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Abstract

Computerized maintenance management systems (CMMSs) contain valuable
data on the maintenance operations in an organization. A large part of these
data consists of unstructured, written texts contained in failure notifications
which are generated each time an unexpected failure occurs, enriched with struc-
tured metadata consisting of a number of labels that allow to categorize the
failures, such as the type of failure, its cause or the corrective action that was
taken. In this paper, we show that natural language processing techniques can
be used to predict the structured metadata based on the unstructured text and
even identify mislabeled notifications or ambiguous labels. Specific attention is
given to the complexity that arises from the highly technical nature of the texts
combined with a telegraphic writing style and heavy use of sentence fragments
and abbreviations. Moreover, it is shown that exploiting dependencies between
different components of the metadata, and regarding the prediction problem as
a multidimensional classification problem, can improve the reliability of the pre-
dicted labels. We illustrate and test our label prediction pipeline on the CMMS
data of a large pharmaceutical company.
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1. Introduction

Of the many uses of industrial data, one of the most important ones is increas-
ing the reliability and safety of systems. According to Cato and Mobley [6],
maintenance costs can account for as much as 60% of controllable plant operat-
ing costs. These costs can be substantially reduced by improving maintenance
policies based on data [20]. Historical data on failure events and maintenance
logs, typically available in Computerized Maintenance Management Systems
(CMMSs), are a potential source of information that can be exploited to opti-
mize maintenance policies [4].

Failure notifications are arguably the most relevant type of data contained in
a CMMS for optimizing a maintenance policy. Such notifications, of which an
example is shown in Figure 1, contain a textual description of a failure event
and are characterized by their technical nature, combined with a telegraphic
writing style making heavy use of sentence fragments and abbreviations [11].
Because of their unstructured nature, they are often supplemented with struc-
tured metadata such as a date, time, location and a set of tags. Potential tags
consist of an identifier indicating the asset to which the failure relates or one or
more labels that are selected from predefined sets (such as failure codes). The
structure that is present in the metadata and the tagging system allows the data
to be mined efficiently and their summary statistics can, for instance, be used to
gain insight into the frequency of particular types of failures and in some cases
used to establish a preventive maintenance policy [2, 7, 13]. However, in prac-
tice, these metadata only provide a coarse description of the failure event and
more fine-grained information is available in the less-structured textual descrip-
tion of the failure event. Therefore, an in-depth analysis of the unstructured
text using natural language processing can reveal patterns that complement the
information contained in the structured metadata (for instance topic modeling
approaches such as latent Dirichlet allocation Roberto et al. [27]); or it can
be used to automatically correct the metadata and identify ambiguous compo-
nents. In this paper we address the latter and use natural language processing
and machine learning techniques to predict part of the metadata based on the
unstructured text. Specifically, we will focus on failure codes. A failure code is
a label pertaining to a failure mode or type. By analysing which problem types
occur most often, resources can be allocated optimally and policies can be ad-
justed. However, since these codes are the result of manual input (for instance
selected from drop-down boxes when entering a notification in the CMMS, as
illustrated in Figure 1) they are error-prone. Moreover, the set of available tags
may vary over time and, as a result, a retagging of older notifications might
be required when the CMMS is revised. In both cases, the (unstructured) free
text that is available can be used to either flag potential errors in the input, or
partly automate the retagging of old notifications. Given the number of failure
notifications generated by a large production facility over time, manual correc-
tion and retagging of notifications is often not feasible. However, provided that
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Metadata:
24.08.2020 05:38:32 (failure ID) (Location) (action cost) (User ID 1)

Entries:
Summary:
low pressure seal valve
24.08.2020 05:38:32 (User ID 1)
Low pressure alarm in seal (name seal), P reads 2 bar instead of 5;
possible leak
24.08.2020 09:24:18 (User ID 2)
valve is replaced, production still needs to do a leaking test after cleaning.
24.08.2020 12:43:25 (User ID 3)
Cleaning performed, l-test OK.

Figure 1: Example of a long form failure notification. Free text is italicized. This figure has
been formatted for clarity.

sufficient correctly labeled notifications are available, a machine-learning-based
classifier can be trained to automatically label or flag the remaining notifications
using the free text data as input.

In the machine learning literature, the problem we are aiming to solve is called
a multidimensional classification problem [24]. In contrast with traditional clas-
sification problems, where each object is only classified once and the output
variable is a single nominal variable, a multidimensional classification problem
consists of multiple classification problems, meaning that each object needs to
be classified a (fixed) number of times, each time along a different dimension.
In this problem, there are multiple nominal output variables for which a value
needs to be predicted. For example, the failure notification in Figure 1 has
been linked with three failure codes (defect, cause and action) and therefore all
three codes should be predicted simultaneously. As we illustrate in this paper,
using dedicated multidimensional classification methods can help to reduce the
number of erroneous classifications. Another complicating factor is the type
of language that is commonly used in the free-text fields of the notifications.
The lack of a clear structure combined with a technical and telegraphic writ-
ing style complicates the automated analysis of the free text. This makes the
problem different from more popular text categorization applications such as
the categorization of social media posts [42] or newspaper articles [18].
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A failure code and a free-text description of the failure can be seen as two sides
of the same coin. Where the former is a structured way of describing a failure
using predefined labels, the latter allows for more freedom in describing the same
problem. Therefore, it is reasonable to assume that free text can be used to
predict the failure codes. Nevertheless, in a broader maintenance context, other
data sources could be used as well. A notable example are logs of supervisory
control and data acquisition (SCADA) systems. It is reasonable to assume
that a significant number of failures can be picked up by the sensors connected
to a SCADA system. Retrospectively, these logs can be used to predict and/or
correct failure codes and thus complement a free-text based approach. However,
in our experience, unless dedicated sensors are installed to detect a specific
failure, it is often challenging to link SCADA data to the root cause of a failure.
The remainder of this paper is organised as follows. Section 2 discusses related
work, while Section 3 introduces the case study that will be used to illustrate the
methodology. Section 4 discusses the supervised methods for classification. In
Section 5, the performance of the resulting tools is analysed using accuracy, F1-
score, precision and recall, four common performance metrics used in supervised
classification. Section 6 uses the best models to analyse individual labels, class
imbalances and mislabeled notifications. Finally, Section 7 discusses the main
conclusions and future perspectives.

