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Abstract. In this paper, we use genus theory to analyze the hardness of
the decisional Diffie–Hellman problem for ideal class groups of imaginary
quadratic orders acting on sets of elliptic curves through isogenies (DDH-
CGA). Such actions are used in the Couveignes–Rostovtsev–Stolbunov
protocol and in CSIDH. Concretely, genus theory equips every imaginary
quadratic order O with a set of assigned characters χ : cl(O) → {±1},
and for each such character and every secret ideal class [a] connecting
two public elliptic curves E and E′ = [a] ? E, we show how to compute
χ([a]) given only E and E′, i.e. without knowledge of [a]. In practice, this
breaks DDH-CGA as soon as the class number is even, which is true for
a density 1 subset of all imaginary quadratic orders. For instance, our
attack works very efficiently for all supersingular elliptic curves over Fp

with p ≡ 1 mod 4. Our method relies on computing Tate pairings and
walking down isogeny volcanoes. We also show that these ideas carry
over, at least partly, to abelian varieties of arbitrary dimension. This is
an extended version of the paper that was presented at Crypto 2020.

Keywords: Decisional Diffie-Hellman, isogeny-based cryptography, class group
action, CSIDH.

1 Introduction

“The Decision Diffie–Hellman assumption (DDH) is a gold mine”, Dan Boneh
wrote in his 1998 overview paper [3]. This statement still holds true (maybe even
more so), since DDH is fundamental to prove security of many widely used pro-
tocols such as Diffie–Hellman key agreement [27], El Gamal encryption [31], but
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can also be used to construct pseudo-random functions [41], and more advanced
functionalities such as circular-secure encryption [4] and UC-secure oblivious
transfer [42].

Let (G, ·) be a finite cyclic group with generator g, then the DDH problem
states that it is hard to distinguish the distributions (ga, gb, gab) and (ga, gb, gr)
where a, b, r are chosen randomly in [1,#G]. Due to its definition as a distinguish-
ing problem, DDH can be used quite naturally as a building block for provably
secure constructions, i.e. IND-CPA or IND-CCA encryption [22]. In practice, the
group G is typically chosen as a cyclic prime order subgroup of the multiplicative
group F∗p of a finite prime field or of an elliptic curve group E(Fp). Although
Diffie and Hellman [27] originally worked in the full multiplicative group F∗p, it
is easy to see that DDH is not secure in this case since the Legendre symbol
easily distinguishes both distributions. An equivalent interpretation is that the
Legendre symbol provides an efficiently computable character, mapping F∗p onto
the group {±1}, which acts as a distinguisher.

The classical hardness of DDH is well understood and clear recommenda-
tions [23] to attain certain security levels have been agreed upon by the cryp-
tographic community. In the quantum setting however, DDH is easy as shown
by Shor [46], who devised an algorithm to solve the discrete logarithm problem
(DLP) in any group in polynomial time and space. The DLP asks, given a tuple
(g, ga), to recover the exponent a. Solving DLP efficiently implies solving DDH
efficiently.

Class group actions Shor’s algorithm relies on the fact that the group oper-
ation in G can be efficiently computed, i.e. group elements can be represented
such that they can be composed efficiently. To devise a post-quantum secure
alternative for group-based DDH one could try to represent the group G by an
object with much less inherent structure, e.g. a set X. Such a representation can
be obtained from a group action, which is a map ? : G×X → X : (g,E) 7→ g ?E
compatible with the group operation, i.e. (g · h) ? E = g ? (h ? E). If the group
action is free and transitive, i.e. for every E,E′ ∈ X there exists exactly one
g ∈ G such that E′ = g ? E, then X is called a principal homogeneous space for
G. Note that for every fixed base point E ∈ X we thus obtain a representation
of the group G by mapping g to g ? E.

As first observed by Couveignes [20] and later independently by Rostovtsev
and Stolbunov [43], generalizing the Diffie–Hellman key agreement to group ac-
tions is immediate: Alice and Bob agree on a base point E ∈ X, each chooses a
secret element a and b in G, and exchange a ? E and b ? E. Since G is commut-
ative and ? a group action, both can compute the common element (a · b) ? E.
Recovering a ∈ G from a ? E is called the vectorization problem (generalizing
DLP), and recovering (a · b) ? E from a ? E and b ? E is called parallelization
(generalizing CDH). When both problems are hard, Couveignes called X a hard
homogeneous space for G. Couveignes, Rostovtsev and Stolbunov (CRS) and
more recently CSIDH [16] by Castryck, Lange, Martindale, Panny and Renes
instantiated this framework as follows: G is the class group cl(O) of an order O
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in an imaginary quadratic field, and X = È `p(O, t) is the set of elliptic curves
over a finite prime field Fp with Fp-rational endomorphism ring O and trace
of Frobenius t. Whereas CRS restricted to ordinary elliptic curves, CSIDH uses
supersingular elliptic curves and is several orders of magnitude faster than CRS.

Using the above group action can be seen as a trade-off: the lack of a natural
operation on the set X itself makes the construction possibly post-quantum
secure, but also limits its flexibility, i.e. it is not possible to simply translate any
DLP-based protocol into an equivalent one using group actions. Furthermore,
since X is supposed to “hide” G, it is a priori unclear whether the group structure
of G itself has any influence on the hardness of the underlying group action
problems. In this paper, we show that it does, even for classical adversaries.

