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Robust prediction of force chains in jammed solids
using graph neural networks
Rituparno Mandal 1,4✉, Corneel Casert2,4 & Peter Sollich 1,3

Force chains are quasi-linear self-organised structures carrying large stresses and are ubi-

quitous in jammed amorphous materials like granular materials, foams or even cell assem-

blies. Predicting where they will form upon deformation is crucial to describe the properties of

such materials, but remains an open question. Here we demonstrate that graph neural

networks (GNN) can accurately predict the location of force chains in both frictionless and

frictional materials from the undeformed structure, without any additional information.

The GNN prediction accuracy also proves to be robust to changes in packing fraction, mixture

composition, amount of deformation, friction coefficient, system size, and the form of the

interaction potential. By analysing the structure of the force chains, we identify the key

features that affect prediction accuracy. Our results and methodology will be of interest for

granular matter and disordered systems, e.g. in cases where direct force chain visualisation or

force measurements are impossible.
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Force chains are emergent filament-like structures that carry
large stresses when a granular material1–10, emulsion11,12,
foam13, dense active matter14, or assembly of cells15 is

deformed. Unlike homogeneous simple solids, the stress in such
fragile matter propagates inhomogeneously via these force
chains16,17, which therefore act as a crucial component in
describing the mechanical and transport properties of such
systems18–25. For instance, the knowledge of the force chain
network is crucial to understand several key properties of gran-
ular materials, such as sound propagation22, non-local mechan-
isms of momentum transfer26, or the response to external
confining stress18. Understanding when force chains will form,
how the network that they make up carries the external load and
responds to external or internal mechanical deformation 27–29,
and characterizing the statistical properties of force chains30–34

constitute central challenges in ongoing research in granular
matter systems. The study of force chains, initially
qualitatively4,6,35 and later quantitatively9,28,36–39, became pop-
ular with the introduction of photoelastic beads in granular
matter experiments. For example, the visualization of force chains
and subsequent analysis have enabled the validation and ver-
ification of theoretical models of granular media6, and have
helped to disentangle the distinguishing features of force chains
appearing under different boundary conditions such as shear or
uniform compression7. A recent study suggests that ants benefit
from the force network to remove grains of soil for efficient
tunnel excavation40,41.

Predicting where a force chain will arise given a deformation,
i.e. predicting which grains will be part of this emergent structure,
is a complex problem if the interactions between the grains are
unknown—but tackling it is of vital importance in e.g., material
design as the force chains will be a key determinant of a material’s
properties18–25. While experimental set-ups using the aforemen-
tioned photoelastic beads can visualize force chains7, it remains
impossible in numerous other experiments on granular matter,
emulsions, foams, etc. to say where force chains will form without
precise knowledge of the interaction between the particles. In this
article, we demonstrate an efficient and accurate solution to this
open question, by deploying graph neural networks (GNN) to
predict the formation of force chains in both frictionless and
frictional granular matter.

Machine learning methods have recently shown great potential
in the analysis of physical systems, with applications ranging from
quantum chemistry to cosmology42. In the field of granular
matter, softness was introduced as a structural predictor of
regions susceptible to rearrangement, based on a classification of
human-defined structure functions with a support vector
machine43–45. Neural networks have recently been used to detect
local structure in colloidal systems46,47, define a structural order
parameter which correlates strongly with dynamical hetero-
geneities in supercooled liquids48, and have helped in uncovering
the critical behavior of a Gardner transition in hard-sphere
glasses49. Neural network-based variational methods have also
been introduced to study the large deviations of kinetically con-
strained models, which are lattice-based systems displaying glassy
dynamics50,51. Graph neural networks, which operate on the
elements of arbitrary graphs and their respective connectivity,
have proven successful in predicting quantum-mechanical
molecular properties52, describing the dynamics of complex
physical materials53, or providing structural predictors for the
long-term dynamics of glassy systems without the need for
human-defined features54.

