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Abstract 

The unexpected failure of pipes is a problem that is hitting the water networks of many cities 

around the world. Nowadays, many proposals based on the use of machine learning techniques 

are emerging to combat this problem. However, most studies focus their efforts on predicting 

failures in short time periods, usually a year, while longer time period predictions would be 

more valuable to address strategic decisions. 

In this study, the use of multi-label classification techniques is proposed to simultaneously 

predict pipe failures in water supply systems for multiple years. For this purpose, three models 

(discriminant analysis, logistic regression and random forest) and different prediction time 

periods (one, two and three years) have been analysed. As multi-label data require specific 

quality metrics and sampling techniques, part of this work is dedicated to their exploration and 

discussion. 

The models are evaluated on a real-world seven-year database, achieving successful results. An 

insightful analysis of the use of the methodology shows how the percentage of avoided pipe 

failures increases over time. In fact, it is demonstrated that 30.2%, 51.4% and 54.0% of the pipe 

failures of three consecutive years are avoided according to data from a real network. 

Keywords: Water supply networks, Pipe failure predictions, Multi-label classification, Binary 

classification, Machine learning 

1. Introduction 

The access to drinking water was declared a human right in Article 25.1 of the Universal 

Declaration of Human Rights in 1948 (United Nations Development Programme, 2019). 

Nowadays, Europe has more than 4 million kilometres of water supply pipes. According to the 

European Federation of National Water Services (2017), the annual renovation rates vary from 

1 to 10% from one country to another, and within the different companies that operate in the 

same country. 

Unexpected failures in water supply and sewer pipes are a 21st century problem. Although leaks 

and pipe breaks have always existed, over recent decades they have increased considerably, 

partly due to the aging of the infrastructures that began to be installed in a generalised way at 

the beginning of the 20th century. Nevertheless, new analysis and data treatment techniques 

have revealed that aging is not the only factor that causes the breakage of pipes and that other 

factors show important relations with pipe failures as well. 

An efficient renovation plan firstly replaces those pipes that present the greatest risk of failure. 

In this sense, management companies must invest in new techniques to refine the estimation of 

said risk and thereby optimise their replacement plans. It is crucial to take a proactive attitude 

and anticipate pipe failures because this leads to a reduction of repair costs, supply cuts, 

damage to the environment, and so on. 

The main objective of this study is to develop a methodology for water companies to optimize 

the strategic decisions regarding maintenance and replacement tasks in their water distribution 

network. The goal is to provide useful information about future pipe failures, not only for the 

next year but also for longer periods of time. For this purpose, a methodology that allows for 

predicting pipe failures in variable periods of time is presented. 
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The paper is organized in six different sections. In the previous paragraphs the problem has 

been briefly introduced. Section 2 presents a literature review on machine learning systems to 

predict pipe failures in water distribution networks. Furthermore, the contribution of the work 

is pointed out at the end of this section. The methodology proposed, which is the use of multi-

label classification to predict pipe failures in longer periods of time, is explained in Section 3. 

Hereafter, the case study used to evaluate the performance of the methodology is presented in 

Section 4. Section 5 includes results that demonstrate the suitability of the methodology as well 

as a practical use of it. Finally, the conclusions and future lines of research are highlighted in 

Section 6. 

2. Related work 

Over the last two decades, the number of studies that develop and test techniques to predict 

failures in water supply and sewer networks has increased enormously. Wilson et al. (2017) 

present an extensive review of studies that employ physical and statistical models for this 

purpose. To name a few examples, Almheiri et al. (2020) predict the average time to failure 

using three techniques: artificial neural networks (ANNs), ridge regression and decision trees 

(DT). After applying these methods to a real case study, the authors recommend decision trees 

because of their simplicity and computational efficiency.  

Spatial clustering is commonly used to identify regions with high-failure rates (De Oliveira, 

Garrett, & Soibelman, 2011). This technique usually serves as a support to other predictive 

models, providing additional input information. For instance, k-means clustering (CL) is used by 

Giraldo-González & Rodríguez (2020) to create groups of pipes with similar characteristics and 

then estimate the total number of failures of each group using three regression models: linear 

regression, Poisson regression and evolutionary polynomial regression (EPR). In their study, 

Poisson regression shows a superior accuracy compared to the other two models. Chen & 

Guikema (2020) merge spatial clustering and regression models to predict the number of pipe 

breaks in a real water network of the USA. The authors analyse the effect of three CL 

approaches on the models’ accuracy, using different predictive models like generalized linear 

models, decision trees or random forests. 

Table 1 presents an extensive list of scientific works that study the applicability of statistical and 

machine learning models to predict pipe failures in water distribution networks. This table 

contains 40 references published from 2009 to 2022. All of them use real data from water 

distribution networks located in different places around the world. Concretely, Canada is the 

country that has published the most investigations (11) on that topic according to this literature 

review. This table specifies the technique that is used, the output variable that is predicted and 

the country where the water supply network is located in each case. The acronyms of the 

techniques that are not mentioned in the text are: generalized linear models (GLM), genetic 

programming (GP), fuzzy logic (FL), Bayesian belief networks (BBN), Naïve Bayesian (NB) 

classification model, analytical hierarchy process (AHP), Ranking Models (RM) and support 

vector machines (SVM). 
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Table 1. Literature review on the prediction of pipe failures in water supply networks using statistical and machine 
learning models. 

Reference Technique Output variable 
Case study 
country 

Yamijala, Guikema, & Brumbelow (2009) GLM; LR Number of pipe failures USA 

Debón, Carrión, Cabrera, & Solano (2010) SM; GLM Time to failure Spain 

Jafar, Shahrour, & Juran (2010) ANN Number of pipe failures France 

Fares & Zayed, 2009; Fares & Zayed (2010) FL Risk index Canada 

Christodoulou, Deligianni, Aslani, & 
Agathokleous (2009) 

ANN; FL 
Time to failure; Failure 
probability USA and Cyprus 

Christodoulou & Deligianni (2010) ANN; FL 
Time to failure; Failure 
probability USA and Cyprus 

Xu, Chen, Li, & Ma (2011) GP; EPR Number of pipe failures China 

De Oliveira et al. (2011) CL Risk index per area USA 

Kleiner & Rajani (2012) RM; LR; NB; SM Number of pipe failures Canada 

Wang, Dong, Wang, Tang, & Yao (2013) RM Risk index China 

Islam et al. (2013) FL 
Water quality failure 
potential Canada 

Francis, Guikema, & Henneman (2014) BBNs 
Number of pipe failures 
per area USA 

Shirzad, Tabesh, & Farmani (2014) SVM; ANN Failure rate Iran 

Aydogdu & Firat (2015) SVM; CL; FL; ANN Failure rate Turkey 

Pietrucha-Urbanik (2015) 2Descriptive analysis  

Kabir, Tesfamariam, & Sadiq (2015)  SMs Time to failure Canada 

Kabir, Tesfamariam, Francisque, & Sadiq 
(2015) 

BBNs Risk index 
Canada 

Li, Wang, Wu, Sun, & Jing (2015) 2Descriptive analysis  

Sattar, Gharabaghi, & McBean (2016) GP Time to failure Canada 

Al-Zahrani, Abo-Monasar, & Sadiq (2016) FL; AHP Risk index per area Saudi Arabia 

Kutyłowska (2016) SVM; ANN Failure rate Poland 

Amaitik & Buckingham (2017) FL; AHP Pipe condition Libya 

Farmani, Kakoudakis, Behzadian, & Butler 
(2017) 

EPR  Number of pipe failures UK 

Kutyłowska (2018) SVM; ANN  Failure rate Poland 

Winkler, Haltmeier, Kleidorfer, Rauch, & 
Tscheikner-Gratl (2018) 

DT Failure/non-failure Austria 

Sattar, Ertuğrul, Gharabaghi, McBean, & Cao 
(2019) 

ANN Time to failure Canada 

Tang, Parsons, & Jude (2019) BBNs Failure probability UK 

Lin & Yuan (2019) SM Time to failure Canada 

Wols, Vogelaar, Moerman, & Raterman (2019) RF, DT, GLM Failure rate Netherlands 

Tavakoli, Sharifara, & Najafi (2020)1 RF Inspection need USA 

Robles-Velasco, Cortés, Muñuzuri, & Onieva 
(2020) 