Contributions The decisional Diffie-Hellman problem, sometimes called the
decisional parallelization problem, for class group actions (DDH-CGA) asks to
distinguish between the distributions ([a] ? E, [b] ? E, ([a] · [b]) ? E) and ([a] ?
E, [b] ? E, [r] ? E) with [a], [b], [r] random elements in cl(O). A natural attack
strategy would be to try to exploit the group structure of cl(O), as was done for
DDH in F∗p using the Legendre symbol. We immediately run into two problems:

1. In general, very little is known about the concrete structure of cl(O) as
an abelian group. For instance, computing the order of cl(O) is already
a highly non-trivial task [32, 1]. A notable exception is the structure of
the 2-torsion subgroup of cl(O): genus theory [21, I.§3 & II.§7] provides a
very explicit description of cl(O)[2] ' cl(O)/ cl(O)2 by defining a set of
characters χi : cl(O) → {±1} and recovering cl(O)2 as the intersection of
the kernels of the χi. The characters χi correspond to the prime factors mi

of the discriminant ∆O (with the prime 2 requiring special treatment) and
can be computed in time polynomial in the size of mi. Note that each of
these characters χi (if non-trivial) can be used to break DDH in cl(O) itself;
however we are not trying to solve DDH in cl(O), but DDH for class group
actions.

2. Given the structure of cl(O)[2] through genus theory, it is unclear how the
characters χi can be computed directly on elements in X, i.e. given an ele-
ment [a] ? E for some unknown [a] ∈ cl(O), we need to compute χi([a])
(without computing [a] first, since vectorization is assumed hard).

The main contribution of this paper is an algorithm to compute the characters
χi directly on the set X = È `p(O, t) in time exponential in the size of mi. Since
we only need to compute one such χi efficiently to break DDH-CGA, we conclude
that DDH for class group actions is insecure when cl(O)[2] is non-trivial and the
discriminant ∆O is divisible by a small enough prime factor. Since cl(O)[2] is
only trivial when ∆O = −q or ∆O = −4q with q ≡ 3 mod 4 prime, and since
almost all integers contain polynomially small prime factors (this follows, at
least heuristically, from Mertens’ third theorem; see [51, III.§6] for more precise
statements), we expect that our attack works in polynomial time (in log p) for a
subset of density 1 of all imaginary quadratic orders.
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In the special case of supersingular elliptic curves over Fp, our attack does
not apply for primes p ≡ 3 (mod 4). However, for p ≡ 1 (mod 4), we have
O = Z[

√
−p] and ∆O = −4p. Genus theory defines a non-trivial character δ

associated with the prime divisor 2 of ∆O. We derive a very simple formula to
compute δ([a]) that uses only the Weierstrass equations of E and E′ = [a]?E. In
this case, our attack is particularly efficient and we can break DDH-CGA using
a few exponentiations in Fp.

High level overview of the attack To explain the main underlying ideas,
we detail the thought process we followed to derive the attack in a simple (yet
very general) setting. Fixing a base curve E, the class group action ? gives us
a representation of cl(O) on the set X = È `p(O, t) by mapping a class [a] to
E′ = [a]?E. For every odd prime divisor m of the discriminant ∆O, genus theory
provides a character

χ : cl(O)→ {±1} : [a] 7→
(

N(a)

m

)
,

where
( ·
·
)

denotes the Legendre symbol and the representative a of the class [a]
is chosen such that its norm N(a) is coprime to m. The goal is to compute χ([a])
given only the pair (E,E′).

Let ϕ : E → E′ denote the isogeny corresponding to a, then N(a) = deg(ϕ),
so to compute χ, it suffices to determine deg(ϕ) mod m, up to non-zero squares in
Z/(m). The starting idea is the following: assume we know a tuple (P,Q) ∈ E2

with P ∈ E[m] and the corresponding tuple (ϕ(P ), ϕ(Q)) ∈ E′2, computing
deg(ϕ) mod m is easy thanks to the compatibility of the reduced m-Tate pairing
Tm:

Tm(ϕ(P ), ϕ(Q)) = Tm(P,Q)deg(ϕ) .

If the pairing is non-trivial, both sides will be primitive m-th roots of unity, so
computing discrete logs gives deg(ϕ) mod m.

The difficulty is of course, that in practice we are not given such corres-
ponding tuples (P,Q) and (ϕ(P ), ϕ(Q)), so we need to find a workaround. The
only information we really have about ϕ is that it is an Fp-rational isogeny of
degree coprime to m. Under the assumption that E(Fp) has a unique subgroup
of order m, this implies that E′(Fp) similarly has such a unique subgroup, and
furthermore, ϕ(E(Fp)[m]) = E′(Fp)[m]. If we let P be a generator of E(Fp)[m]
and P ′ a generator of E′(Fp)[m], then we know there exists some k ∈ [1,m− 1]
such that ϕ(P ) = kP ′. Note however, that if we assume we know a point Q
and its image ϕ(Q) (but not the image of P under ϕ), we do not learn anything
since the values Tm(kP ′, ϕ(Q)) = Tm(P ′, ϕ(Q))k run through the whole of µm
for k = 1, . . . ,m− 1 and we do not know k.

The main insight now is that we do not need to recover deg(ϕ) exactly but
only up to squares, so if we could recover k2 deg(ϕ) then it is clear we can still
compute χ([a]). This hints at a possible solution as long as Q is somehow derived
from P and that the same unknown scalar k can be used to compensate for the
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difference not only between ϕ(P ) and P ′, but also between ϕ(Q) and Q′. Indeed,
computing Tm(P ′, Q′) would then recover the correct value up to a square in the

exponent, namely Tm(P,Q)deg(ϕ)k
2

. The simplest choice clearly is to take Q = P
and Q′ = P ′, and if there is no Fp-rational m2-torsion, we can show that the self-
pairings Tm(P, P ) and Tm(P ′, P ′) are non-trivial. This feature is specific to the
Tate pairing, and resorting to the Weil pairing would fail.3 Denote with valm(N)
the m-adic valuation of N , i.e. the maximum power v such that mv | N , then
valm(#E(Fp)) = 1 is equivalent to the existence of a unique rational subgroup
of order m and the non-existence of rational m2-torsion.

