solution that works for user
stories that are properly formulated using the BDD scenario template as we intend this template
to be used. How to fix problems with improperly written user stories, is a relevant but pragmatic
question that is independent of the conceptual solution presented in this paper.
Third, we had to resort to stylized versions of UML diagrams corresponding to the selection of
a consistent and complementary set of conceptual models. The use of a simplified abstract
syntax was needed as not all information usually found in these diagrams is captured by the
proposed structured representation of a set of BDD scenarios that document related user stories,
which also relates to the previous limitations. This limitation is harder to remove, however, for
some aspects may not be impossible either. For instance, a lexical and semantic analysis of the
wording of the different parts of BDD scenarios and comparison between related user stories,
might reveal information that could be used to derive includes and extends relationships
between use cases, attributes of objects described in user stories, multiplicities of the

36

relationships between such objects, specialization and aggregation relationships. The extent to
which this will work without adding additional information to the BDD scenarios is subject to
further research.

9.3 Future Research

Our future research is first aimed at improving the tool that we used in this paper for the proof-
of-concept and empirical evaluation. At this stage, the tool is a working prototype that can
generate the four types of stylized UML diagrams given that our assumptions hold regarding
the BDD scenarios that are inputted. Using the tool, we showed the feasibility of our approach
and engaged experts in Agile software development in reflecting on the perceived usefulness
of automatically generated models in Agile software development projects. However, the
diagrams outputted by the tool do not fully conform to UML concrete syntax. We are currently
developing an export function that allows representing the generated models as XMI files
which can then be imported in tools that better support UML. Further, we are investigating
how the NLP-based techniques used by the tool can be further improved to make the tool more
robust against deviations from our input assumptions (i.e., second limitation of sub-section 9.2)
and how better use can be made of the information in BDD scenarios to bring the abstract
syntax of the stylized UML diagrams closer to their standard UML counterparts (i.e., third
limitation of sub-section 9.2). This investigation requires new iterations of the DSR process
that we defined in Figure 1 as it also affects our other design artefacts.
We also plan to further explore use cases of conceptual models generated from BDD scenarios
in Agile software development. An interesting avenue is the use of automatically generated
models for model-driven software engineering and model-based code generation. In particular,
the class diagram and state machine diagram seem to offer opportunities here [40]. We
acknowledge that generating models is just a first step in making user stories ‘executable’,
which is a challenge taken up in recent research in Agile software engineering [8, 9].
Finally, we are planning a more systematic empirical evaluation of the usefulness of those
models generated by our tool that we believe are most helpful for requirements analysis in
Agile software development projects: the use case diagram, activity diagram, and state machine
diagram. To this end we are designing specific scenarios of validating and quality assuring
requirements expressed by user stories (as BDD scenarios). In this scenario-based evaluation,
we aim to compare the use of BDD scenarios with the joint use of BDD scenarios and
automatically generated models to assess the added value offered by the models.

10 Conclusion

The research presented in this paper was guided by three questions. What is a set of models,
rich in information about user stories and their dependencies, that is useful for Agile software
development? How to generate these models? And why are these models useful, or stated
differently, what is their use?
Using Design Science as research methodology, we designed, implemented, demonstrated, and
evaluated an approach that automatically generates conceptual models from user stories. This
approach generates simplified versions of UML class diagrams, use case diagrams, state
machine diagrams, and activity diagrams, as these models are consistent and complementary
in offering different software engineering perspectives on the system in development (i.e., the
what? question). Our approach (i.e., the how? question) is based on different design artefacts.
However, key to the solution is the use of BDD scenarios to document related user stories not
only in terms of required functionality but also in terms of dependencies between those user

37

stories. As to the why? question, an empirical study with expert practitioners of Agile software
development unveiled several uses and benefits of the automatically generated models, for
requirements analysis, system design, software implementation, and testing. This perceived
usefulness provides empirical support for the research we presented in this paper.