2. Related work

Industrial production processes are monitored with increasing intensity. Even
though most of these process data are captured for operational reasons such as
process control, there is an increasing trend to use machine learning methods
to learn from these historical process data and optimize plant operations. Most
research on the use of machine learning models for maintenance focuses on
the use of (numerical) sensor data. These models often rely on probabilistic
fault prediction or the modelling of the degradation of a component [40, 43, 44].
Another option is to use an online real-time anomaly detection model to identify
abnormal trends or patterns that could be caused by deteriorating components,
as is used in Park et al. [21] on injection moldings. Alternatively, new data
can be collected for the sole purpose of identifying faults, such as vibration data
[29], thermographic imaging data [9], pressure or acceleration data [36], acoustic
data [37] and ferrography data [28].

The use of machine learning methods to analyse CMMS data, and in particular
the free-text data contained therein, is less studied in the context of mainte-
nance. However, the field of natural language processing (NLP) has advanced
to a point where automated analysis of free text is feasible. The rise of deep
learning technologies has greatly improved the accuracy of NLP. As a result,
classical applications of NLP such as sentiment analysis and opinion classifica-
tion have become commonplace. NLP techniques can extract valuable informa-
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tion from movie reviews [5], restaurant reviews [39] or customer opinions shared
on social media [17]. Nevertheless, applications of NLP for processing CMMS
data are less abundant. According to Devaney et al. [11], the application of
NLP to industrial failure notifications is hampered by several specific proper-
ties of these data: (1) the use of inconsistent vocabulary; (2) the use of jargon
and abbreviations; (3) a lack of public datasets; (4) a lack of well-formed input
due to the presence of sentence fragments, spelling and grammatical errors; and
(5) a lack of a direct link to the components of interest as it frequently oc-
curs that the failure of a component is described without explicitly naming the
component. These five properties apply to most industrial datasets. However,
other properties can also apply depending on the branch of industry considered.
In particular in the pharmaceutical production environment considered in our
paper, additional aspects are: (a) the presence of temporal effects due to pro-
duction shifts and the emergence of new drug products; (b) a large variety of
assets, as a larger pharmaceutical production facility produces a large variety of
drug products each requiring their own unit processes and equipment that can
only be shared partly over products; (c) the presence of fleet aspects as some
assets are present in multiplicate and can be interpreted as a more homogeneous
fleet, but often with different usage patterns and age. Also, due to strict reg-
ulations regarding safety, even identical assets cannot be easily substituted in
a production process without extensive validation. As assets cannot easily be
interchanged, each asset will have a different usage history and will have vastly
different loads applied to it during its lifetime, which could influence potential
failures.

Despite the difficulties resulting from the aforementioned properties that dis-
tinguish failure notification texts from text used in more common NLP appli-
cations, several examples can be found in literature that use NLP on CMMS
data. Zhang et al. [41] use free-text fields in failure notifications to predict asso-
ciated failure codes and assess the correctness of the labels. The free-text fields
are transformed into wordcounts (after preprocessing), which are then weighed
according to their global frequencies (tf-idf weighing). Then, the SMOTE al-
gorithm (Synthetic Minority Oversampling Technique) is used to balance the
classes, followed by one of eight classification models, including support vec-
tor machines (SVMs), naive Bayes (NB) and Random Forests (RF). Arif-Uz-
Zaman et al. [3] try to enrich the metadata in a CMMS by labeling downtime
notifications as either resulting from a failure or no failure. This paper uses
a less exhaustive pipeline, with a basic preprocessing and wordcount transfor-
mation (bag of words), followed by one of two models: SVM and NB. SVM
outperformed the other models in both papers. In Tanguy et al. [31], SVM was
also used to classify failure notifications. However, in this paper, both words
and word fragments (substrings) were considered. This research showed that
using all 3-character substrings combined with word stems showed a modest
improvement over using only words, likely due to the presence of abbreviations,
compound terms and alternate writing forms.
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Apart from these traditional classification models, more advanced deep learning
models can also be used to classify textual data. Such models are not commonly
employed in the CMMS field, but they are popular in other NLP fields, such
as the identification of hate speech [42] and sentiment analysis [8, 32]. Popular
model choices for this type of problems are recurrent neural networks (RNN)
using the GRU-implementation (Gated Recurrent Unit), Convolutional Neural
Networks (CNN) and combined networks containing multiple layer types, such
as a convolution layer followed by a GRU. The results of these models are usu-
ally quite similar and depend on the dataset at hand [38]. More recently, trans-
former models, a class of deep neural network models based on (self-)attention
mechanisms, are surpassing the former state-of-the-art on many NLP applica-
tions [35]. The BERT (Bidirectional Encoder Representations from Transform-
ers) model [12] is a prominent example of this class of models and has been used
successfully to classify maintenance records (written in French) Usuga-Cadavid
et al. [34]. Specifically, the task was to predict the duration and criticality of
a maintenance issue to allow for better coupling of maintenance with produc-
tion planning. A French variant of BERT (CamemBERT) was finetuned for
this specific task. The results were compared with baseline methods and the
finetuned CamemBERT model outperformed all the other models. This model
was further developed to account for class imbalance [33].