In this article, we show how a GNN can be trained in a
supervised approach to predict the position of force chains that
arise when deforming a granular system, given an undeformed
static structure (see Fig. 1 for a schematic). For this, we first

deform the system using shear deformation (step strain) and
identify the particles that become part of force chains using
standard methodology (see Methods section). We optimize the
GNN on a set of such configurations, training it to predict where
the force chains will appear given the initial configurations. We
then demonstrate that the trained GNN can generalize remark-
ably well, allowing it to predict force chains in new undeformed
samples. The method is extremely robust: it works exceptionally
well in many different scenarios for which the GNN was not
explicitly trained, which involve changes in the system size,
composition, step strain amplitude, packing fraction, friction
coefficient, and even interaction potential—all without requiring
any further training. Overall, our method provides accurate and
robust predictions of where force chains will appear, without
knowledge of inter-grain forces. This method can be potentially
applied to numerous experiments on jammed solids, in order to
determine the location of force chains even when it is not possible
to visualize them directly.

Results
We first demonstrate that an optimized GNN can predict very
accurately where force chains will form for the canonical case of a
jammed solid consisting of a binary mixture of harmonic parti-
cles. We use N particles interacting through a harmonic potential
at packing fraction ϕ= 1.0, of which nA particles have radius RA,
and nB particles have radius RB (as described in Methods).

In Fig. 2, we compare the force chains obtained through a
numerical shear simulation (Fig. 2a) to those predicted by our
trained GNN (Fig. 2b), which receives an undeformed config-
uration as input. Only a few particles (highlighted in red) are
misidentified by the GNN, indicating its very high prediction
accuracy, as described in Fig. 3. In the following sections, we
describe the most useful aspects of the GNN predictor for the
prediction of force chains, namely scalability and robustness.

Scalability. As each graph-convolutional operation in our GNN
only depends on a particle’s local neighborhood (Eq. (4) from

Fig. 1 Schematic of our method for predicting the formation of force
chains. We first generate data on the formation of force chains via a
traditional method, i.e., by shearing a model athermal solid in a simulation
setup. We then train a graph neural network to predict the location of force
chains in the deformed samples from the initial (undeformed) static
structures. The trained graph neural network can then be used to predict
the formation of force chains for other initial structures—even when e.g.,
the system size or particle mixture composition are very different from
those used during training.
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Methods), the GNN is not explicitly dependent on the number of
nodes in the graph. This allows us to apply the GNN on systems
containing a much larger number of particles than it was initially
trained on, as long as the relevant physical length-scales stay of
the same order when increasing system size. Doing so allows for
massive numerical acceleration in the study of large-scale sys-
tems, as the largest computational cost for training the GNN lies
in the generation of a large enough training data set and in the
optimization of the network’s hyperparameters—both of which
are much more expensive when training on large systems. We
demonstrate the success of this strategy in Fig. 3, where we train a
GNN on data acquired for small system size (N= 400) and then
apply it to much larger systems (shown up to N= 4000) without
a decrease in force chain prediction accuracy. This is important in
the context of predicting force chains in experiments: once
trained, evaluating our prediction method only demands a cost
that increases linearly with system size so that one can easily
make predictions on the much larger systems one has to deal with
in a typical experiment. More results on scalability near jamming
are provided in the SI.

Robustness. We first observe that a GNN can predict force chains
very accurately when either trained on a data set generated at
high (ϕ= 1.0) or low packing fractions (ϕ= 0.845, close to
jamming); Fig. 4a, e show sample configurations. Two separate
GNNs were trained on data obtained at the two packing fractions.
Fig. 4d, h show their predictions (on previously unseen, unde-
formed configurations) of force chains, which match remarkably
well with the direct simulations at both high and low packing
fraction. This consistent accuracy is achieved even though the
force networks at the different packing fractions have a very
distinct structure, as can be seen from Fig. 4b, f, c, g showing the
configurations before and after deformation, respectively.