References

[1] I. Inayat and S. S. Salim, "A framework to study requirements-driven collaboration
among agile teams: Findings from two case studies," Computers in Human Behavior,
Article vol. 51, no. Part B, pp. 1367-1379, 10/1/October 2015 2015, doi:
10.1016/j.chb.2014.10.040.

[2] M. Cohn, User Stories Applied: For Agile Software Development. Boston: Addison-
Wesley, 2004.

[3] D. Leffingwell, Agile Software Requirements: lean requirements practices for teams,
programs, and the enterprise (Agile Software Development Series). Boston:
Addision-Wesley, 2011.

[4] D. Leffingwell, Safe 4.0 Reference Guide: Scaled Agile Framework for Lean
Software and Systems Engineering. Addison-Wesley Professional, 2017.

[5] B. Ramesh, C. Lan, and R. Baskerville, "Agile requirements engineering practices
and challenges: an empirical study," Information Systems Journal, Article vol. 20, no.
5, pp. 449-480, 2010, doi: 10.1111/j.1365-2575.2007.00259.x.

[6] M. Daneva et al., "Agile requirements prioritization in large-scale outsourced system
projects: An empirical study," The Journal of Systems & Software, Article vol. 86, pp.
1333-1353, 5/1/May 2013 2013, doi: 10.1016/j.jss.2012.12.046.

[7] J. F. Smart, BDD in action: Behavior-Driven development for the whole software
lifecycle. New York: Manning Publications Company, 2014.

[8] S. Heng, M. Snoeck, and K. Tsilionis, "Generating a Software Architecture out of
User Stories and BDD Scenarios: Research Agenda," in 1st International Workshop
on Agile Methods for Information Systems Engineering, Leuven, Belgium, 2022,
Leuven, Belgium: CEUR, pp. 40-46.

[9] K. Athiththan, S. Rovinsan, S. Sathveegan, N. Gunasekaran, K. S. A. W.
Gunawardena, and D. Kasthurirathna, "An ontology-based approach to automate the
software development process," in IEEE Int. Conf. Inf. Automat. Sustainability
(ICIAfS), Colombo, Sri Lanka, 2018, pp. 1-6, doi: 10. 1109/ICIAFS.2018.8913339.

[10] J. A. Hoffer, J. F. George, and J. S. Valacich, Modern Systems analysis and design, 6
ed. Pearson, 2011.

[11] Y. Wand and R. Weber, "Information Systems and Conceptual Modeling: A Research
Agenda," Information Systems Research, vol. 13, no. 4, pp. 363-376, 2002.

[12] F. Bozyig, O. Aktas, and D. Kılınc, "Linking software requirements and conceptual
models: A systematic literature review," Engineering Science and Technology, an
International Journal, vol. 24, no. 1, pp. 71-82, 2021.

[13] B. Selic, "The pragmatics of model-driven development," IEEE software,, vol. 20, no.
5, pp. 19-25, 2003.

[14] V. N. Vithana, "Scrum Requirements Engineering Practices and Challenges in
Offshore Software Development," International Journal of Computer Applications,
vol. 116, no. 22, pp. 43-49, 2015.

[15] M. Trkman, J. Mendling, and M. Krisper, "Using business process models to better
understand the dependencies among user stories," Information and Software
Technology, Article vol. 71, pp. 58-76, 3/1/March 2016 2016, doi:
10.1016/j.infsof.2015.10.006.

38

[16] Y. Wautelet, S. Heng, D. Hintea, M. Kolp, and S. Poelmans, "Bridging User Story
Sets with the Use Case Model," in International Conference on Conceptual Modeling,
2016, pp. 127–138, doi: 10.1007/978-3-319-47717-6.

[17] A. Jaqueira, M. Lucena, F. Alencar, C. M., and E. Aranha, "Using i* Models to
Enrich User Stories," in 6th International i* Workshop, 2013, vol. CEUR 978, pp. 55-
60.

[18] M. Elallaoui, K. Nafil, and R. Touahni, "Automatic Transformation of User Stories
into UML Use Case Diagrams using NLP Techniques," Procedia Computer Science,
vol. 130, pp. 42-49, 2018, doi: https://doi.org/10.1016/j.procs.2018.04.010.