3. A pharmaceutical failure notification dataset

Pharmaceutical production environments are highly controlled and regulated.
The extensive documentation of all maintenance operations in a CMMS is com-
mon practice in such environments. Regulatory agencies also impose mainte-
nance data collection for oversight purposes. In this particular case, the regula-
tory agencies require the archiving of 10-year backlogs on traceability (logging
of replaced components) along with a wide range of other safety standards for
critical machinery.

3.1. Description of the dataset

The data used in this paper has been extracted from the CMMS of a production
site of Janssen Pharmaceutica in Geel, Belgium. The extract contains tens of
thousands of failure notifications extracted over the last ten years (2010–2020),
ranging from broken light bulbs to failures of large production assets such as
industrial dryers. While these are called ‘failure notifications’, they are not all
related to unexpected failures. Apart from the actual failures, there are also
administrative notifications (usually for planned work such as installing a new
sensor) and delay notifications. About one quarter of the notifications falls in
one of the two latter categories. All notifications are written in Dutch. For
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Order/No�fica�on text: \\ 

*24.08.2020 05:38:32 

(User ID 1) 

Low pressure alarm in 

seal seal_name, P read 2 

bar instead of 5

Low pressure alarm in 

seal seal_name, P read 

2 bar instead of  5

- low

- pressure

- alarm

- seal

- P

- read

- 2

- bar

- instead

- 5

DenoisingNormaliser

Hapaxes removal, 
gramming and 
synsets

- low

- pressure|P

- alarm

- seal

- pressure|P

- read|is|show

- 2|two

- bar

- instead|should_be

- 5|five

Bagging
low pressure|P alarm

Figure 2: Example of a description being processed.

illustrative purposes, examples will be loosely translated into English in this
manuscript.

Failure notifications are available as plain text files such as the one shown in
Figure 1 and contain both structured metadata and unstructured text. The top
lines contain the structured metadata. Each notification contains the following
metadata: (1) a timestamp (date and time), (2) a unique ID, (3) a location
code, (4) an action cost, (5) a user ID and (6) three failure codes. These failure
codes are part of the input required by the CMMS. Each failure notification is
labeled using three types of failure codes: a defect failure code depending on
the type of defect of the failure (one of 16 codes is selected per notification);
a cause failure code depending on the cause of the failure (one of 17 codes is
selected per notification) and an action failure code depending on the action
taken to address the reported problem (one of 15 codes is selected per noti-
fication). In Figure 1 these codes are suggestively represented by drop-down
boxes. The (unstructured) free text consists of multiple fields: a first text field
contains a short summary. The remaining text fields contain a more lengthy
description, yet, have a telegraphic style with lots of sentence fragments and
abbreviations. These text fields typically constitute multiple entries related to
the same problem (with a total word count of around 150 on average). Basic
problems usually have two or three entries (around 50 words) and are resolved
in a matter of hours or days. More complex problems can take weeks and have
up to six entries (around 300 words).

3.2. Preprocessing pipeline

The notifications cannot be processed in their raw form by most NLP methods.
Therefore, a preprocessing pipeline was set up to transform the free text in the
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failure notifications into a form that can be used as input for NLP methods.
This pipeline is visually represented in Figure 2 and generally allows to trans-
form a failure notification into a Bag-of-Words format. The template removal
step removes all the text related to the fixed template that is used. A next step,
loosely referred to as the denoising step, removes punctuation, performs case
folding and uses the Dutch SpaCy language model [15] to remove stop words
and perform lemmatization. Due to the technical nature of the text, a lot of
words (one in three) are not known to the language model. Therefore, the SpaCy
model was slightly extended with a set of additional more technical terms and
abbreviations (user-specified). This step is followed by the removal of hapaxes
and a gramming step (the linking of collocations, or N-grams). Traditional
pretrained models such as the Google News Word2Vec model Mikolov et al.
[19] are not suitable for the use case, because they lack the proper vocabulary
and context. Instead, a new Word2Vec model was trained on the corpus using
the Gensim implementation [26]. Due to the heavy usage of compound words in
Dutch, a lot of multi-word English expressions (such as ‘leaking test’ and ‘clean-
ing status’) only require a single word in Dutch (‘lektest’ and ‘reinigingsstatus’).
Therefore, the maximum length of grams was set to two words. The next step is
the creation of synsets, where synonyms are identified using OpenDutchWord-
Net [23] and treated as identical during further processing. The WordNet is
also extended with more technical user-specified synonyms. The final step is
the embedding step. In this step, the preprocessed notifications are mapped to
fixed-length tensors. In the experiments described later, two embedding strate-
gies are compared. The first embedding strategy is the Bag-of-Words (BoW)
embedding where each notification is represented by a vector of word counts
(with the length of the vector equal to the size of the vocabulary of the corpus),
leading to a sparse representation. A variation on this basic embedding is the
Term Frequency-Inverse Document Frequency (tf-idf) [16] embedding, which
can easily be obtained from the BoW by reweighing. The weighing scheme uses
the relative word count obtained by dividing the word frequency within a noti-
fication by the word frequency in the complete set of notifications. The former
embeddings neither encode the order in which the words appear in the noti-
fication nor exploit information regarding the similarity of words. To resolve
these potential limitations, a second embedding strategy uses a Word2Vec [26]
algorithm (Gensim-implementation) to learn a word embedding that maps each
word onto a k-dimensional vector (we set k = 32) such that words that often
appear in the same context are mapped to similar vectors. To embed a no-
tification, the embeddings of the words are computed and concatenated. To
obtain fixed-length tensors, zero-padding is applied (we used a length of 387).
In the experiments, we consider two variants to obtain word embeddings. A
first variant uses Gensim Word2Vec to train the embedding from scratch using
the full corpus of notifications. A second variant uses a pretrained Word2Vec
model from Mikolov et al. [19] that is fine-tuned using Gensim on the corpus of
failure notifications.
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4. Methods