In the more general case of v = valm(#E(Fp)) > 1, we first walk down to the
floor of the m-isogeny volcano reaching a curve E0 with E0(Fq)[m∞] = Z/(mv),
and then choose points P and P ′ of order m and corresponding points Q and Q′

of order mv satisfying mv−1Q = P and mv−1Q′ = P ′. Note that also in this
case, the same unknown scalar k will compensate for both differences.

To sum up, we use the Tate pairing of certain points to obtain information
on degϕ (up to squares modm). By genus theory, we see that we are actually
computing the assigned characters of cl(O) directly from curves in È `p(O, t).
Whenever the characters are non-trivial, their multiplicative property allows us
to break DDH-CGA in È `p(O, t).

Paper organization In Section 2 we recall the necessary background on iso-
genies and isogeny volcanoes, class group actions, genus theory and the Tate
pairing. In Section 3 we derive an algorithm to compute the assigned charac-
ters in the case of ordinary elliptic curves, whereas in Section 4 we deal with
supersingular curves. In Section 5 we analyze the impact on the DDH problem
for class group actions, report on our implementation of the attack, and propose
countermeasures. In Section 6 we explore the applicability of our main idea to
higher-dimensional abelian varieties. Finally, Section 7 concludes the paper and
provides avenues for further research.

Acknowledgements This paper is an extended version of [17]; the new material
can mostly be found in Section 6. The authors would like to thank Alex Bartel,
Steven Galbraith and the anonymous referees of our submission to Crypto 2020
for useful feedback on an early version of the paper.

2 Background

2.1 Isogenies

Let E,E′/Fq be elliptic curves. An isogeny ϕ : E → E′ is a non-constant morph-
ism such that ϕ(0E) = 0E′ , where 0 denotes the point at infinity. Equivalently,

3 A recent follow-up work [15] shows that using the Weil pairing is possible by resorting
to a distortion map, i.e. an endomorphism σ acting on a point P ∈ E[m], such that
σ(P ) is not a multiple of P .
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an isogeny is a surjective group homomorphism of elliptic curves, which is also
an algebraic morphism. An endomorphism of E is either the zero map or an iso-
geny from E to itself, and the set of endomorphisms forms a ring End(E) under
addition and composition. We write EndFq

(E) to denote the subring of endo-
morphisms defined over Fq. Two important examples of endomorphisms are: the
multiplication-by-n map [n] : E → E,P 7→ [n]P (often simply denoted by n)
and the q-power Frobenius endomorphism πq : E → E : (x, y) 7→ (xq, yq). If q is
clear from the context, we will simply write π. In End(E), the Frobenius endo-
morphism satisfies π2− tπ+ q = 0 where t = trπ is called the trace of Frobenius
and satisfies |t| ≤ 2

√
q. Alternatively, the trace of Frobenius is characterized by

#E(Fq) = q + 1− t. If gcd(t, q) = 1, the curve is called ordinary, otherwise it is
called supersingular. Unless |t| = 2

√
q, which can only happen for supersingular

elliptic curves over even degree extension fields, we have thatO = EndFq (E) is an

order in the imaginary quadratic field K = Q(π) = Q(
√
t2 − 4q). Since O always

contains Z[π] as a suborder, its discriminant ∆O satisfies ∆Z[π] = t2−4q = c2∆O
for some non-zero c ∈ Z.

The degree of an isogeny ϕ is just its degree as a morphism, which equals
the size of the kernel ker(ϕ) (we say ϕ is a separable isogeny), except possibly
if char(Fq)|deg(ϕ), where it may happen that the kernel is smaller (we say ϕ
is an inseparable isogeny). Separable isogenies are uniquely determined by their
kernel, up to post-composition with an isomorphism. When the kernel ker(ϕ) is
invariant under Frobenius (as a set), the corresponding isogeny ϕ is Fq-rational.
Note that we do not necessarily have ker(ϕ) ⊂ E(Fq), but only that ϕ can be
given by Fq-rational maps. The kernel of the multiplication by n map is denoted
as E[n], and we set E[n∞] = ∪k∈N>0E[nk].

For a prime m - charFq, isogenies of degree m are called m-isogenies and
their kernel kerϕ ⊂ E[m] is always a cyclic subgroup of E[m]. It is therefore
natural that the m-isogenies of an elliptic curve E depend on the structure of
E(Fq)[m∞]. Moreover, for any isogeny ϕ : E → E′, there is a dual isogeny
ϕ̂ : E′ → E satisfying ϕ ◦ ϕ̂ = [degϕ] and ϕ̂ ◦ ϕ = [degϕ]. The dual isogeny ϕ̂
has the same degree as ϕ.

2.2 Volcanoes

By Tate’s theorem [50], two elliptic curves over Fq are isogenous (over Fq) if and
only if they have the same number of Fq-rational points, which is equivalent to
having the same trace of Frobenius. Let È `q(t) be the set of Fq-isomorphism
classes of elliptic curves over Fq with trace of Frobenius t, and assume that
È `q(t) is non-empty.