[19] F. Gilson, M. Galster, and F. Georis, "Generating use case scenarios from user
stories,’’ in Proc. Int. Conf. Softw. Syst. Processes, Jun. , pp. 31–40, doi: ," presented
at the International Conference on Software and Systems Process, Seoul, 2020.

[20] I. K. Raharjana, D. Siahaan, and C. Fatichah, "User Stories and Natural Language
Processing: A Systematic Literature Review," IEEE Access, vol. 9, pp. 53811-53826,
2021, doi: 10.1109/ACCESS.2021.3070606.

[21] T. Yue, L. C. Briand, and Y. Labiche, "aToucan: An Automated Framework to Derive
UML Analysis Models from Use Case Models," ACM Trans. Softw. Eng. Methodol.,
vol. 24, pp. 13:1-13:52, 2015.

[22] Y. Wautelet, S. Heng, and M. Kolp, "Perspectives on User Story Based Visual
Transformations," in 22nd International Conference on Requirements Engineering:
Foundation for Software Quality, Utrecht, 2017, vol. 1796: CEUR.

[23] A. Azzazi, "A Framework using NLP to automatically convert User-Stories into Use
Cases in Software Projects," International Journal of Computer Science and Network
Security, vol. 17, pp. 71-76, 2017.

[24] T. Kochbati, S. Li, S. Gérard, and C. Mraidha, "From user stories to models: A
machine learning empowered automation," in 9th Int. Conf. Model. Engineering
Software Development, 2021, pp. 28–40, doi: 10.5220/0010197800280040.

[25] S. Nasiri, Y. Rhazali, M. Lahmer, and N. Chenfour, "Towards a Generation of Class
Diagram from User Stories in Agile Methods," in International Workshop on the
Advancements in Model Driven Engineering, Warsaw, Poland, 2020, vol. 170:
Procedia Computer Science, pp. 831-837, doi: 10.1016/j.procs.2020.03.148.

[26] W. Dahhane, A. Zeaaraoui, E. H. Ettifouri, and T. Bouchentouf, "An automated
object-based approach to transforming requirements to class diagrams," in 2nd World
Conf. Complex Syst. WCCS 2014, pp. 158–163, doi: 10.1109/ICoCS.2014.7060906.

[27] T. Gunes and F. B. Aydemir, "Automated Goal Model Extraction from User Stories
Using NLP," in IEEE 28th International Requirements Engineering Conference (RE),
2020: IEEE.

[28] R. Mesquita, A. Jacqueira, C. Agra, M. Lucena, and F. Alencar, "US2StarTool:
generation i* models from user stories.," in International i* Workshop (iStar), 2015.

[29] G. Lucassen, M. Robeer, F. Dalpiaz, J. Van der Werf, and S. Brinkkemper,
"Extracting conceptual models from user stories with Visual Narrator," Requirements
Engineering, vol. 22, pp. 339-358, 2017.

[30] Y. Wautelet, S. Heng, S. Kiv, and M. Kolp, "User-story driven development of multi-
agent systems: A process fragment for agile methods," Computer Languages, Systems
& Structures, vol. 50, pp. 159-176, 2017.

[31] M. Bragilovski, F. Dalpiaz, and A. Sturm, "Guided Derivation of Conceptual Models
from User Stories: A Controlled Experiment," in In International Working
Conference on Requirements Engineering: Foundation for Software Quality,
Birmingham, 2022, vol. 13216: Springer-Verlag, pp. 131-147.

39

[32] A. Hevner, S. March, J. Park, and S. Ram, "Design Science Research in Information
Systems," MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.

[33] S. Gregor and A. Hevner, "Positioning and presenting design science research for
maximum impact," MIS quarterly, vol. 37, no. 2, pp. 337-355, 2013.

[34] G. Lucassen, F. Dalpiaz, J. Van der Werf, and S. Brinkkemper, "The use and
effectiveness of user stories in practice," in International Working Conference on
Requirements Engineering: Foundation for Software Quality, 2016, pp. 205-222.