As part of the CMMS input, each failure notification is labeled using three
types of failure codes: a defect failure code; a cause failure code and an action
failure code. For a maintenance engineer, it is, for most notifications, rather
easy to assign failure codes to a notification based on the free text. For reasons
mentioned earlier, we investigate how this labeling process can be automated.
In the machine learning literature this problem is known as a multi-dimensional
classification problem [24], a problem where each data instance (in this case a
notification) is associated with multiple (in our case three) multi-class labels. In
the experiments that follow, we: (1) develop three base learners (one per label)
that accept a document embedding as input and independently predict the
three labels; and (2) investigate how the dependency between the labels can be
exploited using methods from the literature on multi-dimensional classification.

4.1. Base learners

We compare several base learners. A first set of base learners relies on the BoW
and tf-idf document embeddings obtained using the preprocessing pipeline dis-
cussed earlier (Section 3). These embeddings are used directly as input to a
Random Forests classifier (RF), Support Vector Machines classifier (SVM) and
a Naive Bayes classifier (NB). For the RF the number of variables considered
at each split is chosen as the square root of the length of the embedding vector
and the number of trees was set at 1000. The SVM uses a radial basis function
kernel (with sigma equal to the inverse of the number of features multiplied by
the variance) and the regularization constant was chosen using cross-validation.
Models were fit using the Python package SciKit-Learn [22]. A second set of
classifiers use a document representation that is obtained by concatenating the
word embeddings of the individual words of the notifications. These representa-
tions are used as input to a Convolutional Neural Network (CNN), a Recurrent
Neural Network that uses Gated-Recurrent Units (GRU) and a hybrid network
that combines convolutional and recurrent layers (GRU+CNN). The architec-
tures of these networks are inspired on the architectures that are found in Zhang
et al. [42] for classifying Twitter messages (with lengths similar to those of fail-
ure notifications), and are presented in Figure 3. All models use the ADAM
(ADAptive Moment estimation) optimizer for gradient descent with the categor-
ical cross-entropy as loss function and a learning rate of 0.001, with 5 epochs for
the CNN architectures and 10 for the other ones. The batch size used is 32. The
GRU networks use a 10% dropout rate (these were the optimal hyperparameter
settings found after parameter tuning). These networks were implemented and
trained using Tensorflow [1]. Lastly, following the approach of [34], we used the
RobBERT model [10] (a Dutch language model based on RoBERTa) as a neu-
ral network architecture. This transformer model was pretrained on OSCAR
(Open Super-large Crawled Aggregated coRpus) [30], the largest Dutch cor-
pus currently available (6.6 billion words). For our specific task, we finetuned
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Figure 3: Architecture of the GRU(∗)+CNN(∗∗) deep neural network used in the classifier
chain. The architecture of the GRU network (without CNN layer) is obtained by replacing
(**) with an additional (*) block. By replacing the (*) block with an additional (**) block, a
pure GRU network is obtained. Finally, the base learners (without classifiers chains) can be
obtained by removing (***).

the embeddings on the training set of CMMS texts using the same parameters
as the other neural networks (ADAM optimizer, categorical cross-entropy loss
function, learning rate 0.001, batch size 32 and 5 epochs). Both the neural
networks and the BERT model use a final dense layer with softmax activation.
This layer has the same number of neurons as there are labels in the output.
In all cases, a train-test split was used (2/3 training, 1/3 testing). The training
data were used to train the embeddings, fine-tune models and/or train the final
classifiers. Performance was evaluated on the test set.

4.2. Exploiting dependencies

It is reasonable to assume that a dependency structure exists on the labels. For
example, if for a given notification the defect code is leak, then it is highly un-
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likely that the action code will be cleaning. By modifying the base classifiers, we
can take these dependencies into account and produce classifiers that will, for
instance, avoid predicting highly unlikely label combinations. Three strategies
are compared to investigate the effect of incorporating label-dependencies. A
first approach we consider, known as the independent classifiers approach [24],
constructs an independent classifier for each label. As a result, these classi-
fiers cannot learn a joint (conditional) distribution over the labels. As a second
approach, we transform the three original labels into one super-label in which
every unique label triplet becomes a new class. When considering all triplets of
defect codes (16 classes), cause codes (17 classes) and action codes (15 classes),
4080 unique triplets are obtained. When considering each triplet as a separate
class, a very large multi-class classification problem is obtained. This approach,
known as the class powerset approach [24], does allow to learn a joint conditional
distribution over the three labels. Each of the base learners discussed earlier
was used to solve this multi-class classification problem. A third approach that
we consider, relies on the use of classifier chains [24, 25]. Here, three base
classifiers (one for each label) are trained sequentially (in our experiments the
sequence is defect code, cause code and activity code). The first classifier is an
independent base learner that predicts the defect code using the embedded text
of the failure notification as input. The second classifier is a base learner that
predicts the cause code but uses the predicted defect code (one-hot encoding)
as an additional input (next to the embedded text). Lastly, the third classifier
is a base learner that predicts the activity code and takes the predicted defect
and cause codes as additional inputs. For the BoW and tf-idf embeddings, the
predicted labels are added by concatenating them with the original embedding.
For the sequential word embeddings, however, this is not possible, since every
document is now a two-dimensional array rather than a one-dimensional vector.
Therefore, the predicted labels are concatenated inside the neural network struc-
tures after the global max-pool (which reduces the tensors to one dimension),
as illustrated in Figure 3.