For a prime number m - q, we define the m-isogeny graph Gq,m(t) as follows:
the set of vertices is È `q(t) and the edges are m-isogenies. Away from elliptic
curves with extra automorphisms (i.e., away from the curves with j-invariant 0
or 1728), this graph can be made undirected by identifying dual isogenies.

An m-volcano is a connected undirected graph with vertices partitioned into
levels V0, . . . , Vh such that
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– the subgraph Vh (the crater) is a regular connected graph of degree ≤ 2,

– for all 0 ≤ i < h, every vertex in level Vi is connected to exactly one vertex
in Vi+1,

– for all i > 0, every vertex in Vi has degree m+ 1.

Note that this implies that all the vertices on level V0 (the floor) have degree
1. We call h the height of the volcano (some authors swap Vh and V0 and call
h the depth). The crater Vh is also sometimes called the surface of the volcano.
An example of a volcano can be seen in Figure 1.

Theorem 1. Let Gq,m(t) be as above, and assume that gcd(t, q) = 1, so that
we are in the ordinary case. Take any connected component V of Gq,m(t) that
does not contain curves with j-invariant 0 or 1728. Then V is a volcano, say of
height h, and

1. the elliptic curves on level i all have the same endomorphism ring Oi, with
discriminant ∆Oi

= m2(h−i)∆Oh
,

2. the endomorphism ring Oh of the elliptic curves on the crater Vh is locally
maximal at m; equivalently, if m is odd then m2 - ∆Oh

, while if m = 2 and
4 | ∆Oh

then ∆Oh
/4 ≡ 2, 3 mod 4,

3. the endomorphism ring O0 of the elliptic curves on the floor V0 satisfies
valm(∆O0

) = valm(t2 − 4q).

In particular, if m is odd then h = bvalm(t2−4q)/2c, while if m = 2 then h may
be 1 less than this value.

Proof. This follows from Proposition 23 in [36] (note that the name volcano was
introduced only later by [29]).

An analogous volcano structure for supersingular curves over Fp was given in [26],
but will not be needed in our discussion of supersingular curves in Section 4.

Suppose E ∈ Vi and E′ ∈ Vj . We say that an m-isogeny ϕ : E → E′ is
ascending (descending, horizontal) if j = i+1 (j = i−1, j = i). On the volcano,
this corresponds to the crater being on top, the floor on the bottom, while the
horizontal steps are permitted along the crater only.

Remark 2. If j = 0 or j = 1728 do appear in V , then the theorem remains
“sufficiently valid” for our purposes; the only difference is that Gq,m(t) may
become directed: there may exist descending isogenies from the crater Vh to level
Vh−1 which need to be considered with multiplicity, while the dual ascending
isogeny still accounts for multiplicity 1. We will ignore this issue in what follows:
the endomorphism rings of the curves with j-invariant 0 or 1728 have trivial
class groups, so this remark only affects suborders of (certain) number fields
having class number 1. Such suborders are usually not considered in isogeny-
based cryptography, although they make an appearance in the recent OSIDH
protocol due to Colò and Kohel [19].
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V2

V1

V0

Figure 1. A 3-volcano of height h = 2, together with its levels. This corresponds to the
case where the prime 3 splits in Oh, into two norm 3 prime ideals whose ideal-classes
(which are each other’s inverses) have order 5.

2.3 Diffie–Hellman for class group actions

Let O be an order in an imaginary quadratic number field and let t ∈ Z. To each
prime power q = pn we associate the set

È `q(O, t) = { elliptic curves E/Fq |EndFq (E) ∼= O and trπq = t }/ ∼=Fq .

If this set is non-empty, then the ideal-class group cl(O) acts freely on È `q(O, t):
for any invertible ideal a ⊂ cl(O) of norm coprime with p (every ideal class con-
tains such ideals), we set E[a] = ∩α∈a kerα, where the α’s are viewed as elements
of EndFq

(E) by choosing an isomorphism with O under which πq corresponds
to a fixed root of x2 − tx+ q ∈ O[x]. We then define

[a] ? E = E/E[a].

In other words, we let [a]?E be the (unique) codomain of a separable Fq-rational
isogeny ϕ with domain E and kernel E[a].

The action is usually transitive but exceptionally there may be two orbits;
this happens if and only if the discriminant∆O is a quadratic non-residue modulo
p (which is a very rare event, and not possible in the case of ordinary elliptic
curves because t2 − 4q = c2∆O for some c). For a proof of the above claims,
see [53] and the erratum pointed out in [44, Thm. 4.5].

Remark 3. The set È `q(t) is not the same as È `q(O, t). One should think of the
sets È `q(O, t) for the various orders O as horizontal slices of È `q(t). Indeed, in
Theorem 1, we saw that the curves on the same level of an m-volcano have the
same endomorphism ring O.

When # cl(O) is large, the set È `q(O, t) is conjectured to be a hard homo-
geneous space in the sense of Couveignes [20], who was the first to propose its
use for Diffie–Hellman style key exchange; we refer to [25, 16] for recent advances
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in making this construction efficient. Couveignes’ proposal was rediscovered by
Rostovtsev and Stolbunov [43], and elaborated in greater detail in Stolbunov’s
PhD thesis, which contains the first appearance of the decisional Diffie–Hellman
problem for group actions [48, Prob. 2.2].

Definition 4 (DDH-CGA). Let Fq, t,O be as above and let E ∈ È `q(O, t).
The decisional Diffie–Hellman problem is to distinguish with non-negligible ad-
vantage between the distributions ([a]?E, [b]?E, [ab]?E) and ([a]?E, [b]?E, [c]?E)
where [a], [b], [c] are chosen at random from cl(O).