[35] Axelos, ITIL Foundation: ITIL 4. London, UK: The Stationery Office, 2019.
[36] F. Dalpiaz, P. Gieske, and A. Sturm, "On deriving conceptual models from user

requirements: An empirical study," Information and Software Technology, vol. 131,
2021.

[37] M. Menveld, S. Brinkkemper, and F. Dalpiaz, "User Story Writing in Crowd
Requirements Engineering: The Case of a Web Application for Sports Tournament
Planning," in IEEE 27th International Requirements Engineering Conference
Workshop, 2019.

[38] L. Binamungu, S. Embury, and N. Konstantinou, "Characterising the Quality of
Behaviour Driven Development Specifications. In Agile Processes in Software
Engineering and Extreme Programming," in 21st International Conference on Agile
Software Development, Copenhagen, Denmark, 2020, vol. 383: XP 2020, pp. 87-102.

[39] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A Design Science
Research Methodology for Information Systems Research," Journal of Management
Information Systems, vol. 24, no. 3, pp. 45-77, 2007.

[40] M. Snoeck and Y. Wautelet, "Agile MERODE: A Model-driven Software
Engineering Method for User-centric and Value-based Development," Software and
Systems Modeling, pp. 1-26, 2022.

[41] I. Jacobson, Object-oriented software engineering : a use case driven approach.
Reading, Mass: Addison-Wesley, 1992.

[42] K. E. Kendall and J. E. Kendall, Systems Analysis and Design, 10 ed. Pearson, 2019.
[43] K. Markham, Mintzes, J., Jones, M., "The concept map as a research and evaluation

tool: Further evidence of validity," Journal of Research in Science & Teaching, vol.
31, no. 1, pp. 91-101, 1994.

[44] S. White, "Business Process Modeling Notation." Accessed on: 04/06/2022
[45] J. Mendling and J. Recker, "Towards systematic usage of labels and icons in business

process models," in 12th International Workshop on Exploring Modeling Methods in
Systems Analysis and Design, CEUR, Montpellier, France, 2008, pp. 1-13.

[46] A. Dennis, B. H. Wixom, and D. Tegarden, A. Dennis, Ed. Systems Analysis and
Design: An Object-Oriented Approach with UML, 5 ed. Wiley, 2015.

[47] M. Robeer, G. Lucassen, J. Van der Werf, F. Dalpiaz, and S. Brinkkemper,
"Automated extraction of conceptual models from user stories via NLP," IEEE 24th
International Requirements Engineering Conference (RE), 2016, pp. 196-205.

[48] K. Tsilionis, J. Maene, S. Heng, Y. Wautelet, and S. Poelmans, "Conceptual
Modeling Versus User Story Mapping: Which is the Best Approach to Agile
Requirements Engineering?," in Research Challenges in Information Science: 15th
International Conference, Limassol, Cyprus, S. S. Cherfi, A. Perini, and S. Nurcan,
Eds., 2021, vol. 415: Springer, Lecture Notes in Business Information Processing, pp.
356–373.

[49] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel, "Unifying and Extending User Story
Models," in Conference on Advanced Information Systems Engineering, Thessaloniki,
Greece, M. Jarke et al., Eds., 2014, vol. 8484: Lecture Notes in Computer Science,
pp. 211–225.

40

[50] E. Yu, "Agent-Oriented Modelling: Software versus the World," in Agent-Oriented
Software Engineering, Berlin, Heidelberg, W. M.J., W. G., and C. P, Eds., 2002, vol.
2222: Lecture Notes in Computer Science, doi: https://doi.org/10.1007/3-540-70657-
7_14.

[51] C. Castelfranchi, "Modelling social actions for AI agents," Artificial Intelligence, vol.
103, pp. 157-182, 1998.

[52] S. Franklin, Artificial Minds. Cambridge, MA: MIT Press, 1995.
[53] M. Wooldridge, Reasoning about Rational Agents. Massachusetts: The MIT Press,

2000.