LR; SVM Failure probability Spain 

Almheiri et al. (2020) ANN; GLM; DT Time to failure Canada 

Chen & Guikema (2020) CL+GLMs Number of pipe failures USA 

Giraldo-González & Rodríguez (2020) 
GLMs; EPR Number of pipe failures Colombia 

DT; BBN, SVM, ANN Failure probability Colombia 

Snider & McBean (2020a) DT; SMs Time to failure Canada 

Snider & McBean (2020b) DT; SMs and RM Time to failure Canada 

Rifaai (2020) LR Time to failure USA 

Jara-Arriagada & Stoianov (2021) LR Failure probability UK 

Weeraddana, MallawaArachchi, Warnakula, Li, 
& Wang (2021) 

RF and SM Failure probability Australia 

Fan, Wang, & Zhang (2022) 
RM; ANN; LR; 
SVM; kNN 

Failure probability USA 

1This study predicts the need for inspections for sewer networks. 
2These studies do not predict pipe failures; instead, they perform a descriptive analysis. 
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In this problem setting, factors or input variables are usually divided into physical, operational, 

and environmental ones, with physical ones being the most frequently used, specifically the 

diameter and the length of the pipes, followed by their age. In the study developed by Snider & 

McBean (2020a), instead of including the pipe age, the authors use the time since the last 

failure and other variables that measure the time between failures. This is only possible because 

of their access to a huge record of pipe failures of a Canadian water network spanning a time 

period of more than 50 years. Regarding operational factors, the number of previous failures is 

included in almost all the studies encountered. For instance, according to Giraldo-González & 

Rodríguez (2020), a study in which the authors use data from the water supply network of a 

Colombian city, the most important variables are the number of previous failures, the pipe 

length and the precipitation. The latter belongs to the environmental factors, which vary from 

one place to another and depend on the size of the city too. The most common environmental 

factors are the soil type, factors related to the weather and the traffic. A broad summary of the 

variables employed in numerous studies on the prediction of pipe failures can be found in the 

references (Tang et al., 2019) and (Robles-Velasco et al., 2020). Regarding the output variable to 

be predicted, Table 1 includes the ones used in each study, the most popular ones being the 

time to failure, the failure probability and the number of pipe failures per area or some 

aggregation of the pipes.  

Experts in the field have expressed their commitment to improve water network databases, 

mainly aided by advances in GIS (Barton, Hallett, & Jude, 2022). Consequently, pipe failure 

records are expected to grow and become more reliable in the near future. Additionally, 

replacement works generally last in time; therefore, it is required not only to know the most 

imminent breakages but also those that will occur in the not-so-near future. Management 

companies must integrate tactical (short-term) and strategic (long-term) plans to achieve an 

efficient management of funds. All these facts provide relevance to the approach described in 

the present study, since it implies not only using the pipe breaks of the following year, as it has 

been traditionally done in machine learning (ML) applications in the field, but also those of the 

following two or three years. 

The words ‘multi-label classification’ do not appear in any of the reviewed studies. There are 

only three studies that mention the prediction of pipe failures for longer time periods. Firstly, 

Snider & McBean (2020a), after comparing the use of decision trees (DT) and survival models 

(SM), conclude that machine learning approaches are preferred for short-term analysis, while 

SMs have better abilities for long-term horizons. Secondly, Weeraddana et al. (2021) propose 

the integration of random forest (RF) and survival models to predict the pipe failure probability 

using data from a large interval of years. However, these two studies do not estimate the pipe 

failure probability for the different years, which is done in our study. Thirdly, Farmani et al. 

(2017) present a long-term approach to predict the total number of pipe failures in a pre-

established clustering of pipes created with EPR. In the long-term analysis, they only include 

pipe-intrinsic factors, while the mid-term approach includes environmental ones, and transform 

the data on a yearly basis. As a difference with our proposal, they estimate the number of pipe 

failures for an aggregation of pipes, while we estimate failure probabilities of individual pipes. 

In our study, multi-label classification (MLC) has been chosen since it allows for predicting 

individual pipe failure probabilities for different years, i.e. it allows for obtaining various output 

variables based on a unique historical dataset. The previously mentioned studies predict a single 

output variable. The main differences between these previous studies and the one carried out 

here, including new contributions to the field can be summarised as follows: 
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• MLC is used to predict pipe failures in longer periods of time, which means that more 

than one output variable is simultaneously forecasted. Three ML techniques are 

employed in this study: discriminant analysis, logistic regression, and random forest. 

The resulting models are combined using Classifier Chains. 

• The data processing is totally different. On the one hand, data is not transformed on a 

yearly basis; instead, each sample is used only once. Moreover, ‘time since the last 

failure’ is now included as input variable, motivated by its proven contribution to a good 

performance in a recent study developed by Snider & McBean (2020b). On the other 

hand, categorical variables are encoded using dummy variables instead of a label 

encoding. This is definitely more appropriate since label encoding can cause model 

misunderstandings. Finally, missing values of categorical variables are filled using the 

most popular value in a geographical area. 

• Finally, two sampling methods, the well-known under-sampling and a specifically 

designed hybrid-sampling, are used and compared. 

3. Methodology 

This section is organised in three subsections. Firstly, multi-label classification is presented in 

Subsection 3.1. Then, a description of the problem is provided in Subsection 3.2. As MLC needs 

to be implemented using some predictive model, discriminant analysis, logistic regression and 

random forest are chosen for this purpose. They are theoretically presented in Subsection 3.3. 

Then, the quality metrics used to evaluate the performance of the different approaches are 

introduced in Subsection 3.4. Finally, in Subsection 3.5, the adaptation of two sampling 

strategies to data with more than one output variable is presented. 

3.1. Multi-label classification 

Most classification problems are, or can be transformed into, binary classification problems. 

Therefore, scientists have dedicated huge efforts to develop specific techniques to deal with 

such problems. As the name suggests, the output variable y in these problems is binary, i.e., it is 

either y=0 or y=1. While binary classification problems have a single output variable, multi-

target prediction problems consider various output variables at the same time. Sometimes, 

these variables are related to each other, however, we do not know these relations a priori, so 

they must be discovered from data (Waegeman, Dembczyński, & Hüllermeier, 2019). The most 

popular multi-target prediction subfields are multivariate regression, multi-label classification 

and multi-task learning. Multivariate regression and multi-label classification models predict 

various real or binary output variables, respectively, whereas multi-task learning embraces 

these two approaches. Another approach to handle multi-label datasets is label ranking, which 

is considered as an extension of classification problems. Instead of predicting one or several 

possible class labels for each sample, label ranking tries to find a total order of all class labels 

(Zhou & Qiu, 2018).  

MLC problems have traditionally been tackled using the following two approaches: data 

transformation and algorithm adaptation. Data transformation methods implement 

independent models to predict each label, while algorithm adaptation methods transform 

classification systems to handle multi-label problems (Charte, Rivera, del Jesus, & Herrera, 

2015). 

The well-known Binary Relevance (BR) method is a data transformation strategy that consists of 

transforming a multi-label problem into one binary problem for each label, assuming label 
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independence (Godbole & Sarawagi, 2004). As a disadvantage, valuable information can be lost 

using this technique because not all combinations of output values are equally likely to occur. It 

is inevitable to consider the possible relationship between pipe failures in one year and the next 

ones. Firstly, a pipe failure does not always imply the replacement of the pipe and poor repairs 

are sometimes the cause of future failures. Secondly, failures can be due to some intrinsic or 

environmental characteristic of the pipe, which certainly influences the occurrence of new 

failures. 

Over time, many methods have attempted to overcome the limitations of the BR method. For 

instance, random k-labelsets (RAKEL) uses the concept of label set (label combination) to 

construct an ensemble of single-label classifiers (Tsoumakas, G., Vlahavas, 2007). Concretely, 

this method uses different label powerset models trained on random partitions of the label 

space. As an advantage, it considers label correlations, but many hyperparameters such as the 

size of the label set, which is variable, or the number of iterations, must be established in 

advance. Another algorithm named LIFT exploits the idea of using different features or input 

variables for the discrimination of different labels (Zhang, 2014). However, we consider that this 

reflection does not make sense with the characteristics of our problem. ML-kNN is a multi-label 

version of kNN (K-nearest neighbour) that uses statistical information of the instances in the 

neighbouring to determine the label set for the unseen instances (Zhang & Zhou, 2007). In a 

recent study developed by Bogatinovski et al. (2022), the authors rigorously analyse a wide 

range of MLC methods by using 42 multi-label datasets and 18 predictive performance 

measures. Many examples of MLC problems can be found in this reference. 