A network trained on a fixed, single value of the packing
fraction ϕ provides inaccurate predictions when applied to
configurations obtained at other packing fractions (see Fig. 5a).
If, however, we provide the GNN with information about the
packing fraction during training, it can correctly predict force
chain formation over a wide range of values for the packing
fraction, even for values not included in the training data.
Likewise, we can provide the neural network with the magnitude
of the step strain γ, and apply it to correctly predict force chains
when varying the value of γ for a given configuration. Again, this
works even for values of γ for which the GNN did not observe
any data during optimization: in Fig. 5b we demonstrate that the
GNN produces highly accurate predictions both when inter-
polating between values of γ included in the training set, and
when extrapolating towards higher values of γ. The trained GNN
is also robust to changes in the composition of the binary
mixture. To demonstrate this, we generate samples with a very
different composition by changing the ratio of nA:nB, while
keeping the packing fraction fixed. This is demonstrated in Fig. 3
for the cases of nA:nB= 3:1, and nA:nB= 1:3, with a GNN that
was originally trained on data with nA:nB= 1:1. The predictions
are remarkably good for both cases, with only a minimal loss of
accuracy when compared to the original mixture composition.

The fact that a GNN can provide predictions without any
significant loss in accuracy in these three different generalization
scenarios is highly advantageous, as it implies that large amounts
of data only need to be obtained (either through experiment or
simulation) at a few model parameter combinations, thus greatly
reducing the cost for predicting where force chains will form in a
generic experiment.

Next, we ask our GNN to predict the force chains in a jammed
solid with different pairwise interactions—either through a
Hertzian potential or a power-law potential (see Methods). We
find that even in these cases, the GNN retains most of its accuracy
(Fig. 3), with a larger performance reduction for the power-law
potential. This robustness to the nature of the interaction
potential is extremely important for the applicability of our
method in an experimental context, where the particle interac-
tions might not be straightforward to estimate.

We have further extended our study to frictional jammed
granular solids55,56 (see details of the frictional simulation in
the Supplementary Information). We first observe that our
prediction using the GNN works equally well in the case of
frictional particles with friction coefficient μ= 1.0, with a similar
prediction accuracy of ~96% (see Fig. 6 in the Supplementary
Information). Next, we train a GNN on a data set consisting of
configurations obtained for μ= {0.0, 0.1, 0.9, 1.0}, where the
GNN is conditioned on the value of μ by including it as a feature
for each node in the graph (we hence train on all these values of μ
simultaneously). Once training is completed, we use the set of
weights that achieved the lowest loss on a validation data set
consisting of configurations obtained at the same values of
μ= {0.0, 0.1, 0.9, 1.0} as used during training. We then apply the
network with these weights to predict the force chains for unseen

Fig. 2 Visualization of force chain predictions for a prototypical athermal
solid. a Force chains (blue) in an athermal solid with nA= nB= 200, obtained
through a shear simulation with magnitude of the step strain γ= 0.1 at
packing fraction ϕ= 1.0. b Force chains predicted by a graph neural network
taking as input the configuration of (a) before the deformation was applied.
Particles misidentified by the GNN are highlighted in red.

Fig. 3 Robustness of force chain prediction accuracy for a variety of
physical scenarios. A graph neural network trained on a data set with a
harmonic potential and number of particles (top) can also accurately
predict force chains for configurations with different system size (number
of particles), different ratio of mixture components or with a different
interaction potential. All results shown here are obtained at packing fraction
ϕ= 1.0.
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test configurations with μ= {0.0, 0.1, 0.2, …, 0.8, 0.9, 1.0}. Note
that the GNN was not trained on frictional coefficients in the
range 0.2 ≤ μ ≤ 0.8, so the GNN has to interpolate between its
learned classification at high and low values of μ. We observe that
this interpolation can again be achieved with extremely high
accuracy of ~96%, as plotted in Fig. 5c. As an additional check of
robustness, we also generated strained packings of frictional
particles using a finite deformation rate, with particle configura-
tions relaxing as they are strained in contrast to the previous
analysis where we implemented only affine strain. Though
slightly less accurate than for the case of step strain, the GNN
is still able to classify particles as being part of a force chain with
an accuracy of approximately 90%.