Stolbunov writes: “As far as we are concerned, the most efficient approach is
to solve the corresponding CL group action inverse problem (CL-GAIP).” In our
terminology, this reads that in order to break DDH-CGA, one needs to obtain
[a] from [a] ? E. The current paper clearly disproves this statement.

2.4 Genus theory

Genus theory studies which natural numbers arise as norms of ideals in a given
ideal class of an imaginary quadratic order O. It shows that this question is
governed by the coset of cl(O)2, the subgroup of squares inside cl(O), to which
the ideal class belongs. The details are as follows; this section summarizes parts
of [21, I.§3 & II.§7].

Let ∆O ≡ 0, 1 mod 4 be the discriminant of O, say with distinct odd prime
factors m1 < m2 < . . . < mr. If ∆O ≡ 1 mod 4 then we call

χi : (Z/∆O)∗ → {±1} : a 7→
(
a

mi

)
(for i = 1, . . . , r)

the assigned characters of O. If ∆O = −4n ≡ 0 mod 4, then we extend this list
with δ if n ≡ 1, 4, 5 mod 8, with ε if n ≡ 6 mod 8, with δε if n ≡ 2 mod 8, and
with both δ and ε if n ≡ 0 mod 8. Here

δ : a 7→ (−1)(a−1)/2 and ε : a 7→ (−1)(a
2−1)/8.

If n ≡ 3, 7 mod 8 then the list is not extended.
Let µ ∈ {r, r + 1, r + 2} denote the total number of assigned characters and

consider the map Ψ : (Z/∆O)∗ → {±1}µ having these assigned characters as its
components. Then Ψ is surjective and its kernel H consists precisely of those
integers that are coprime with (and that are considered modulo) ∆O and arise
as norms of non-zero principal ideals of O. This leads to a chain of maps

Φ : cl(O) −→ (Z/∆O)∗

H

∼=−→ {±1}µ,

where the first map sends an ideal class [a] to the norm of a (it is always possible
to choose a representant of norm coprime with ∆O) and the second map is
induced by Ψ . Basically, genus theory tells us that kerΦ = cl(O)2, the subgroup
of squares in cl(O); the cosets of cl(O)2 inside cl(O) are called genera, with
cl(O)2 itself being referred to as the principal genus.
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Remark 5. By abuse of notation, we can and will also view χ1, χ2, . . . , χr, δ, ε
as morphisms cl(O) → {±1}, obtained by composing Φ with projection on the
corresponding coordinate.

It can be shown that the image of Φ is a subgroup of {±1}µ having index 2,
so that the cardinality of cl(O)/ cl(O)2 ∼= cl(O)[2] equals 2µ−1. More precisely,
if we write ∆O = −2ab with b = me1

1 m
e2
2 · · ·mer

r , then this is accounted for by
the character

χe11 · χ
e2
2 · · ·χerr · δ

b+1
2 mod 2 · εa mod 2, (1)

which is non-trivial when viewed on (Z/∆O)∗, but becomes trivial when viewed
on cl(O). For example, if ∆O is squarefree and congruent to 1 mod 4, then the
image of Φ consists of those tuples in {±1}r whose coordinates multiply to 1.

Our main goal is to break DDH-CGA in È `q(O, t). To do this, we will com-
pute the coordinate components of the map Φ, i.e. upon input of two elliptic
curves E,E′ ∈ È `q(O, t) that are connected by a secret ideal class [a] ∈ cl(O),
for each assigned character χ we will describe how to compute χ(E,E′) := χ([a]).
This is done in the next sections.

Example 6. In Section 4, we will study supersingular elliptic curves defined
over Fp with p ≡ 1 mod 4. Here O = Z[

√
−p] has discriminant −4p, thus there

are two assigned characters: δ and the Legendre character χ associated with p.
But (1) tells us that χ([a]) = δ([a]) and also that χ and δ are necessarily non-
trivial characters of cl(O). So it suffices to compute δ([a]), which as we will see
can be done very efficiently.

2.5 The Tate pairing on elliptic curves

We briefly recall the main properties of the (reduced) Tate pairing Tm, which is
defined as

Tm : E(Fqk)[m]× E(Fqk)/mE(Fqk)→ µm : (P,Q) 7→ fm,P (D)(q
k−1)/m .

Here k is the embedding degree, i.e. the smallest extension degree k such that
µm ⊂ F∗qk ; the function fm,P a so-called Miller function, i.e. an Fqk -rational

function with divisor (fm,P ) = m(P )−m(0);D an Fqk -rational divisor equivalent
to (Q) − (0) coprime to the support of (fm,P ). If the Miller function fm,P is
normalized, and Q 6= P , then the pairing can be simply computed as Tm(P,Q) =

fm,P (Q)(q
k−1)/m.

The reduced Tate pairing Tm has the following properties:

1. Bilinearity: Tm(P,Q1 + Q2) = Tm(P,Q1)Tm(P,Q2) and Tm(P1 + P2, Q) =
Tm(P1, Q)Tm(P2, Q).

2. Non-degeneracy: for all P ∈ E(Fqk)[m] with P 6= 0, there exists a point
Q ∈ E(Fqk)/mE(Fqk) such that Tm(P,Q) 6= 1. Similarly, for all Q ∈ E(Fqk)
with Q 6∈ mE(Fqk), there exists a P ∈ E(Fqk)[m] with Tm(P,Q) 6= 1.