3.2. Problem description 

In this study, an approach is proposed to simultaneously predict pipe failures in water supply 

networks for several years. To this purpose, the problem is faced as a multi-label classification 

problem where the output variables or labels (𝑦𝑖  ∈ {0,1}) represent whether or not the pipes 

fail in the corresponding years. Instead of the aforementioned methods, we opt for the 

Classifier Chain (CC) model as an alternative to the BR method that seeks to exploit the 

dependencies between labels (Read, Pfahringer, Holmes, & Frank, 2011). CC uses a high-order 

strategy, which considers the possible relationship between all the labels. CC constructs a chain 

of binary classifiers, in which each classifier is responsible for learning and predicting a binary 

label based on the explanatory variables. Besides that, the classification process propagates 

along the chain: each binary classifier takes into account the predictions of all the previous 

ones. The performance of CCs highly depends on the order of the labels in the chain (Liu & 

Tsoumakas, 2020). Some applications have an evident hierarchical order relationship between 

the labels. For those cases where the interrelations are unknown, the advisable option is to 

apply the methodology by randomly changing the order of the labels, and then choosing the 

sequence that provides the best results. In our case study, the existing labels require a 

chronological ordering since they relate to consecutive years. As argued by Read et al. (2021), 

this method has proved to be flexible and effective and has obtained state-of-the-art empirical 

performance across many datasets and multi-label evaluation metrics. 

Given a dataset 𝒟 = {(𝑥1, 𝑦1), … , (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑛, 𝑦𝑛)} with 𝑛 samples, where each sample has 

𝑞 labels, i.e. 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑗 , … , 𝑦𝑖𝑞), the task of multi-label classification models is to learn a 

function ℎ(·) from a multi-label training set. For any unseen sample 𝑥𝑖, the multi-label classifier 

ℎ(𝑥𝑖) returns the set of proper labels 𝑦𝑖𝑗, where each label is a binary variable that is 1 if the 

pipe fails in the associated year, and 0 otherwise. It is an extension of the binary approach for 
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several years. Each binary model of the chain has one more input variable, which corresponds 

to the output variable of the previous model.  

Figure 1 shows a scheme of the methodology adapted to predict pipe failures for three 

consecutive years, concretely, 2016, 2017 and 2018, where 𝑥 represents the input variables 

updated to 2016 (the first year to predict for), and each binary classifier estimates one output 

variable 𝑦. Furthermore, the output variables become input variables of the subsequent binary 

classifiers in the chain. 

 

Figure 1. Classifier chain for predicting pipe failures in three consecutive years. 

As a vulnerability of CCs, if one classifier misclassifies a sample, this incorrect prediction is 

passed on to the next classifier in the chain. Consequently, an error of a single label may result 

in additional errors made by subsequent classifiers. 

3.3. Models: discriminant analysis, logistic regression, and random forest 

Three models have been identified as suitable for the intended purpose: discriminant analysis, 

logistic regression, and random forest. These models are presented below as binary classifiers 

and as previously mentioned, the transformation from binary to multi-label is done by using 

CCs. 

Discriminant analysis 

Discriminant Analysis (DA) is a classical statistical model used to classify samples into groups 

based on the values of a set of input variables (Fisher, 1936). The goal is to find the linear 

relationships between the independent variables that best discriminate the samples into the 

predefined groups. Then, a decision rule is constructed to assign a group to new samples that 

have not been classified. 

If there are two groups, i.e., for binary classification problems, a multiple linear regression 

model is used to find the linear discriminant function d (Eq. (1)), where the vector 𝑥𝑖 contains 

the 𝑘 independent variables that help to find the dependent one 𝑦𝑖: 

𝑑(𝑥𝑖) = 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + ⋯ + 𝑤𝑘𝑥𝑖𝑘 (1) 

The weight vector 𝑤 must be estimated using a training dataset 𝒟. Let �̅�𝐹 be the mean vector 
of the input variables for class 1, or pipe failures, and �̅�𝑆 be the mean vector of input variables 
for class 0, or survival pipes, both for a training dataset, and ∑−1 be the inverse of the covariance 
matrix, the objective function seeks to estimate the weights that minimise the within-groups 
distances and maximise the between-groups distances simultaneously (Eq.(2)).  
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𝑤 = ∑−1(�̅�𝐹 − �̅�𝑆) (2) 

As an advantage, this model gives information about the variables with the greatest explanatory 

power for the formation of the groups. Moreover, there are no hyperparameters to be fixed, so 

the design of the model is direct and independent. 

Logistic regression 

Logistic regression (LR) is a model that predicts a binary output variable that is commonly 

interpreted as the occurrence or not of an event of interest, for instance, the appearance of a 

failure (Cox & Snell, 1989). The probability of occurrence of the success of interest is a function 

of 𝑥𝑖, the vector of explanatory variables (Eq. (3)): 

𝑝(𝑥𝑖) =
1

1 + 𝑒−𝑤𝑥𝑖
⊤  (3) 

Let 𝒟 be a dataset with 𝑛 samples, training a LR model consists in calculating the weight vector 

𝑤 that best fits the given dataset. As there is a weight associated with each variable, 𝑘 weights 

must be estimated. A well-known technique to estimate these weights is by maximising the log-

likelihood function (Eq. (4)). This function seeks the model assigning the highest probabilities to 

samples whose output variable 𝑦𝑖  is equal to 1 and the lowest probabilities to samples whose 

output variable 𝑦𝑖  is equal to 0: 

ℒ(𝑤) = ∑ 𝑦𝑖𝑤𝑥𝑖
⊤ − ln(1 + 𝑒𝑤𝑥𝑖

⊤
)

𝑛

𝑖=1

 
(4) 

The class of new samples is obtained by substituting their explanatory variables in the function 

𝑝(𝑥𝑖) once the weights have been estimated. The probability together with a pre-established 

risk threshold 𝜃 determine the sample class (Eq. (5)). Although the risk threshold value is usually 

set to 0.5, it can be modified based on the problem requirements. 

𝑦𝑖 = {
0 , if 𝑝(𝑥𝑖) ≤ 𝜃

1 , if 𝑝(𝑥𝑖) > 𝜃
 (5) 

Random forest 

Random forest (RF), proposed by Breiman (2001), is a combination of decision trees where each 

tree depends on the values of a random vector sampled independently and with the same 

distribution. Individual decision trees typically exhibit a high variance and tend to overfit. In the 

construction of RFs, sources of randomness are employed to decrease this variance, i.e., the 

best tree configuration is found either from all input variables or a random subset of a 

predefined size. Furthermore, in the construction of each tree, an optimisation problem is 

solved to find the best division for each of its splits.  

Some of the hyperparameters that need to be predefined to create an RF model are the 

number of trees contained in the forest and the number of variables to consider when looking 

for the best split. Both hyperparameters have a great impact on the accuracy of the model 

(Peters et al., 2007). Consequently, it is important to choose them carefully. Another 

hyperparameter of RFs is the function used to measure the quality of a split. The Gini index and 
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the entropy are both impurity measures, understanding purity as how homogenised a group is. 

The Gini index measures how often a randomly chosen element from a dataset would be 

incorrectly labelled, so a Gini index of 0.5 is the most impure score possible. The entropy is a 

measure of disorder or uncertainty similar to the Gini index. In this study, we calibrate the 

model by testing multiple combinations of the aforementioned hyperparameters. 

Once the forest has been constructed, two main approaches are used to combine the 

predictions of the trees (Flach, 2012): (i) the voting method, which consists in assigning to each 

sample the class label predicted by the highest number of trees; and (ii) the averaging method, 

which uses the average of the class scores obtained for all the decision trees. Scikit-learn, the 

machine learning library used in this study combines the classifiers by averaging their prediction 

scores (Pedregosa et al., 2011). 