4.3. Performance evaluation

To obtain an unbiased estimate of the performance of the models, the corpus
is split in two-thirds as training set (training embeddings, fine-tuning language
models and training multi-dimensional classifiers) and one-third as test set for
all experiments. Moreover, to provide a multi-label view on the performance of
the methods, we compute two types of classification accuracy. The first type is
the class accuracy (CA), which is the average accuracy over the three labels.
To define it formally, let yi = (yi,1, yi,2, yi,3) be the observed triplet of labels for
the ith failure notification. Moreover, let ŷi = (ŷi,1, ŷi,2, ŷi,3) be the predicted
triplet. Given a set of n notifications with d labels each (3 in our case), CA is
defined as:

1

n

n∑
i=1

1

d

d∑
j=1

I(yi,j , ŷi,j) ,
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where I(., .) is the indicator function (takes value 1 if its arguments are equal
and 0 otherwise). Note that CA evaluates the performance of each classifier
independently and partial errors (instances for which not all labels are predicted
correctly) still contribute positively to CA. The example accuracy (EA) is an
alternative to the CA that does not account for partially correct predictions.
For EA, a notification will only contribute to the accuracy if all three labels are
(jointly) predicted correctly. EA is defined as:

1

n

n∑
i=1

I(yi, ŷi) .

In addition to these measures of performance, also F1-score, precision (P) and
recall (R) are reported. These are calculated as the weighed average of the
measures for each class, using the one-versus-all method.

4.4. Short, intermediate and long texts

The free-text fields in a notification consist of a summary field followed by a
sequence of entries which are ordered chronologically. Due to the structure
of the text, some redundancy is often present (the message contained in the
summary can often be derived from the individual entries). Moreover, the first
few entries typically contain information on the type of problem that occurred
and the remaining entries typically concern follow-up entries that contribute
less to the identification of the defect, cause and action codes. If redundant or
irrelevant information is present in the long texts, using shorter texts can be
beneficial. To investigate this, we distinguish between (1) short texts that only
contain the summaries; (2) intermediate texts that contain only the first user
entry; and (3) long texts that contain all free text.

4.5. Experimental setup

The base learner, the technique used to exploit dependencies, the evaluation
criterion, the size of the text that is used and the preprocessing pipeline can
affect both the reported performance and the conclusions drawn from the anal-
ysis. To explore these combinations in a structured manner, we first explore
the effect of combining different base learners and label dependence modeling
strategies on the performance. Next, using the best-performing base learners,
we investigate how the length of the text influences performance and perform
an ablation analysis [14] of the preprocessing pipeline.
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5. Results and discussion

5.1. Base learners and label dependency

The results of a first set of experiments are presented in Table 1. To obtain
these results, the BoW embedding of the long texts was used for training the
RF, NB and SVM models. The GRU, CNN and GRU+CNN models used the
Word2Vec embedding of the long text, where the Word2Vec model was trained
from scratch using the complete corpus and the dimension of the embedding
was set at 32. When comparing the base learners, it can be concluded that,
irrespective of the method that is chosen for exploiting label dependencies, the
Random Forest classifier achieves the best performance among the BoW-based
classifiers and outperforms the remaining classifiers by a large margin. Inter-
estingly, when comparing the EAs of the Random Forest models, independent
classifiers obtain an EA of 0.66, increasing to 0.75 when classifier chains are
used. On the other hand, only a mild increase in performance is observed when
comparing the CAs which are 0.88 and 0.90 respectively. Due to chaining, the
accuracy of the individual base learners does not improve dramatically, but more
often, entire label triplets are predicted correctly. This shows that the Random
Forest classifier learns how to take conditional label dependencies into account.
Additionally, these results show that deep learning architectures that rely on the
Word2Vec embedding tend to outperform BoW-based base classifiers. With a
CA of 0.95 and an EA of 0.93, the independent GRU-based architecture attains
the best results. However, the networks that use convolutional architectures
can almost match these accuracies. As the results are only mildly affected by
the network structure, these results suggest that the Word2Vec embedding (at
least to some extent) succeeds in learning useful relationships between words.
Remarkably, chaining neural networks does slightly degrade performance for
all architectures except for GRU+CNN. However, the effects are very small.
Furthermore, we observe that using class powersets heavily degrades the per-
formance of the base learners. Except for naive Bayes, all base learners perform
extremely bad when using this approach. The evident explanation here is that
the number of classes (4080 in this case) becomes too large given the number of
observations. Most classes will only contain a handful of examples. Lastly, we
observe that the RobBERT model obtains a slightly lower accuracy than the
networks using convolutional and recurrent layers but outperforms the BoW-
based models. It is generally assumed that the contextual embeddings that are
derived by transformers are among the main reasons why they can outperform
architectures using only convolutional and recurrent layers. We hypothesize
that, as transformers typically need large datasets to learn these embeddings,
there is insufficient data available to properly finetune the transformer network
to allow it to outperform the other networks. Additionally, due to the highly
specific technical language and telegraphic writing style, the texts that are used
here differ rather strongly from the texts on which the RoBERT model was
pretrained, reducing the efficiency of transferring the pretrained model to this
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Base learner
Independent classifiers Class powerset classifiers Classifier chains
CA EA F1(EA) CA EA F1(EA) CA EA F1(EA)