3. Compatibility: let ϕ be an Fq-rational isogeny, then

Tm(ϕ(P ), ϕ(Q)) = Tm(P,Q)deg(ϕ).

4. Galois invariance: let σ ∈ Gal(Fq/Fq) then Tm(σ(P ), σ(Q)) = σ(Tm(P,Q)).
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3 Computing the characters for ordinary curves

Let E/Fq be an ordinary elliptic curve with endomorphism ring O and let m be
a prime divisor of ∆O. Note that m - q, since otherwise m | ∆O | t2 − 4q would
imply that gcd(t, q) 6= 1, contradicting that E is ordinary. By extending the base
field if needed, we can assume without loss of generality that valm(#E(Fq)) ≥ 1.
The approach described in the introduction corresponds to valm(#E(Fq)) = 1,
which implies that E(Fq)[m∞] ∼= Z/(m). The idea was to recover the character
from the self-pairings Tm(P, P ) and Tm(P ′, P ′), with P (resp. P ′) any non-zero
Fq-rational m-torsion point on E (resp. E′).

In general we have E(Fq)[m∞] ∼= Z/(mr)×Z/(ms) for integers 1 ≤ r ≥ s ≥ 0.
The next theorem shows that by walking all the way down to the floor of the m-
isogeny volcano, we always end up on a curve E0/Fq with E0(Fq)[m∞] ∼= Z/(mv),
where v = valm(#E(Fq)).

Theorem 7. Consider an m-isogeny volcano of ordinary elliptic curves over
a finite field Fq, and let N be their (common) number of Fq-rational points.
Assume v = valm(N) ≥ 1 and let h denote the height of the volcano.

– If v is odd and E is a curve on level 0 ≤ i ≤ h, or if v is even and E is a
curve on level 0 ≤ i ≤ v/2, then

E(Fq)[m∞] ∼=
Z

(mv−i)
× Z

(mi)
.

– If v is even and E is a curve on level v/2 ≤ i ≤ h, then

E(Fq)[m∞] ∼=
Z

(mv/2)
× Z

(mv/2)
.

(Note that the latter range may be empty, i.e. one may have h < v/2.)

Proof. This is implicitly contained in [37]; for more explicit references, see [39,
Cor. 1] for m = 2 and [40, Thm. 3] for m odd. ut

Note that it is easy to verify whether a given curve E/Fq is located on the
floor of its volcano. Indeed, for λ random points P ∈ E(Fq) one simply tests
whether (N/m)P = 0. As soon as one point fails the test, we know that E is on
the floor. If all points pass the test, we are on the floor with probability 1/mλ.
Given such a verification method, a few random walks allow one to find a shortest
path down to the floor, see e.g. the algorithm FindShortestPathToFloor
in [49]. Note that this is considerably easier than navigating the volcano in a
fully controlled way, see again [49] and the references therein.4

Once we are on E0, the natural generalization of the case v = 1 is to compute
the m-Tate pairing Tm(P,Q) with ord(P ) = m and ord(Q) = mv satisfying

4 In the context of this paper, it is worth highlighting the work of Ionica and Joux [35]
on this topic, who use the Tate pairing as an auxiliary tool for travelling through
the volcano.
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mv−1Q = P . The following theorem applied to n = 1 shows that the m-Tate
pairing is non-trivial and, for a fixed P , independent of the choice of Q. (Note
that we indeed have m | q − 1 because m | t2 − 4q = (q − 1)2 − 2(q + 1)N +N2,
where N = #E0(Fq).)

Theorem 8. Let E0/Fq be an ordinary elliptic curve and let m be a prime
number. Assume that mn|(q − 1) for n ≥ 1 and that

E0(Fq)[m∞] ∼=
Z

(mv)

for some v ≥ n. Then for any P,Q with ord(P ) = mn and ord(Q) = mv, the
reduced Tate pairing Tmn(P,Q) is a primitive mn-th root of unity. Furthermore,
for a fixed P , the pairing Tmn(P, ·) is constant for all Q with ord(Q) = mv and
mv−nQ = P .

Proof. Assume that Tmn(P,Q) is not a primitive mn-th root of unity, then
Tmn(P,Q) ∈ µmn−1 , and in particular

1 = Tmn(P,Q)m
n−1

= Tmn(mn−1P,Q) .

Since P has order mn, the point mn−1P is not the identity element 0. Further,
since Q generates E0(Fq)[m∞], we conclude that Tmn(mn−1P, ·) is degenerate
on the whole of E0(Fq)/mnE0(Fq), which contradicts the non-degeneracy of the
Tate pairing. Thus we conclude that Tmn(P,Q) is a primitive mn-th root of
unity (alternatively and more directly, this follows from the perfectness of the
Tate pairing, see [10]). The solutions to mv−nX = P are given by Q + R with
ord(R)|mv−n. But then R ∈ mnE0(Fq) and so Tmn(P,R) = 1, which shows that
Tmn(P,Q) is independent of the choice of Q. ut

3.1 Computing the characters χi

Let χ be one of the characters χi associated with an odd prime divisor m = mi

of ∆O. As before, we let ϕ : E → E′ denote the isogeny corresponding to a of

degree deg(ϕ) = N(a). Recall that the goal is to compute χ([a]) =
(

N(a)
m

)
.