3.4. Quality metrics 

The most common quality metrics to evaluate binary classification models are computed from 

the confusion matrix. This matrix contains the number of True Positive (TP), False Positive (FP), 

True Negative (TN) and False Negative (FN) samples as a result of comparing the true and the 

predicted labels for all the test samples. The term positive is associated with class 1 and the 

term negative with class 0. For multi-label classification models, a confusion matrix is generated 

for each output variable 𝑗. In the following equations, the vector of real output variables for all 

the samples in the dataset is denoted by 𝑦𝑗  and the vector of predictions by �̂�𝑗. 

The accuracy (Eq. (6)) is the fraction of correct predictions, both positive and negative samples. 

Acc (𝑦𝑗 , �̂�
𝑗
) =

TP𝑗 + TN𝑗

TP𝑗 + TN𝑗 + FP𝑗 + FN𝑗

 (6) 

The recall (Eq. (7)), also denoted TPrate, is the fraction of positive samples predicted correctly. 

Rec (𝑦𝑗 , �̂�
𝑗
) =

TP𝑗

TP𝑗 + FN𝑗

 (7) 

The specificity (Eq. (8)), also denoted TNrate, is the fraction of negative samples predicted 

correctly. 

Spec (𝑦𝑗 , �̂�
𝑗
) =

TN𝑗

TN𝑗 + FP𝑗

 (8) 

Additionally, the average of the two previous metrics (Eq. (9)) estimates the global ability to 

predict both failures (TPrate) and non-failures (TNrate), being a more representative metric than 

the accuracy for unbalanced datasets. 

TP𝑟𝑎𝑡𝑒 + TN𝑟𝑎𝑡𝑒

2
=

Rec (𝑦𝑗 , �̂�
𝑗
) + Spec (𝑦𝑗 , �̂�

𝑗
)

2
 

(9) 

The aforementioned quality metrics can be adapted for the case of MLC models. Firstly, 

TP𝑗, FP𝑗, TN𝑗 and FN𝑗 are calculated for each label 𝑗 independently. Secondly, two modes are 

used to obtain global performance metrics: macro-averaging and micro-averaging (Zhang & 
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Zhou, 2014). Let B(TP𝑗, FP𝑗, TN𝑗, FN𝑗) be one of the previously described metrics (accuracy, 

recall or specificity), then the macro-metrics (Eq. (10)) compute the average of the metric 

calculated for each label, while the micro-metrics calculate the metric after the aggregation of 

the predictions for all labels, as given by Eq. (11).  

Bmacro(ℎ) =
1

𝑞
∑ B(TP𝑗, FP𝑗, TN𝑗, FN𝑗)

𝑞

𝑗=1

 
(10) 

Bmicro(ℎ) = 𝐵 (∑ TP𝑗

𝑞

𝑗=1
, ∑ FP𝑗

𝑞

𝑗=1
, ∑ TN𝑗

𝑞

𝑗=1
, ∑ FN𝑗

𝑞

𝑗=1
) (11) 

Macro-metrics attribute the same importance to all labels, while by using micro-metrics the 

labels with the greatest fraction of positive samples have a higher contribution. As in our case 

study all labels have the same representation of positive cases because the number of annual 

pipe failures is approximately stable, both metrics provide interpretable and useful information. 

3.5. Sampling strategy 

As in many other real-world classification problems, data from water supply companies are 

typically unbalanced. In fact, the imbalance ratio tends to be considerably high, as the 

percentage of pipes that have suffered a failure does not exceed 10% in any of the reviewed 

scientific studies, even not 5% in the majority of them. 

There are two main options to address the imbalance problem when binary classification 

models are used. On the one hand, model training can be modified by assigning weights to the 

samples of the majority or minority class in order to enhance the predictions for the minority 

class. However, this option requires a profound knowledge of the models, and is usually advised 

when the imbalance ratio is not so pronounced. On the other hand, there are sampling 

techniques that consist in modifying the training dataset so that the models learn how to 

classify samples from all classes with equal importance. Under-sampling removes samples from 

the majority class and over-sampling creates artificial samples from the minority class. An 

advantage of these strategies is that they are applied at the data pre-processing stage, so they 

are independent of the classification model. 

It is more complex to implement sampling strategies for multi-label classification problems due 

to the multi-dimensional output space. In this regard, Charte et al. (2015) propose two options: 

(i) the use of each label combination (or label set) as class identifier; and (ii) the implementation 

of an individual evaluation of each label imbalance level. In our case study, the number of label 

sets varies from two to eight according to the expression 2𝑞, where 𝑞 represents the number of 

output variables or years to predict for. Therefore, the label sequences are 0 and 1 in the one-

year scenario; 00, 01, 10 and 11 in the two-year scenario; and 000, 100, 101, 111, 110, 010, 

011, 001 in the three-year scenario. In all cases, the label sequence that represents the vast 

majority of data is 0, 00 or 000, consequently, we have designed the two strategies based on 

this fact. 

Algorithm 1 outlines the data splitting process, where the original dataset (𝒟) is firstly divided 

into pipes that have failed (𝒟𝐹) and pipes that have never failed or have survived (𝒟𝑆). 

Secondly, 𝑘-fold cross-validation is employed to obtain results independent of the data split. 

Thirdly, the training sets (𝒢𝑙) and the test sets (𝒯𝑙) are standardised using the mean and the 
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variance of the training set. Finally, under-sampling is applied to each training set and, if 

selected, the hybrid-sampling strategy. 

Algorithm 1. Data splitting process 

Dataset 𝒟 = {(𝑥1, 𝑦1), … , (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑛, 𝑦𝑛); 𝑦𝑖 = (𝑦𝑖1, … 𝑦𝑖𝑗 , … , 𝑦𝑖𝑞) with 𝑦𝑖𝑗 ∈ {0,1}}, 

Parameter 𝑘, sampling ∈ {under-sampling, hybrid-sampling}  

1. 𝒟𝐹: = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒟 | ∃𝑗: 𝑦𝑖𝑗 = 1}  

2. 𝒟𝑆: = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒟 | ∀𝑗: 𝑦𝑖𝑗 = 0}  

3. Randomly divide 𝒟𝐹 into 𝑘 subsets of equal size 𝒟𝐹,1, … , 𝒟𝐹,𝑘 

4. Randomly divide 𝒟𝑆 into 𝑘 subsets of equal size 𝒟𝑆,1, … , 𝒟𝑆,𝑘 

5. for 𝑙 = 1, … , 𝑘 do 

6.       Construct the training set 𝒢𝑙: = ⋃  (𝒟𝐹,𝑖𝑖≠𝑙 ∪ 𝒟𝑆,𝑖)  

7.       Construct the test set 𝒯𝑙 : = 𝒟𝐹,𝑙 ∪ 𝒟𝑆,𝑙 

8.       Construct the standardised training set 𝒢𝑙
𝑠 

9.       Construct the standardised test set 𝒯𝑙
𝑠 using the mean and the variance of 𝒢𝑙 

10.       Construct the under-sampled training set 𝒢𝑙
𝑢 by resampling 𝒢𝑙

𝑠 using Algorithm 2 

11.       If sampling is hybrid-sampling do 

12.             Construct the hybrid-sampled training bag 𝒢𝑙
∗ by resampling 𝒢𝑙

𝑢 using Algorithm 3 

13. Return 𝑘 balanced, standardised training sets 𝒢𝑙
𝑢 or bags 𝒢𝑙

∗, and 𝑘 standardised test sets 𝒯𝑙
𝑠  

The under-sampling strategy for multi-label classification problems, which is presented in 

Algorithm 2, consists in randomly deleting samples 𝑝 from the survival dataset (𝒢𝑆), until the 

final dataset (𝒢𝑢) is balanced, containing the same number of samples without failures and with 

at least one failure. To this purpose, the parameter 𝑠𝑖𝑧𝑒 represents the total number of pipes 

that fail in some year. 