Random Forest 0.88 0.66 0.63 0.82 0.63 0.56 0.90 0.75 0.70
Naive Bayes 0.43 0.08 0.06 0.51 0.20 0.16 0.47 0.13 0.12

Support Vector Machine 0.81 0.53 0.47 0.58 0.25 0.17 0.78 0.50 0.43
RNN (GRU) 0.95 0.83 0.81 0.38 0.08 0.01 0.91 0.79 0.79

CNN 0.94 0.79 0.78 0.34 0.08 0.02 0.86 0.69 0.67
GRU+CNN 0.94 0.79 0.76 0.51 0.19 0.09 0.93 0.83 0.82
RobBERT 0.90 0.73 0.74 0.42 0.12 0.04 0.87 0.77 0.78

Table 1: Base learners and multi-dimensional approaches.

new domain.

5.2. The effect of text length

Table 2 shows the results obtained using short, intermediate and long texts.
Following the results obtained above, only chained Random Forest classifiers and
independent GRU-based networks are used here. For the BoW-based Random
Forest model, a distinction is made between the (unweighted) BoW embedding
and the weighted variant tf-idf. For the GRU-based network, a distinction is
made between a new embedding (Word2Vec model trained de novo) and a fine-
tuned embedding (a Word2Vec model trained on Google News fine tuned on
the corpus of notifications). The best performance is obtained for GRU-based
networks that use the long text (CA = 0.95 and EA = 0.83), closely followed
by the chained Random Forest classifier for texts of intermediate size (CA =
0.94, EA = 0.84). These results show that the short texts provide insufficient
information to predict labels reliably (CA = 0.26 for Random Forests CA = 0.48
for GRU-based networks). Interestingly, extending the short summary with the
first item of the long text field (to obtain the intermediate texts) allows to boost
the performance significantly, and obtain among the best results (CA = 0.94
for both Random Forests and the GRU-based networks). Extending the texts
further (long texts) leads to a degradation of the performance for the Random
Forest classifier (CA drops from 0.94 to 0.90 and the EA drops from 0.84 to
0.75). The GRU-based network, on the other hand, attains a CA of 0.95 (the
best CA in this study) and manages to improve the EA from 0.78 to 0.83. As
mentioned earlier, the long texts extend the intermediate texts by considering
additional items. Often, these items do not contain a lot of information that
is relevant for the labeling of the notifications. The BoW representation used
for the Random Forest does not retain the positional information, and lacks
the potential to extract contextual information. Therefore, the model cannot
learn to focus on the first part of the notification. In this application, this
leads to a decreased performance of the Random Forest classifier. On the other
hand, the GRU-based network can learn to focus based on position, and, as the
results suggest, is not impacted negatively by the extension of the texts. On
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the contrary, the additional information can be exploited to (marginally) boost
the performance of the network.

Lastly, when comparing the embedding strategies, the BoW without weighing
and the tf-idf embedding lead to identical performances. This suggests that only
presence-absence information of the words is relevant when using this type of
embedding. As the notifications are rather short and technical, word frequency
is indeed less important as most words that signal the type of problem, its cause
and the action that is taken, will often only appear once or, when they appear
repeatedly, their frequency is not relevant for the classification problem. This
observation is related to the telegraphic writing style which contrasts applica-
tions of NLP that focus on classifying more narrative texts, where using tf-idf
often improves the performance. When comparing the Word2Vec embeddings,
it seems that a de novo embedding strategy systematically outperforms the fine-
tuning of an embedding that was pretrained on the Google News dataset [19].
We conclude that, for this application, fine-tuning the embedding does not suc-
ceed in transferring knowledge from related domains to the highly specific set-
ting of notification analysis (CA = 0.95 for a de novo Word2Vec model versus
CA = 0.91 for a fine-tuned model). An explanation for this observation can
be found in the highly specific vocabulary that is used here. When considering
the complete corpus of notifications, one in three words are not present in the
pretrained Word2Vec model. Moreover, as the results suggest, the knowledge
contained in the Word2Vec embedding of the words that do appear in the pre-
trained Word2Vec model does not contribute to the classification accuracy. This
is in line with the underperformance of the RobBERT model that was observed
before. As with the pretrained embeddings, the RobBERT model extensively
relies on pretraining on external data and likely fails to transfer this (pretrained)
knowledge to this rather different corpus.