Analysis of structure factors of the force chains predicted by
the GNNs reveals that the structure factor is quite different at
different packing fractions: at ϕ= 0.86, it is strongly anisotropic,
while at ϕ= 1.0 it is nearly isotropic due to the presence of more
branched chains; see SI Fig. 7. For two different frictional cases
(see SI Fig. 8), on the other hand, very similar structures result.

This is consistent with, and rationalizes, the fact that training only
on data with μ= 0.0 is highly effective for predicting force chains
at larger values of μ, whereas performing an extrapolation toward
higher values of ϕ while only training on data for ϕ= 0.86 is not
(for more details see Supplementary Information). It also
underscores the relevance of the GNN in establishing the fact
that at high enough packing fractions, friction does not play a
significant role and demonstrates that the GNN prediction in an
unknown system is able to provide important information about
the force chains under different, physically relevant conditions.
To explore this matter further, we show the structure factor of the
force chains predicted by GNNs in different scenarios in Fig. 6,
along with the absolute prediction errors. This structure factor is
highly accurate when the GNN is tasked with predicting force
chains for conditions on which it is trained (Fig. 6a), or where it
can interpolate. However, when the GNN is asked to extrapolate
far from its training regime (Fig. 6b, c) strong systematic bias is
present in this structure factor. This reveals structural properties
the GNN misses out on when performing its extrapolation, such

Fig. 4 Visualization of force network evolution under deformation and corresponding neural network prediction accuracy. a Example configuration
before deformation with nA= nB= 200 particles interacting through a harmonic potential (as given in Eq. (1)) at packing fraction ϕ= 1.0. b Corresponding
force network. c Force network after deformation with step strain of amplitude γ= 0.1. d Force chains of the configuration in (c). Differences between
simulation and GNN prediction on the basis of (a) are highlighted in red. e–h Same as in (a–d) but now for a configuration at a packing fraction (ϕ= 0.845)
close to jamming.

Fig. 5 Interpolation and extrapolation performed by the graph neural network on changing control parameters. a Force chain prediction accuracy for
systems at γ= 0.1 and with different packing fractions, ranging between ϕ= 0.85 and ϕ= 1.0, with a GNN conditioned on ϕ. We show results obtained
with a GNN trained on a data set obtained at ϕ= 1.0 (red), and a GNN trained on data of samples obtained at ϕ≤ 0.88 and ϕ≥ 0.98 (blue). The latter
GNN provides highly accurate predictions in the interpolation regime 0.9≤ ϕ≤ 0.96, even though it was never trained on these values of the packing
fraction. b Same as in (a) but now for GNNs conditioned on the step strain amplitude γ. A GNN trained on γ≤ 0.04 and 0.10≤ γ≤ 0.12 (blue) successfully
interpolates between these deformation magnitudes; it also extrapolates reliably to larger values of γ. A GNN trained only on γ≤ 0.04 (red) fails to do this
accurately. c Same as in (a) and (b), but now for a GNN conditioned on the friction coefficient μ. Both the GNN trained only on μ= 0.0 (red) and the GNN
trained on μ= {0.0, 0.1, 0.9, 1.0} (blue) provide accurate results across all values of μ. The small systematic difference in testing accuracy can be explained
by the latter GNN having access to four times as many training examples overall.
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as branching events. We provide more details on the presence of
this systematic bias in the extrapolation regime of GNNs in
the Supplementary Information.