41

Appendix A – Pseudo-code algorithms to generate conceptual models from the structured
representation of a set of BDD scenarios that document related user stories (e.g., taken
from an epic or theme in Scrum)
Exhibit A2 presents the algorithm that implements mapping rules 1.1 to 1.3 that generate a use
case diagram from the structured representation of a set of BDD scenarios that document
related user stories.

Input: Structured representation of a set of BDD scenarios that document related user
stories
Output: Use case diagram
1: for each row in the structured representation
2: if the agent is not already represented as an actor then
3: create a new actor
4: end if
5: if the action – object is not already represented as a use case then
6: create a new use case
7: end if
8: if the actor representing the agent and the use case representing the action -

object are not already connected by an association then
9: create an association between the actor and the use case
10: end if
11: end for

Exhibit A3. Algorithm to create a use case diagram
Exhibit A2 presents the algorithm that implements mapping rules 2.1 to 2.3 that generate a
class diagram from the structured representation of a set of BDD scenarios that document
related user stories.

Input: Structured representation of a set of BDD scenarios that document related user
stories
Output: class diagram
1: for each row in the structured representation
2: if the agent is not already represented as a class then
3: create a new class
4: end if
5: if the object is not already represented as a class then
6: create a new class
7: end if
8: if the class representing the agent and the class representing the object

are not already connected by an association representing the action
then

9: create an association between the two classes and label the
association with the name of the action

10: end if
11: end for

Exhibit A2. Algorithm to create a class diagram
The mapping rules for state machine diagrams (3.1 to 3.6) are implemented in the algorithm
presented in Exhibit A3. We annotated the different segments of this algorithm with the
identifying numbers of the mapping rules to increase transparancy.

42

Input: Structured representation of a set of BDD scenarios that document related user
stories
Output: A set of state machine diagrams
1: for each row in the structured representation
2: if the object on which the action is performed is not already

represented as a state machine diagram then
3: create a new state machine diagram for this object

(confer mapping rule 3.1)
4: end if
5: end for
6: for each row i in the structured representation
7: if for the precondition object a state machine diagram was created

then
8: if the precondition state is not already represented as a state in

that state machine diagram then
9: create a new state in the state machine diagram for the

object
(confer mapping rule 3.2)

10: end if
11: set initial state to true
12: for each row j in the structured representation (action row i ¹

action row j)
13: if postcondition object row j = precondition object row i

AND postcondition state in row j = precondition state
in row i then

14: set initial state to false
15: end if
16: end for
17: if initial state is true then
18: indicate that the state representing the precondition

state in the state machine diagram for the object is an
initial state
(confer mapping rule 3.4)

19: end if
20: end if
21: if for the postcondition object a state machine diagram was created

then
22: if the postcondition state is not already represented as a state in

that state machine diagram then
23: create a new state in the state machine diagram for the

object
(confer mapping rule 3.2)

24: end if
25: set final state to true
26: for each row j in the structured representation (action row i ¹

action row j)
27: if precondition object row j = postcondition object row i

AND precondition state in row j = postcondition state
in row i AND postcondition object in row j =
postcondition object in row i then

43

28: set final state to false
29: end if
30: end for
31: if final state is true then
32: indicate that the state representing the postcondition

state in the state machine diagram for the object is a
final state
(confer mapping rule 3.5)

33: end if
34: end if
35: if precondition object = postcondition object AND postcondition state

¹ precondition state then
 create in the state machine diagram for the object, a transition

from the state that represents the precondition state to the state
that represents the postcondition state and label the transition
with the name of the action
(confer mapping rule 3.3)

36: end if
37: set not in precondition to true
38: for each row j in the structured representation (action row i = action

row j)
39: if postcondition object row i = precondition object row j then
40: set not in precondition to false
41: end if
42: end for
43: if not in precondition is true then
44: create in the state machine diagram for the object, a state

labelled ‘unknown’ and create a transition from this ‘unknown’
state to the state that represents the postcondition state and
label the transition with the name of the action
(confer mapping rule 3.6)

45: end if
46: end for

Exhibit A3. Algorithm to create state machine diagrams
The algorithm in Exhibit A4 implements mapping rules 4.1 and 4.2 to create the Stage 1 activity
diagram.