5.3. Preprocessing: an ablation analysis

The bottom rows of Table 2 show the results of an ablation analysis of the pre-
processing pipeline. Each row represents the accuracy that is obtained when
omitting a single step from the preprocessing pipeline. In general, it appears
that individual preprocessing steps only have a mild impact on the accuracy.
The most substantial impact on the Random Forest classifier is caused by omit-
ting digit removal, hapaxes removal and punctuation removal. Interestingly,
gramming appears to have almost no effect on the performance of the models.
It is important to note here that, in contrast with English, Dutch uses a lot of
compounds. Therefore, there is less need to link collocations using gramming.
It is possible that an English language corpus would benefit more from gram-
ming. The limited impact of lemmatization can be linked to the fact that the
descriptions are written in a telegraphic style which limits the number of con-
jugations that are used. This telegraphic style rarely uses stop words limiting
the effect of stop word removal.
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Text field Preprocessing
Random Forest RNN (GRU)

CA EA F1 (EA) CA EA F1 (EA)

Short
BoW no weighing / de novo embed 0.26 0.03 0.03 0.48 0.04 0.01
tf-idf / fine-tuned embed 0.26 0.03 0.03 0.44 0.03 0.01

Intermediate
BoW no weighing / de novo embed 0.94 0.84 0.81 0.94 0.78 0.77
tf-idf / fine-tuned embed 0.94 0.84 0.81 0.91 0.76 0.75

Long
BoW no weighing / de novo embed 0.90 0.75 0.70 0.95 0.83 0.81
tf-idf / fine-tuned embed 0.90 0.75 0.70 0.91 0.78 0.77
Ablation analysis (No weighing):
- template removal 0.89 0.73 0.68 0.88 0.79 0.78
- model stopword removal 0.90 0.76 0.71 0.94 0.78 0.77
- manual stopword removal 0.90 0.75 0.70 0.95 0.82 0.80
- whitespace removal 0.90 0.75 0.70 0.95 0.83 0.81
- digit removal 0.87 0.68 0.63 0.93 0.74 0.72
- punctuation removal 0.89 0.71 0.67 0.92 0.72 0.71
- hapaxes removal 0.88 0.70 0.66 0.94 0.80 0.80
- lemmatization 0.90 0.74 0.70 0.94 0.80 0.79
- gramming 0.90 0.75 0.70 0.93 0.77 0.78

Table 2: Preprocessing ablation analysis and the effects of fine-tuned embeddings, BoW weigh-
ing schemes and choice of text field.

6. Practical considerations and applications of modeling results

In the previous section, a rigorous set of experiments was performed to find the
best predictive models. In a follow-up analysis, we discuss a number of practical
issues that arise when these models are used in practice for relabeling historical
data or when model predictions are used to auto-complete the metadata fields.
Most importantly, we show how analysing misclassifications can also help to
optimize the maintenance policy.

6.1. Analysis of individual labels and class imbalances

Table 3 shows the performance results for each label separately. These results
were obtained using the best Random Forest models (BoW-embedding on in-
termediate texts) and GRU-based models (de novo embedding on long texts).
Additionally, this table shows the individual performances (Precision, Recall,
F1-score and Accuracy) and the support (relative frequency) for the four most
frequently occurring classes per label. The F1-scores and accuracies at the
individual class level are close to one, showing that few misclassifications are
present among the most popular classes. The combined support of these classes
approaches or exceeds 80% for each label. As a result, the classification problem
is highly imbalanced. Figure 4 presents a more complete view of the influence
of class imbalances on the performance. From this figure, it is clear that classes
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Code
Random Forest Recurrent NNet (GRU) Support

P R F1 Acc P R F1 Acc % Num

Defect type (total) 0.94 0.95 0.94 0.95 0.95 0.95 0.95 0.95 100 1240
Mechanical failure 0.97 0.99 0.98 0.99 0.99 1.00 0.99 1.00 41 511

Measurement/control error 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.99 20 252
New work order (admi.) 0.90 1.00 0.95 0.98 0.99 0.98 0.98 0.99 15 184

Electrical 0.99 0.99 0.99 1.00 1.00 0.99 0.99 1.00 11 137
Cause (total) 0.91 0.89 0.89 0.89 0.90 0.91 0.91 0.91 100 1240

Defect component 0.80 0.97 0.88 0.93 0.98 0.97 0.98 0.99 25 310
Unknown 0.98 0.95 0.97 0.99 1.00 0.99 0.99 1.00 21 260

Operator error 0.99 0.88 0.93 0.98 0.99 0.98 0.98 1.00 17 209
Measurement/control error 0.94 0.90 0.92 0.92 0.97 0.99 0.98 1.00 14 176

Activity (total) 0.96 0.97 0.97 0.97 0.95 0.96 0.95 0.96 100 1240
Repair component 0.98 1.00 0.99 0.99 1.00 0.99 1.00 1.00 52 646
Replace component 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 22 270

Reset equipment 1.00 0.96 0.98 0.99 0.99 1.00 1.00 1.00 11 138
New work order (admi.) 0.94 0.92 0.91 0.93 0.94 0.97 0.95 0.96 4 52

Table 3: Precision (P), recall (R), F1-score (F1) and accuracy (Acc) for the four most abundant
classes per failure code type for the best two models. Note that New work order (admi.) is a
code that refers to an administrative action, rather than a traditional repair.

with a support that is in the range of 0–4% are predicted with variable accuracy.
This observation holds for each of the three labels. The observation that less
frequently occurring labels are susceptible to misclassification is not surprising
but it clearly shows that one should be careful when relabeling historical data or
using these models to auto-complete new notifications. In general, as previous
results show, the relabeling will be quite accurate, but for some classes this will
not be the case.