Discussion
In this article, we made use of graph neural networks (GNN) to
accurately predict where force chains will arise upon the defor-
mation of jammed disordered solids (both frictional and friction-
less). Our network is trained on data obtained through direct shear
simulations and exhibits a very high generalization ability to
unseen configurations. Crucially, the optimized GNN is robust to
changes in a variety of model parameters, such as the packing
fraction, system size, magnitude of deformation, friction coefficient,
and interaction potential: it produces very accurate predictions for
such cases, without having ever observed them during its training.
Although we have used data obtained through numerical simula-
tions to train our GNN, the methodology would be identical for
experimental data, where it is not always possible to measure inter-
particle forces. We have also analysed the structure factor of the
predicted force chains in different physical scenarios, and discussed
the implication on the performance of GNN while doing extra-
polation. We have verified (see Supplementary Information for
details) that the predictions of our GNN are not correlated with the
local D2

min, an indicator of plastic rearrangements. This can in turn
be predicted using softness, which is a machine learning feature
that has recently been used extensively43–45. Overall, this indicates
that our GNN is picking up on novel features in the local structure
of such disordered solids.

Our study will open new possibilities in experiments on such
disordered solids (granular matter, emulsions, foams, etc.) where
direct visualization of force chains is not possible, allowing for
more in-depth analysis of structural properties as quantified by
force chains. Even though for the demonstration of the success of
our method we have used data generated by simulations of two-
dimensional grains it is straightforward to extend the method to
three-dimensional configurations where visualization of force
chains in experiments is a very challenging task11,57,58.

Methods
Model and simulation. We first train our GNN on configurations of a
frictionless59–63 athermal soft binary sphere mixture with harmonic
interactions64–66 as a model athermal solid. The pair-interaction potential between
two particles i and j is completely repulsive, and of the form

VðrijÞ ¼
1
2
GR3 1� rij

Ri þ Rj

 !2

ð1Þ

when particles overlap and zero otherwise. Here Ri and Rj are the radii of the i-th
and j-th particle respectively, rij is the distance between them, and R is a char-
acteristic particle radius parameter. All the lengths in the problem are described in

units of R and energies in units of GR3. For generating the initial jammed structure
we employed overdamped athermal dynamics with friction coefficient ζ. This,
along with the choices for R and G, sets the time unit as ζ/(GR). Our initial
simulations (for training data generation) are performed using a binary mixture of
nA= nB= 200 particles with RA= R, RB= 1.4R in a two-dimensional box of linear
size L and with periodic boundary conditions. We have also used a Hertzian
potential of the form

VðrijÞ ¼
2
5
GR3 1� rij

ðRi þ RjÞ

 !5=2

; ð2Þ

and power-law potential

VðrijÞ ¼ ϵ
Ri þ Rj

rij

 !10

ð3Þ

where we choose the energy scale for the Hertzian potential as before, and as ϵ for
the power-law potential. For these training data generation runs, the simulations
are performed at a fixed packing fraction ϕ, which is defined as
ϕ ¼ ðnAπR2

A þ nBπR
2
BÞ=L2. We always start with a force-free configuration under

athermal conditions, and then deform the system by applying a step shear strain of
magnitude γ. Lees-Edwards periodic boundary conditions are used to implement
the step strain. The simulation methodology for the frictional jammed systems,
which are discussed in the section on robustness, is described in the Supplementary
Information.

Identification of force chains. To quantitatively detect force chains we follow the
approach detailed in67,68, where force chains are defined as quasi-linear structures
formed of particles that carry above-average load, i.e., compressive stress. To
identify the particles within the force chains, we first calculate the stress tensor
σ̂αβ ¼ ∑Nnb

i¼1 f
i
αr

i
β for each particle in the instantaneously sheared configuration,

where Nnb is the number of neighboring particles exerting a force on the central
particle, and f iα and riβ are the components of the force and the radius vector
connecting the centers of the two interacting particles, respectively. The largest
eigenvalue of σ̂αβ is the magnitude of the particle load vector, while its orientation
is given by the corresponding eigenvector. Neighboring particles whose load vec-
tors align within an angle of 45∘ (in Fig. 4 of the SI and the associated discussion we
show that the GNN’s accuracy does not depend on the choice of this angle.) and
have above-average (arithmetic mean) magnitude are assigned as part of a force
chain67,68. In a completely analogous fashion, one could train neural networks on
force chains identified using other approaches, e.g. based on community
detection69,70 or topological properties of the force network71. Note that these
detection techniques67–71 allow for the analysis of the force network, but do not
provide any predictive power on how it will change upon deforming a system.