Algorithm 2. Under-sampling function 

Dataset 𝒢 

1. Construct 𝒢𝑢: = 𝒢 as a copy of 𝒢 

2. 𝒢𝑆: = {(𝑥𝑖, 𝑦𝑖) ∈  𝒢| ∀𝑗: 𝑦𝑖𝑗 = 0} 

3. 𝑠𝑖𝑧𝑒: = |𝒢 ∖ 𝒢𝑆|  

4. While |𝒢𝑢| > (2 · 𝑠𝑖𝑧𝑒) do 

5.       Randomly select (𝑥𝑝, 𝑦𝑝) ∈ 𝒢𝑆 

6.       Update 𝒢𝑢: = 𝒢𝑢 ∖ {(𝑥𝑝, 𝑦𝑝)} 

7. Return the under-sampled dataset 𝒢𝑢 

The implemented hybrid-sampling strategy based on a previous work developed by Haixiang et 

al. (2017) consists in firstly applying under-sampling as explained in the last paragraph, and then 

implementing over-sampling, which is described in Algorithm 3, in the corresponding step of the 

CC by randomly duplicating instances 𝑞 whose label 𝑗 is equal to 1, while all other labels are 

equal to 0. For this purpose, the parameter 𝑠𝑖𝑧𝑒 represents the number of pipes that do not fail 

in each year 𝑗 and samples of pipes that fail are replicated. As a result, the new bag 𝒢∗ contains 

duplicate samples of the pipes that fail in some of the years. 

Algorithm 3. Hybrid-sampling function 

Dataset 𝒢 

1. Construct 𝒢∗: = 𝒢 as a copy of 𝒢 
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2. for 𝑗 = 1, … , 𝑞 do 

3.       𝒢𝐹,𝑗: = {(𝑥𝑖, 𝑦𝑖) ∈  𝒢∗| 𝑦𝑖𝑗 = 1} 

4.       𝑠𝑖𝑧𝑒: = |𝒢∗ ∖ 𝒢𝐹,𝑗| 

5.       While |𝒢∗| < (2 · 𝑠𝑖𝑧𝑒) do 

6.             Randomly select (𝑥𝑞 , 𝑦𝑞) ∈ 𝒢𝐹,𝑗 

7.             Update 𝒢∗: = 𝒢∗ ∪ {(𝑥𝑞 , 𝑦𝑞)} containing duplicate samples (𝑥𝑞 , 𝑦𝑞) 

8. Return the hybrid-sampled bag 𝒢∗ 

 

3.6. Time complexity of the algorithms 

Time complexity is directly related to the number of operations that an algorithm performs and 

to the size of the problem. The input of Algorithms 2 and 3 is a multi-label dataset. Although the 

size of this dataset depends on the number of instances, features and labels, it is understood 

that the number of labels (years to predict for) is bounded. Consequently, it does not influence 

the time complexity. Furthermore, the number of features, which is usually negligible compared 

to the number of instances for water distribution network datasets, does not affect the time 

complexity of the algorithms, as they split the data according to labels or output variables, but 

do not take into account the feature size. 

Considering that basic operations take constant times to be executed, the time complexity of 

Algorithms 2 and 3 is polynomial in terms of 𝑛, the number of instances that compose the 

dataset. Likewise, Algorithm 1 has O(𝑛) order. When an algorithm has a conditional statement, 

as is the case of Algorithm 1, Big O takes the maximum possible time complexity. Therefore, it is 

understood that hybrid-sampling (Algorithm 3) is implemented. Moreover, in the case of 

Algorithm 1, the number of operations depends on the folds involved in the cross-validation 

process; however, the number of folds is also bounded, never taking values higher than 10. In 

conclusion, the overall time complexity of Algorithm 1 has O(𝑛) order. 

4. Case study: the water supply network of Seville 

Real data from the water supply network of Seville, a city located in the South of Spain, are used 

to illustrate and evaluate the methodology. These data have been updated with regard to those 

previously used by some of the present authors in (Robles-Velasco et al., 2020). Additional 

variables such as soil type, district, and time since the last failure are now included. 

Furthermore, the data processing is completely different, mainly because here the data are not 

transformed on a yearly basis, instead each pipe section is used only once. 

This water supply network has around 3,800 km of pipes and the failure record is composed of 

seven consecutive years, from 2012 to 2018. The proposed methodology seeks to forecast pipe 

failures in different time periods. Concretely, three scenarios are analysed: (i) one-year 

predictions, i.e., the prediction of the failures occurring in 2018 considering all the previous 

ones; (ii) two-year predictions, i.e., the simultaneous prediction of the pipe failures occurring in 

2017 and 2018; and (iii) three-year predictions, which consists in predicting the pipe failures of 

2016, 2017 and 2018 based on records prior to 2016. A matrix view of the predictions for the 

three-year scenario is shown in Figure 2, where each id refers to a pipe section of the network. 



14 
 

  
Figure 2. Matrix view of the output variables to be predicted in the three-year scenario. 

The data processing is directly related to the prediction time period. To clean the data, the 

pipes installed from the first year to predict for are removed from the dataset, as well as those 

pipes whose length is too small (less than 0.5m). 

Tables 2 and 3 include descriptive information of the explanatory variables updated to 2016, 

i.e., without including the pipe sections that have been installed after this year. The variables 

NOPF and AGE are considered relevant for most research in the area. Despite not having 

received all the attention it deserves in the reviewed literature, the variable TIME has 

demonstrated to be useful and to improve the ability to predict pipe failures (Snider & McBean, 

2020a; Wang et al., 2013; Yamijala et al., 2009). This is a numerical and integer variable that 

contains the number of years since the last failure until the year to predict for. The variable 

TIME for non-failed pipes was initially encoded as zero, being a zero-inflated variable. After 

changing the encoding method and assigning a higher value to those pipes that never failed, the 

results substantially improved. This fact underlines the great influence of data processing on the 

performance of ML models. 

Table 2. Numerical variables. 

Variable Type Units Mean Std Min Max 

DIA Pipe diameter Discrete mm 152.90 143.67 20.00 1700.00 

AGE Pipe age Integer year 24.01 16.74 1.00 116.00 

LEN Pipe length Continuous m 43.69 80.10 0.50 4295.35 

CON Connections Integer No. 2.15 4.78 0.00 71.00 

MPRE Mean water pressure Continuous m.c.a. 29.42 8.14 0.72 120.40 

FPRE Pressure fluctuation Continuous m.c.a. 2.88 2.18 0.00 27.24 

NOPF Number of previous failures Integer No. 0.03 0.22 0.00 10.00 

TIME Time since the last failure Integer year 0.30 1.54 0 13.00 

Table 3. Categorical variables. 

Variable Categories No. 

MAT Material DI, CI, AC, PE, CON and AC 5 

NTYPE Network type Secondary and transport 2 

STYPE Soil type Pavement, roadway, land and N.A. 4 

MUN Municipality Alcalá, Camas, Sevilla, etc. 20 

DIS District SE_north, SE_south, SE_centre, etc. 53 

The values of categorical variables do not show any order relationship; thus, One Hot encoding, 

which consists in creating a new binary variable associated with each of the categorical 

variables, is the best option to encode them. This is a famous technique that has already been 

used by other authors in this topic where categorical variables are so common (Almheiri et al., 

2020). The studied network has five materials: ductile iron (DI), cast iron (CI), polyethylene (PE), 

concrete (CON) and asbestos cement (AC). The variables MUN and DIS have a hierarchical 
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relationship since one municipality can contain various districts. In this study, only DIS is 

included as input variable. Based on these considerations, the number of binary explanatory 

variables associated with the original categorical ones is 64. Finally, we have implemented a 

new strategy to fill the missing values of categorical variables, which is the use of the most 

popular category in the district. 

Table 4 shows the highest correlations (ρx1x2
) between numerical variables ordered according to 

their modulus. The correlations between the output variables for the three-year scenario (y2016, 

y2017 and y2018) and the other variables have also been calculated; however, as they are similar 

(both in values and signs), only the ones with y2016 are included in Table 4. 

Table 4. The highest correlations (in modulus) between numerical variables. 

x1 x2 𝛒𝐱𝟏𝐱𝟐
 

NOPF TIME -0.752 

LEN CON 0.365 

TIME AGE -0.208 

NOPF y2016 0.156 

TIME y2016 -0.147 

DIA LEN 0.145 

DIA CONN -0.131 

AGE NOPF 0.129 

The most relevant dependence is observed between NOPF and TIME (-0.752), which informs 

about an inverse relationship, i.e., greater numbers of previous failures suppose lower times 

since the last failure. The second highest correlation exists between the length and the 

connections of a pipe (0.365), followed by TIME and AGE (-0.208). The latter informs that older 

pipes are recently breaking, so the time since the last failure is smaller. The output variables 

have significant correlations with both NOPF and TIME, which could be related to the fact that 

poor repairs cause new failures. DIA and LEN also show a slight correlation (0.145) and pipes 

with smaller diameters have more connections since the correlation is negative (-0.131). Finally, 

a positive correlation (0.129) is observed between AGE and NOPF, therefore, the older the pipe, 

the more previous failures it has. 