Since End(E) = End(E′), by Theorem 1, the curves E and E′ are on the
same level of their respective m-isogeny volcanoes. By taking the same number
of steps down from E and E′ to the floor on these volcanoes, we end up with
two respective elliptic curves E0, E

′
0 in È `q(O0, t), where O0 ⊂ O is a suborder

having discriminant ∆O0
= m2s∆O, with s the number of steps taken to reach

the floor.
Since both curves E0 and E′0 are now on the floor, we can choose non-trivial

points P ∈ E0[m](Fq) and P ′ ∈ E′0[m](Fq), and corresponding points Q,Q′ of
order exactly mv satisfying mv−1Q = P and mv−1Q′ = P ′. We know that the
class group cl(O0) acts transitively on È `q(O0, t), see Section 2.3, so there exists
an invertible ideal b ⊂ O0 such that

E′0 = [b] ? E0,
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where by [21, Cor. 7.17] it can be assumed that N(b) is coprime with ∆O0 , hence
coprime withm. Let ϕ0 : E0 → E′0 denote the corresponding degree N(b) isogeny.
Then there exists a k ∈ {1, . . . ,m − 1} with kϕ0(P ) = P ′. Clearly, the point
kϕ0(Q) also has order mv and satisfies mv−1X = P ′. From Theorem 8 and the
compatibility of the Tate pairing, it then follows:

Tm(P ′, Q′) = Tm(kϕ0(P ), kϕ0(Q)) = Tm(P,Q)k
2 deg(ϕ0),

and thus (
N(b)

m

)
=

(
deg(ϕ0)

m

)
=

(
logTm(P,Q) Tm(P ′, Q′)

m

)
.

We now show that this in fact equals χ([a]). Indeed, since N(b) is coprime
with ∆O0

, from [21, Prop. 7.20] we see that the ideal bO ⊂ O is invertible and
again has norm N(b). From the second paragraph of the proof of [49, Lem. 6] we
see that E′ = [bO] ? E, and because the action of cl(O) on È `q(O, t) is free we
conclude that [bO] = [a]. Summing up, we can compute

χ([a]) = χ([bO]) =

(
N(bO)

m

)
=

(
N(b)

m

)
=

(
logTm(P,Q) Tm(P ′, Q′)

m

)
.

Note that, in particular, this outcome is independent of the choice of the walks
to the floor of the isogeny volcano.

Remark 9. In the appendix we provide an alternative (but more complex) proof
that shows it is not needed to walk all the way down to the floor. However,
since the height of the volcano is about 1

2 valm(t2 − 4q) (see Theorem 1), the
volcanoes cannot be very high (in the worst case a logarithmic number of levels),
so walking to the floor of the volcano is efficient. Furthemore, for odd m, the
probability of the volcano being height zero is roughly 1− 1/m.

3.2 Computing the characters δ, δε and ε

For ∆O = −4n, genus theory (Section 2.4) may give extra characters δ, ε or δε
depending on n mod 8. Recall that these characters are defined as

δ : [a] 7→ (−1)(N(a)−1)/2 and ε : [a] 7→ (−1)(N(a)2−1)/8 ,

where the ideal a is chosen to have odd norm. Determining the value of δ is
easily seen to be equivalent to computing N(a) mod 4. In case both δ and ε
exist (i.e. when n ≡ 0 mod 8), determining both character values is equivalent
to computing N(a) mod 8.

For m = 2, the previous approach using Theorem 8 with n = 1 remains valid,
but does not result in sufficient information since it only determines N(a) mod 2,
which is known beforehand since the norm is odd. The solution is to use a 4-
pairing (i.e. n = 2) to derive δ and an 8-pairing (i.e. n = 3) in the case both δ
and ε exist.
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Character δ Recall that the character δ exists when n ≡ 0, 1, 4, 5 mod 8.
By taking a field extension if needed, we can assume without loss of general-
ity that v = val2(#E(Fq)) ≥ 2 and that 4 | (q − 1). As before, by walking
down the volcano we reach a curve E0 on the floor (and similarly E′0) satisfying
E0(Fq)[2∞] = Z/(2v). We can now use Theorem 8 for m = 2 and n = 2 along
with the compatibility of the Tate pairing: if b is an ideal connecting E0 and E′0,
we can compute the exact value

N(b) mod 4 = logT4(P,Q) T4(P ′, Q′) (2)

for appropriately chosen points P,Q ∈ E0(Fq)[2∞] and P ′, Q′ ∈ E′0(Fq)[2∞].
Indeed, recall that the points P ′ and Q′ are only determined by P and Q up to
a scalar k ∈ (Z/(4))∗, i.e. k ≡ 1, 3 mod 4, and so k2 ≡ 1 mod 4.

A similar reasoning as before then shows that [bO] = [a], where we can
assume N(bO) = N(b), so we find that

δ([a]) = δ([bO]) = (−1)(N(bO)−1)/2 = (−1)(logT4(P,Q) T4(P
′,Q′)−1)/2 ,

or, equivalently, we find that N(a) mod 4 equals (2).

Characters δε and ε Recall that the character δε exists when n ≡ 0, 2 mod 8
and the character ε exists when n ≡ 0, 6 mod 8. Again, by taking a field extension
if needed, we can assume without loss of generality that v = val2(#E(Fq)) ≥ 3
and that 8 | (q − 1). Notice that, if δ and ε do not exist simultaneously, then
we are necessarily on the surface of the 2-volcano, hence it takes at least one
step to go to curves E0 and E′0 on the floor. During this step the discriminant
becomes multiplied by a factor of 4. Hence, on the floor, we are certain that both
characters exist.