Training of GNN and prediction of force chains. To predict the location of force
chains after a deformation with graph neural networks, we first transform a given
initial configuration into a graph by drawing edges between particles that are
within a fixed cutoff distance (here set to 2RB). Each node of this graph has the
corresponding particle radius as feature n0. When conditioning our graph neural
network on a global property such as the magnitude of the deformation γ or
packing fraction ϕ, we include this property as an additional (uniform) node
feature. The features assigned to each edge of the graph eij consist of the distance
between the two particles connected by the edge and the unit vector in the direction
of their relative distance. Importantly, we do not need to include any knowledge of
the contact forces between the particles, which are typically difficult to
measure37,72.

Fig. 6 Structure factors of force chains predicted by the graph neural network. a Structure factor of force chains predicted by a GNN at ϕ= 0.86; the
GNN was conditioned on the packing fraction ϕ, and trained on data for ϕ= {0.86, 0.88, 0.90}. b Same as in (a), but now predictions are made at ϕ= 1.0,
for which the GNN was not trained. c Structure factor of force chains predicted at γ= 0.16 by a GNN conditioned on γ and trained on γ= {0.02, 0.03,
0.04}. Inset (in all three cases) shows an absolute error of the structure factor w.r.t. the structure factor of the exact force chains; a distinct pattern can be
observed in the inset of (b) and (c).
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In order to predict which particles will become part of force chains after
deforming the initial configuration, we apply a graph neural network to this graph.
Such a GNN consists of Nl layers, where in every layer l the node features
corresponding to each particle i are updated according to the features of the
particles in their neighborhood N ðiÞ and the features of the edges that connect
them (see schematic in Fig. 1). Specifically,

ðnlÞi ¼ ðnl�1Þi þ ∑
j2N ðiÞ

f lW ðnl�1Þi; ðnl�1Þj; eij
h i

; ð4Þ

where f lW is a parameterized nonlinear function (neural network) that calculates

new node features for each particle. Importantly, we use the same function f lW for
each particle, which allows us to apply the GNN to systems with an arbitrary
number of particles.

For our force chain prediction, we pass the features nNl
of each node in the final

layer through a fully-connected neural network with one output feature and a
sigmoid activation function. This final result is, for each particle, the probability p̂
of being part of a force chain after deformation, as assigned by the neural network.

During training we optimize the weights of the GNN such as to minimize the
cross-entropy73

Hðp; p̂Þ ¼ � 1
NM

∑
NM

i¼1
pi logðp̂iÞ þ ð1� piÞ logð1� p̂iÞ
� �

; ð5Þ

where M is the number of configurations in the training set and N is the number of
particles in each configuration, p= 1 if a particle is part of a force chain in a
particular training configuration, and p= 0 otherwise. We use the Adam
optimizer74 to minimize this loss function on a training set, and choose the model
hyperparameters as those that perform best on a validation set consisting of
configurations not included in the training set. We then evaluate our network on
an independent test set. The optimized hyperparameter values and more details on
the neural network architecture and training can be found in the SI.

Data availability
A representative data set generated for the results in the main text and in the
supplementary information has been deposited in the Göttingen Research Online
database under accession code https://doi.org/10.25625/TCFCVI. The complete data are
available from the authors upon reasonable request.

Code availability
A representative code used to do the ML analysis has been deposited in the Göttingen
Research Online database under accession code https://doi.org/10.25625/TCFCVI. The
complete code is available from the authors upon reasonable request.
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