Figure 3 depicts the annual failure rate per kilometre and different ranges and categories of 

some variables. In accordance with Figure 3, the pipes with smaller diameters tend to fail more; 

however, in 2018 a slight failure rate increase of pipes with a diameter larger than 500mm is 

observed. As expected, older pipes have significantly higher failure rates. In the case of pipe 

connections, there are no meaningful differences, from 0.12 to 0.22 failures per kilometre and 

year. The CI pipes show the highest failure rate (from 0.5 to 0.65 failures/km·year) compared to 

all the other sets analysed. Consequently, the company should pay attention to these pipes and 

take some measures to reduce this failure rate. Finally, the failure rate of under-pavement pipes 

has considerably risen in 2018, whereas the failure rate of under-roadway pipes has decreased. 
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Figure 3. Annual failure rate per range of numerical variables and categories of categorical ones. 

Before implementing the ML models, the variables DIA and LEN are logarithmically transformed 

as this transformation proved to have a positive effect in the previous study (Robles-Velasco et 

al., 2020). Additionally, all non-binary variables are standardised using the mean and the 

standard deviation of the training set because it contains 80% of the data (5-fold cross-

validation), being more representative than these metrics obtained from the test set, which 

only contains 20% of the data. 

In multi-label datasets, the number of classes that samples belong to on average varies from 

one problem to another. While for some problems almost all samples belong to various classes, 

for example in the classification of images or texts, in other problems, only a few samples 

belong to one or more classes (Kubat, 2017). Our problem is of the second type. In fact, the 

average of the number of positive labels in the dataset for the three-year scenario is only 

0.02019, i.e., only the 2% of the pipe sections fail in some of the three years. This value is 

translated to 0.00673 if we divide it by three to be independent of the number of classes. 

Consequently, the imbalance problem is severe, and it is no different for the one- and two-year 

scenarios. 

The same conclusion is reached if we analyse the imbalance ratio (IR) of each label, which is 

usually calculated for binary classification problems: IRy2016 = 1:151, IRy2017 =1:155, IRy2018 =1:140. 

To remedy the imbalance problem, a sampling technique is applied to the training set, trying to 

enhance the predictions for the minority class, i.e., the pipe failures. 
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5. Results and discussion 

In this section, the results of a battery of simulations resulting from the combination of all 

possible options are discussed and compared: (i) prediction time periods; (ii) models (and the 

tuning of their hyperparameters); and (iii) sampling strategy. The results are presented 

separately for the different time periods and the global performances of the different 

combinations are represented graphically. The hyperparameters of the different models are 

presented in Table 5. The remaining hyperparameters of RF, and of the rest of the models, are 

set at default values. For instance, nodes are expanded until all leaves are pure. 

Table 5. Tested models’ hyperparameters and their values. 

Model Hyperparameters Values 

DA None --- 

LR Regularisation strength 0.1, 1 and 100 

 
RF 

Number of trees in the forest 10, 50 and 100 

Function to measure the quality of a split Gini and Entropy 

Number of variables considered when searching for the best split 8, 16, 32 and 64 

Figure 4 gives a schematic overview of all the combinations that have been implemented. 

 
Figure 4. Scheme of the implemented combinations according to: (i) prediction time period; (ii) model (including the 

tuning of hyperparameters); and (iii) sampling strategy. 

5.1.  Analysis of the metrics derived from the confusion matrix 

In this subsection, only the results for the best hyperparameter configuration of every model for 

each combination ‘period-model-sampling strategy’ are discussed. These best results are 

determined according to the highest average of TPrate and TNrate on the test set. Furthermore, all 

presented results are the average over a 5-fold cross-validation. 

The best results for the LR model are attained with regularisation strength equal to 0.1, whereas 

the best results for the RF model are attained for the largest tested number of trees (100), using 

entropy as function to measure the quality of a split, and 32 variables when searching for the 

best split. 

One-year predictions 

In this case, any multi-label classification model reduces to a binary model, having a single 

output variable. Table 6 presents the results on the training and test sets for the three models. 

In the case of a single output, the hybrid-sampling strategy is nothing else but the under-

sampling strategy. For this reason, traditional over-sampling (Algorithm 1 without line 10) is 

tested instead of hybrid-sampling.  
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As runtimes are included, it needs to be mentioned that the Python code has been 

implemented on an Intel Core i7 with 8.0 GB RAM and Windows 10 as operating system. 

Table 6. Quality metrics on the training and test sets for the three models (DA, LR and RF) predicting pipe failures in a 

one-year period. 

  Training Test Runtime 
(s) Model Sampling Acc Rec Spec Acc Rec Spec 

DA 
Under 0.826 0.856 0.797 0.731 0.807 0.731 1 

Over 0.820 0.858 0.781 0.735 0.800 0.735 11 

LR 
Under 0.822 0.844 0.799 0.765 0.831 0.764 1 

Over 0.826 0.851 0.801 0.761 0.776 0.760 38 

RF 
Under 1.000 1.000 1.000 0.756 0.808 0.756 3 

Over 0.998 1.000 0.996 0.977 0.080 0.983 5 

According to Table 6, the three models achieve a recall of around 0.80 on the test set with 

accuracies around 0.75. Moreover, as the test set is real and consequently unbalanced, the 

specificity and the accuracy are almost identical. The DA and LR models have similar 

performances on the training set; however, the results of the LR model exceed those of the 

other models on the test set, which is the most representative. RF adapts almost perfectly to 

the training data; nevertheless, it does not obtain better predictions on the test set than the 

other models. Finally, the use of the traditional over-sampling with the RF model should be 

avoided. As can be seen, the RF model predicts less than 8% of the pipe failures that occur in 

the year considered.  

Two-year predictions 

As introduced in Section 3.3, MLC problems have specific quality metrics. Table 7 presents the 

macro- and micro-metrics obtained for the different models on the test set. 

Table 7. Macro- and micro-metrics on the test set for the three models (DA, LR and RF) predicting pipe failures in a 
two-year period and using multi-label classification models and classifier chains. 

  Macro-metrics Micro-metrics 

Model Sampling Acc Rec Spec Acc Rec Spec 

DA 
Under 0.893 0.383 0.896 0.893 0.392 0.896 

Hybrid 0.785 0.502 0.787 0.785 0.511 0.787 

LR 
Under 0.901 0.371 0.904 0.901 0.379 0.904 

Hybrid 0.804 0.517 0.806 0.804 0.528 0.806 

RF 
Under 0.903 0.376 0.907 0.903 0.385 0.907 

Hybrid 0.878 0.418 0.881 0.878 0.426 0.881 

Although the use of the hybrid-sampling strategy clearly improves the macro- and micro-recalls 

of the models, they are still low compared to the values obtained in the one-year prediction 

scenario. Nevertheless, in this case, the multi-label classification model gives precise 

information about the exact year a pipe will fail. Therefore, the comparison of these macro- and 

micro-metrics and the metrics derived from the binary classification approach (one-year 

predictions) would be unfair. For a fair comparison, a new output variable is calculated, i.e., 𝑦 =

max(𝑦2017, 𝑦2018), being 1 if a pipe fails in some year and 0 otherwise. Consequently, binary 

quality metrics are now obtained allowing for the comparison of the real and the predicted 

output 𝑦 (see Table 8). 
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Table 8. Quality metrics on the training and test sets for the three models (DA, LR and RF) predicting pipe failures in a 
two-year period. 

  Training Test Runtime 
(s) Model Sampling Acc Rec Spec Acc Rec Spec 

DA 
Under 0.810 0.748 0.872 0.794 0.714 0.795 2 

Hybrid 0.877 0.937 0.656 0.587 0.899 0.583 3 

LR 
Under 0.805 0.730 0.880 0.810 0.696 0.812 3 

Hybrid 0.872 0.924 0.678 0.625 0.908 0.621 2 

RF 
Under 1.000 1.000 1.000 0.815 0.705 0.817 7 

Hybrid 1.000 1.000 1.000 0.764 0.782 0.763 10 

The use of the hybrid-sampling strategy attains better recalls for the three models. On the 

contrary, accuracies and specificities are higher using under-sampling. The option that shows 

the most balanced values between TPrate (or recall) and TNrate (or specificity) on the test set is 

the use of the RF model and hybrid-sampling. 