6.2. Analysis of mislabeled notifications

The notifications in the test set for which at least one label was predicted incor-
rectly by the GRU-based network (long texts, with de novo embedding) were
examined in detail (17.0% of the test set). The free text was manually com-
pared with the true labels assigned by the technicians and the predictions by
the model. Based on this comparison, three groups of errors were identified:
(1) model errors are disagreements between the predicted label and the label
assigned by the expert where a closer inspection clearly indicates that the model
predictions were wrong; (2) label ambiguities are disagreements where it is rea-
sonable to believe that the label assigned by the technician is not the most
appropriate label or where more than one class can describe that notification;
and (3) text ambiguities are disagreements where also a human expert cannot
re-identify the correct label based on the text; often these are notifications that
lack a proper description of the problem at hand. This last class also includes
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Figure 4: F1-score in function of the support for all classes. The best GRU model is used and
the names of the top two, bottom two and median class are shown on the figure.

texts that reference information from external documents such as emails, or in-
formation that is conveyed through the labels themselves (there is no need to
write ’replace’ in the text if the label ’replace’ was already given). These cases
clearly illustrate that ’errors’ are strongly dependant on the model used and
its limitations. Nevertheless, they can serve as a useful starting point. Table 4
shows the distribution over these three groups. These results show that 43.6%
of 17.0%, which is approximately 7.4%, of the notifications have at least one
label that can be considered ambiguous. These notifications are particularly
relevant to investigate more closely by a maintenance team as these are cases
where a revision of the labels may be relevant. Moreover, in most cases that
were assigned to the group of label ambiguity, multiple classes were considered
relevant for a particular notification. Examining these ambiguous cases can
help to optimize future labeling efforts by updating the set of available labels
or (re)specifying the definition of a number of labels. Secondly, about 5.7% of
the disagreements were cases where the textual description does not allow for a
sensible labeling based on the written text. Here as well, the maintenance team
can verify whether the policy regarding the use of these free text fields needs
an update. Lastly, only 24.6% of the notifications for which at least one dis-
agreement is observed can be attributed to model errors. This means that only
24.6% of 17.0%, which is approximately 4.2%, of the notifications was labeled
incorrectly by the models.
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Number of disagreements Label ambiguities Text ambiguities Model errors Total
3 0.008 0.016 0.008 0.032
2 0.055 0.024 0.032 0.095
1 0.373 0.294 0.206 0.873

Total 0.436 0.334 0.246 1.000

Table 4: Frequency distribution of the notifications with at least one disagreement between
the model predictions and the labels assigned by the maintenance engineers, over three groups
based upon manual re-inspection of the written text.

7. Conclusion

The research presented here, in addition to providing an operational solution to
the needs of a specific pharmaceutical company, also yields several conclusions
that can be generalized to data coming from other CMMSs.

Firstly, the performance of the multidimensional classification models was heav-
ily dependent on a number of interconnected factors: base learner, label depen-
dency and input length. The best models for our case were: (1) three indepen-
dent GRU neural networks using a short de novo Word2Vec embedding using
all available text (class accuracy: 0.95) and (2) a classifier chain Random Forest
using a Bag-of-Words embedding using only the most relevant fraction of the
text (class accuracy: 0.94). This indicates that for settings with shorter, highly
relevant input text, Bag-of-Words models which exploit label dependencies are
likely the optimal solution (assuming sufficient information is present in the
input data). In contrast, settings with longer texts of which different sections
have different levels of relevance, embeddings in combination with neural net-
works will likely outperform the more basic Bag-of-Words models. In both cases,
extensive preprocessing can boost the performance. In contrast to applications
such as machine translation and categorization of natural texts (such as news ar-
ticles), BERT models did not outperform the networks using convolutional and
recurrent layers. We hypothesize that, as these models require extensive pre-
training on external datasets, the technical terminology and telegraphic writing
style of the maintenance reports differ too much from the pretraining material
to allow for a proper transfer of knowledge to this new domain.

Secondly, we showed how the models can be used to investigate individual la-
bels. If specific labels perform significantly worse, this can be an indication
that they are defined suboptimally. For our case study, we have shown there
might be room for improvement in the cause labels. Class imbalance can also be
investigated. Heavily unbalanced classes can cause issues, because low-support
labels are harder to predict. Finally, some applications of the model were il-
lustrated, most notably the error analysis. Because of the high accuracy of the
models, only a small fraction of notifications was mislabeled, making it feasi-
ble to manually analyse these documents. This investigation provides valuable
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insights and can potentially lead to policy improvements. These results are of
course highly specific to the case at hand, but the methodology is transferable
to related analyses of CMMS data.

While this research has focused specifically on the pharmaceutical industry,
there are a plethora of other industries with highly similar CMMS data that
could apply the techniques demonstrated in this paper. However, as indicated by
our results, there are several interconnected factors that influence the predictive
performance (such as input data and label dependence). Therefore, applying
the same techniques on new data will require problem specific adaptations.

This work shows that the free text in a failure notification can be used to predict,
and potentially correct, failure codes. A problem that was not addressed in the
work is how to include SCADA logs into this pipeline. Oftentimes, the sensors
attached to a SCADA system are installed with the aim of improving the daily
operation of a production facility and its assets and less with the goal of allowing
root-cause analysis of a wide range of potential failures in an automated way.
Therefore, the data originating from a SCADA system are often only indirectly
related to the failure codes. Moreover, for large production plants, the amount
of sensor data is huge and sensor readings are affected by a variety of factors
(e.g. product-to-product variability, maintenance activities, ambient conditions)
not related to failure. Linking our free-text based approach with information
derived from a SCADA system is a valuable direction for future work. As a
second opportunity, we believe that the development of more technically capable
language models, or BERT-type models is an interesting direction for future
work. Traditional models are often trained on text corpora that strongly differ
from the text that is common in maintenance reports and therefore probably
underperform.
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