Input: Structured representation of a set of BDD scenarios that document related user
stories
Output: A partial activity diagram (Stage 1)
1: for each row in the structured representation
2: if the agent is not already represented as a swimlane then
3: create a new swimlane for the agent
4: end if
5: if the action-object pair is not already represented as an activity then
6: create a new activity for the action-object pair in the swimlane

representing the agent performing the action on the object
7: end if
8: end for

Exhibit A5. Algorithm to create the activity diagram (Stage 1)

44

The algorithm is continued in Exhibit A6 with the implementation of mapping rule 4.3 to create
the Stage 2 activity diagram.

Input: Structured representation of a set of BDD scenarios that document related user
stories & Stage 1 activity diagram generated from that structured representation
Output: A partial activity diagram (Stage 2)
9: for each row i in the structured representation
10: for each row j in the structured representation (action row i ¹ action row j)
11: if postcondition object of row i = precondition object of row j AND

postcondition state of row i = precondition state of row j then
12: draw a control flow from the activity representing the action-

object pair in row i to the activity representing the action-
object pair in row j

13: end if
14: end for
15: end for

Exhibit A7. Algorithm to create the activity diagram (Stage 2)
For implementing mapping rules 4.4 and 4.5, the algorithm is further extended as shown in
Exhibit A8. The algorithm now creates a Stage 3 activity diagram.

Input: Structured representation of a set of BDD scenarios that document related user
stories & Stage 2 activity diagram generated from that structured representation
Output: A partial activity diagram (Stage 3)
16: for each row i in the structured representation
17: set unmatched precondition to true
18: set unmatched postcondition to true
19: for each row j in the structured representation (action row i ¹ action row j)
20: if precondition object of row i = postcondition object of row j AND

precondition state of row i = postcondition state of row j then
21: set unmatched precondition to false
22: end if
23: if postcondition object of row i = precondition object of row j AND

postcondition state of row i = precondition state of row j then
24: set unmatched postcondition to false
25: end if
26: end for
27: if unmatched precondition is true AND no start node has already been

connected to the activity representing the action-object pair in row i then
28 create a start node and draw a control flow from the start node to the

activity representing the action-object pair in row i
29: end if
30: if unmatched postcondition is true AND no end node has already been

connected to the activity representing the action-object pair in row i then
31: create an end node and draw a control flow to the end node from the

activity representing the action-object pair in row i
32: end if
33: end for

Exhibit A9. Algorithm to create the activity diagram (Stage 3)

45

Finally, the algorithm is completed in Exhibit A10 with the implementation of mapping rules
4.6 to 4.8 to create the Stage 4 (i.e., final) activity diagram.

Input: Structured representation of a set of BDD scenarios that document related user
stories & Stage 4 activity diagram generated from that structured representation
Output: An activity diagram (Stage 4)
34: for each row i in the structured representation
35: if an XOR logical operator was added to the precondition object then
36: create a merge node in the activity diagram
37: connect all control flows directed to the activity that represents the

action of row i, to this merge node as incoming control flows
38: create a control flow going out of the merge node and direct it to the

activity that represents the action of row i
39: end if
40: Skip all rows j (action row i = action row j)
41: end for
42: for each row i in the structured representation
43: if an AND logical operator was added to the precondition object then
45: create a join node in the activity diagram
46: connect all control flows directed to the activity that represents the

action of row i, to this join node as incoming control flows
47: create a control flow going out of the join node and direct it to the

activity that represents the action of row i
48: end if
49: Skip all rows j (action row i = action row j)
50: end for
51: for each row i in the structured representation
52: if an AND logical operator was added to the postcondition object then
53: create a fork node in the activity diagram
54: connect all control flows leaving from the activity that represents the

action of row i, to this fork node as outgoing control flows
55: create a control flow from the activity that represents the action of

row i, to the fork node
56: end if
57: Skip all rows j (action row i = action row j)
58: end for

Exhibit A11. Algorithm to create the activity diagram (Stage 4)