Three-year predictions 

Table 9 shows the macro- and micro-metrics on the test set obtained for the different models in 

the three-year scenario. It can be noticed that these metrics are better compared to those 

obtained for the two-year predictions. In fact, both macro- and micro-recalls are higher than 0.6 

for the DA and LR models using the designed hybrid-sampling strategy.  

Table 9. Macro- and micro-metrics on the test set for the three models (DA, LR and RF) predicting pipe failures in a 
three-year period and using multi-label classification models and classifier chains. 

  Macro-metrics Micro-metrics 

Model Sampling Acc Rec Spec Acc Rec Spec 

DA 
Under 0.964 0.442 0.967 0.964 0.440 0.967 

Hybrid 0.852 0.639 0.854 0.852 0.637 0.854 

LR 
Under 0.961 0.497 0.964 0.961 0.497 0.964 

Hybrid 0.865 0.681 0.867 0.865 0.678 0.867 

RF 
Under 0.954 0.500 0.958 0.954 0.499 0.958 

Hybrid 0.938 0.554 0.940 0.938 0.553 0.940 

Following the structure of the previous section, the binary quality metrics obtained when 

considering 𝑦 = max(𝑦2016, 𝑦2017, 𝑦2018) as output variable are shown in Table 10. Each 

simulation or row corresponds to the hyperparameter combination that results in the best 

performance. 

Table 10. Quality metrics on the training and test sets for the three models (DA, LR and RF) predicting pipe failures in a 

three-year period. 

  Training Test Runtime 
(s) Model Sampling Acc Rec Spec Acc Rec Spec 

DA 
Under 0.725 0.523 0.928 0.886 0.469 0.894 2 

Hybrid 0.870 0.893 0.673 0.634 0.796 0.631 5 

LR 
Under 0.732 0.536 0.929 0.882 0.495 0.889 6 

Hybrid 0.869 0.889 0.694 0.663 0.805 0.661 8 

RF 
Under 1.000 1.000 1.000 0.866 0.517 0.872 11 

Hybrid 1.000 1.000 1.000 0.814 0.648 0.817 37 
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It is clear that recalls, or the capacity to predict pipe failures, substantially decrease compared 

to shorter time period predictions. However, it must be considered that the number of failures 

also doubles or, in this case, triples as the time period increases. Moreover, the RF model seems 

to outperform the other models. The runtimes grow using over-sampling (for one-year 

predictions) and hybrid-sampling (for two- and three-year predictions). Moreover, they increase 

when the RF model is employed. Nevertheless, in no case prohibitive values are reached, so this 

aspect should not be considered to decide which the best option is. 

Figure 5 helps to globally compare the performances of all the combinations considered. In this 

figure, the average of TPrate and TNrate is plotted. As the results are the average of a 5-fold cross-

validation process, the standard deviation is also included in the graphs. According to this 

metric, the three models obtain similar performances, observing a slight superiority for the LR 

model. It can be observed that predictions get worse as the time period increases, which is 

logical and foreseeable as predictions become more difficult as the number of output variables 

grows. Nevertheless, longer time period approaches provide valuable information, allowing 

companies to design more intelligent and strategical pipe renovations plans. Finally, the hybrid-

sampling strategy clearly outperforms the use of under-sampling in the three-year scenario, 

which is not so evident for the two-year predictions. 

Figure 5. Average of recall (TPrate) and specificity (TNrate) on the test set for the three models (DA, LR and RF) predicting 

pipe failures in one-, two- and three-year periods. The graphs show the average and standard deviation of the 5-fold 

cross-validation process. 

5.2. Practical use of the methodology: the annual replacement of 5% of the pipes 

In this section, an example of the use of the methodology is presented to demonstrate, in a 

simple way, its potential and usefulness. Specifically, we want to demonstrate how the 

methodology can be used by a company, and what advantages it would bring. For this purpose, 

we have simulated the case of annually replacing 5% of the pipes that compose the network 

since, as mentioned in the introduction, the annual renovation rate of water networks in Europe 

varies from 1 to 10%. 

Firstly, it is necessary to rank the pipes according to a single score representing their failure risk 

or probability. On the one hand, the DA and LR models estimate an individual score for each 

sample that can be interpreted as the probability to belong to class 1 (failure). On the other 

hand, the RF model computes a score for each sample as the average of the predicted 

probabilities for the different trees in the forest. Likewise, the class probability for each tree is 

estimated as the proportion of samples of this class in all its leaves. As classifier chains generate 

the aforementioned scores for each output variable, they must be integrated. This integration 
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can be done by means of an aggregation operator. Aggregation operators are fundamental for 

information fusion and are applied to combine several values into a single one. For instance, 

one classical aggregation operator is the arithmetic mean or average (Blanco-Mesa, León-

Castro, & Merigó, 2019). Due to the characteristics of the problem addressed here, we have 

decided to use a well-known representable uninorm (Eq. (12)), which is a mapping 𝑅: [0,1] ×

[0,1] → [0,1] defined by De Baets & Fodor (1999), Fodor, Yager, & Rybalov (1997) and Yager & 

Rybalov (1996): 

𝑅(𝑥, 𝑦) =
𝑥𝑦

(1 − 𝑥)(1 − 𝑦) + 𝑥𝑦
 (12) 

This function holds interesting properties: it is increasing in each argument, commutative and 

associative (provided one arbitrarily fixes R(0,1)=R(1,0) at 1 (disjunctive variant) or 0 

(conjunctive variant); moreover, it has 0.5 as neutral element, i.e. R(x,0.5)=R(0.5,x)=x. In this 

paper, we have selected the disjunctive variant as otherwise failure probabilities of 1 might be 

mapped to 0. 

This uninorm allows for a fair representation of the priority of pipes to be replaced based on 

their failure probability for several years. Table 11 shows some real examples of the use of the 

uninorm in the two-year prediction scenario. As can be seen, if both inputs are higher than 0.5, 

then the output or score augments (first line). On the contrary, if both inputs are lower than 

0.5, the output decreases (second line). The third line shows the case of having an input lower 

than 0.5 and another one higher than 0.5. 

Table 11. Uninorm applied to various test samples of the two-year prediction scenario using the LR model. 

𝒙 = 𝒑𝟐𝟎𝟏𝟕 𝒚 = 𝒑𝟐𝟎𝟏𝟖 𝑹(𝒙, 𝒚) 
0.709 0.660 0.825 
0.202 0.114 0.032 
0.396 0.760 0.675 

To integrate more than two scores, i.e., when the time period is over two years, the uninorm is 

calculated recursively as given by Eq. (13), thanks to its associativity. In the case of three-year 

predictions, 𝑥 would be 𝑝2016, 𝑦 would be 𝑝2017 and 𝑧 would be 𝑝2018. 

𝑅′(𝑥, 𝑦, 𝑧) = 𝑅(𝑅(𝑥, 𝑦), 𝑧) =
𝑅(𝑥, 𝑦)𝑧

(1 − 𝑅(𝑥, 𝑦))(1 − 𝑧) + 𝑅(𝑥, 𝑦)𝑧
 (13) 

As a result, a unique ranking (with ties) of the pipes is established; thus, the pipe failures that 

can be avoided by replacing a pre-established percentage of the network are analysed. Figure 6 

shows a scheme of the pipes that would be replaced each year (5%) according to the proposed 

ranking using the different time periods.  
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Figure 6. Scheme of the ranking of the pipes and the percentage that is replaced every year. 

Tables 12-14 show the percentages of pipe failures that can be avoided each year by using the 

different time period predictions. Contrary to what is concluded in the previous section, where 

hybrid-sampling appears as the most suitable strategy to train the models for longer time 

periods (two and three years), according to this analysis, under-sampling outperforms hybrid-

sampling in all the cases. In the previous section, the performance of the models is analysed 

based on metrics obtained from the confusion matrix, which is calculated for a threshold equal 

to 0.5, whereas in this section, only the pipes with the highest failure probabilities are analysed. 

Although the implemented hybrid-sampling strategy helps to improve the classification 

capabilities of the models, the use of under-sampling prioritises the assignment of the greatest 

failure probabilities to the pipes that fail. Based on this analysis, and due to the requirements of 

the case study, we recommend the use of under-sampling instead of hybrid-sampling to 

balance multi-label datasets from water supply networks. For this reason, the following tables 

show the analysis of the LR model and the use of under-sampling. The numbers are in line for 

the other models (DA and RF). 

The values in the tables correspond to one of the test sets, which contains 17,625 pipes and a 

very low proportion of failures (116, 109 and 113 in 2016, 2017 and 2018, respectively). Thus, 

each 5% represents the replacement of around 881 pipes. The second row of the tables 

contains the total number of pipe failures recorded each year (according to the column’s title). 

Then, the next rows present the pipes failures avoided each year by replacing the first 5% of the 

pipes. The cells containing "late" predictions are shaded darker to indicate that those pipe 

failures are not predicted in time. Finally, the total percentages of pipe failures predicted in the 

different years and in the whole period are shown in the last row. In Table 12, the whole period 

is just one year; consequently, the last column has been omitted. 

Table 12. Number and percentage of pipe failures avoided in 2018 by replacing 5% of the pipes at highest risk 
according to the one-year prediction approach. 

 2018 

Total pipe failures 113 

Pipe failures avoided in 2018 39 

% of pipe failures avoided 34.5% 
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Table 13. Number and percentage of pipe failures avoided in 2017 and 2018 by annually replacing 5% of the pipes at 
highest risk according to the two-year prediction approach. 

 2017 2018 Total period 

Total pipe failures 109 113 222 

Pipe failures avoided in 2017 35 31 66 

Pipe failures avoided in 2018 18 16 16 

% of pipe failures avoided 32.1% 41.6% 36.9% 

Table 14. Number and percentage of pipe failures avoided in 2016, 2017 and 2018 by annually replacing 5% of the 
pipes at highest risk according to the three-year prediction approach. 

 2016 2017 2018 Total period 

Total pipe failures 116 109 113 338 

Pipe failures avoided in 2016 35 40 32 107 

Pipe failures avoided in 2017 17 16 17 33 

Pipe failures avoided in 2018 13 17 12 12 

% of pipe failures avoided 30.2% 51.4% 54.0% 45.0% 

This analysis provides evidence for the unquestionable advantage of predicting pipe failures for 

longer time periods using a multi-label classification approach. As can be seen, the percentage 

of avoided pipe failures increases over time, which implies that the failure rate of the company 

will decrease as the methodology is implemented. Although the methodology brings predictions 

for longer time periods, most companies decide their replacement plans annually. Therefore, 

the results suggest that even more pipe failures than shown in Tables 13 and 14 could be 

avoided in the years ahead. In this sense, the 41.6% of Table 13, and the 51.4% and 54.0% of 

Table 14 are lower bounds. Focusing on Table 14, the replacement plan of 2016 does not only 

allow reducing the pipe failures of this year by 30.2%, but it also allows for avoiding future 

breakages that will occur in the following years. Furthermore, these results are conservative 

since in real applications all available data are used to train the model, which means having 

better adjustments and, therefore, better predictions. 

To complete the analysis, Figures 7-9 plot the total percentage of pipe failures avoided in the 

whole period according to the annual replacement percentage of pipes followed by the 

company, from 1% to 10%. These values are the numbers in the lower right corner of Tables 12-

14 and are marked in bold. The graphs enable to visualise the different possibilities that the 

methodology brings; hence the companies can decide, having a more complete knowledge, the 

percentage of the network they want to replace each year. 

Obviously, as the annual replacement percentage increases, further pipe failures can be 

avoided. Moreover, the relationship roughly follows a linear trend. In addition, a substantial 

improvement is observed when the prediction period grows. As previously shown in the tables, 

for a replacement percentage of 5%, the one-year prediction approach allows avoiding 34.5% of 

the pipe failures; this percentage grows to 36.9% if the two-year prediction approach is 

employed; and finally, 45% of unexpected pipe failures could be avoided using the three-year 

prediction approach. As can be seen in the graphs, these differences are even greater if the 

company annually replaces 10% of its pipes: 48.0%, 51.9% and 66.0%. 
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Figure 7. Percentage of pipe failures avoided according to the percentage of pipes that the company annually replaces 

using the one-year prediction approach. 

 
Figure 8. Percentage of pipe failures avoided according to the percentage of pipes that the company annually replaces 

using the two-year prediction approach. 

  

 
Figure 9. Percentage of pipe failures avoided according to the percentage of pipes that the company annually replaces 

using the three-year prediction approach. 
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To conclude, we want to emphasise that the greatest advantage of the proposed approach is 

that it allows to design short-term replacement plans that reduce the occurrence of long-term 

breakages. 

5.3. Discussion and final remarks 

As mentioned in the introduction, the primary objective of this research was to evaluate the 
feasibility of predicting pipe failures for longer time periods as a multi-label classification 
problem. After the evaluation of the results obtained from the case study data, this feasibility 
has been fully demonstrated. MLC models are a feasible and suitable option to assist decision 
makers in the design of replacement plans. 

Below are some remarks derived from the analysis of the use of the multi-label classification 
approach for this case study: 

• According to the analysis of the confusion matrix, the LR model presents the best 

performance for one-year predictions. Moreover, no significant differences are 

observed among the performances of the three models for longer time-period 

predictions. 

• Extreme care must be taken when interpreting macro- and micro-metrics, since they 

multiply the errors. In addition, these metrics do not reveal possible relations between 

the binary quality metrics of the different output variables. Consequently, a 

complementary analysis of the results is almost mandatory. 

• The variable ‘Time since the last failure’ has substantially enhanced the accuracy of the 

predictions. Furthermore, it is advised to assign high values to this variable for those 

pipes that have not broken previously. 

• For water network databases, under-sampling is generally preferred over the traditional 

over-sampling, especially for the RF model. Due to the enormous imbalance ratio, the 

use of over-sampling implies the generation of too many synthetic samples. In our case 

study, around 140 synthetic samples are generated for each pipe failure sample using 

over-sampling. The precise adjustment of the RF model to the training data makes it 

lose its capability to distinguish the pipe failures, which is reflected in the low 

performance on unseen test samples. 

• An aggregation function is required to integrate the output probabilities or scores 

obtained in the different years using the MLC models. For this purpose, the use of a 

uninorm is highly recommended since it augments the final score if all the outputs are 

higher than 0.5 and, at the same time, reduces the score if all the outputs are lower 

than 0.5. 

• In our case study, MLC models allow to avoid more than 30% of the pipe failures in the 

first year of application, with increasing percentages in the subsequent years, 

considering that the company annually replace 5% of its pipes. 

 

6. Conclusions  

In this study, the aim was to evaluate the capabilities of multi-label classifiers to predict pipe 

failures in water supply networks for longer time periods. For this purpose, several models and 

prediction periods have been analysed.  

The use of machine learning methods to make predictions for multi-label data is a trending 

field. Actually, specialised libraries have recently emerged with new functionalities as multi-label 
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stratification or data set management (Szymanski & Kajdanowicz, 2019). The applicability and 

usefulness of these methods strongly depends on the form and type of the targets to be 

predicted, as well as the processing of the data (Iliadis, De Baets, & Waegeman, 2022). For this 

reason, we have explored different data processing strategies to improve the results. 

The results derived from the confusion matrix must be carefully analysed when multi-label 

classification data are used. Since management companies of water networks usually replace 

less than 10% of these infrastructures per year, it is convenient to complete the analysis of the 

results with the study of the pipe failures that are avoided by replacing small percentages of 

pipes. This analysis allows to show a practical example of the use of the methodology as well as 

a faithful representation of its potential. 

In general, the total percentage of pipe failures avoided increases as the time period to predict 

for grows. From a conservative standpoint, it can be stated that the proposed approach allows 

companies that approximately replace 5% of its pipes per year to reduce the pipe failures by 

more than 30% in the first year of its implementation, growing to 54% after three years. 

Future lines of research should explore the use of some algorithm adaptation method instead of 

the classifier chain model. Additionally, researchers with access to more extensive pipe failure 

databases are encouraged to implement and analyse the use of the proposed methodology for 

even longer periods of time. 
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