Now applying Theorem 8 form = 2 and n = 3 together with the compatibility
of the Tate pairing, and using the fact that for k ≡ 1, 3, 5, 7 mod 8 we have
k2 ≡ 1 mod 8, we know that the norm of an ideal b connecting E0 and E′0
satisfies

N(b) mod 8 = logT8(P,Q) T8(P ′, Q′) , (3)

for appropriately chosen points P,Q ∈ E0(Fq)[2∞] and P ′, Q′ ∈ E′0(Fq)[2∞].
The same reasoning as before then shows that [bO] = [a], where we can assume
N(bO) = N(b), hence we find

ε([a]) = ε([bO]) = (−1)(N(bO)2−1)/8 = (−1)((logT8(P,Q) T8(P
′,Q′))2−1)/8 ,

and similarly for δε.
We stress that, in general, we cannot conclude that N(a) mod 8 equals (3).

E.g., if n ≡ 6 mod 8, in the presence of ε but in the absence of δ, an ideal
class containing ideals having norm 1 mod 8 will also contain ideals having norm
7 mod 8. It is during the first step down the volcano that both congruence classes
become separated.
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4 Computing the characters for supersingular curves

We now turn our attention to supersingular elliptic curves over prime fields Fp
with p > 3. Recall that any such curve E/Fp has exactly p + 1 rational points
and its Frobenius satisfies π2 + p = 0, therefore O = EndFp

(E) has discriminant

∆O =

{
−4p if p ≡ 1 mod 4,
−p or − 4p if p ≡ 3 mod 4.

From genus theory, we see that cl(O) has non-trivial 2-torsion only in the former
case. So we will restrict our attention to p ≡ 1 mod 4, in which case O = Z[

√
−p].

There are two assigned characters: the Legendre character associated with p,
and δ. From the character relation (1) (see also Example 6), we see that these
coincide on cl(O), therefore it suffices to compute δ. Unfortunately, due to the
peculiar behaviour of supersingular elliptic curves over Fp2 , we cannot apply our
strategy of “extending the base field and going down the volcano”.

Instead, we can compute δ directly on the input curves, i.e. not involving
vertical isogenies. This is handled by the following theorem, which can be used
to compute δ in many ordinary cases, too. The proof is entirely self-contained,
although its flavour is similar to that of Section 3.

Theorem 10. Let q ≡ 1 mod 4 be a prime power and let E,E′/Fq be elliptic
curves with endomorphism ring O and trace of Frobenius t ≡ 0 mod 4, connected
by an ideal class [a] ∈ cl(O). Then δ is an assigned character of O, and if we
write

E : y2 = x3 + ax2 + bx resp. E′ : y2 = x3 + a′x2 + b′x (4)

then δ([a]) = (b′/b)(q−1)/4.

Proof. As t ≡ 0 mod 4, we have #E(Fq) = #E′(Fq) = q + 1− t ≡ 2 mod 4, and
therefore both curves contain a unique rational point of order 2. When positioned
at (0, 0), we indeed obtain models of the form (4). We point out that b(q−1)/4

does not depend on the specific choice of such a model: it is easy to check that
the only freedom left is scaling a by u2 and b by u4 for some u ∈ F∗q . Of course,

the same remark applies to b′(q−1)/4.
On E, the points (x0, y0) doubling to P = (0, 0) satisfy the condition

3x20 + 2ax0 + b

2y0
=
y0
x0
,

which can be rewritten as x0(x20 − b) = 0. Therefore these points are(√
b,±

√
b(a+ 2

√
b)

)
and

(
−
√
b,±

√
b(a− 2

√
b)

)
, (5)

from which we see that b is a non-square. Indeed, if we would have
√
b ∈ Fq,

then one of a ± 2
√
b would be a square in Fq because their product a2 − 4b is

not (since there is only one Fq-rational point of order 2). This would imply the
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existence of an Fq-rational point of order 4, contradicting #E(Fq) ≡ 2 mod 4.
The same reasoning shows that b′ is a non-square.

Choose a representative a of [a] having odd norm coprime to q. It suffices to
prove that

(−b′)(q−1)/4 =
(

(−b)(q−1)/4
)N(a)

(6)

(the reason for including the minus signs, which cancel out, will become apparent
soon). Indeed, both sides are primitive 4th roots of unity, whose ratio is either
1 or −1 depending on whether N(a) ≡ 1 mod 4 or N(a) ≡ 3 mod 4, as wanted.

Let ϕ : E → E′ denote the isogeny corresponding to a, where we note that
ϕ(P ) = P ′ because ϕ is defined over Fq. From (5), using that b is a non-square,
we see that we can characterize −b as x(Q) · x(πq(Q)), where Q denotes any of
the four halves of P . Similarly, −b′ equals x(Q′) · x(πq(Q

′)), with Q′ any of the
four halves of P ′ = (0, 0) ∈ E′. In particular, since ϕ(Q) is a half of ϕ(P ) = P ′,
we have −b′ = x(ϕ(Q)) · x(πq(ϕ(Q))).

Remark 11. Observe that x is the normalized Miller function f2,P , hence

(−b)(q−1)/4 = (x(Q) · x(πq(Q)))
(q−1)/4

=
(
f2,P (Q)1+q

)(q−1)/4
= f2,P (Q)

q2−1
4 ,

and similarly for (−b′)(q−1)/4, so proving (6) amounts to proving a compatibility
rule for a non-fully reduced 2-Tate pairing.

Denote by ±K1,±K2, . . . ,±K(N(a)−1)/2 the non-trivial points in kerϕ, say

with x-coordinates x1, x2, . . . , x(N(a)−1)/2 ∈ Fq. Besides P itself, the points map-
ping to P ′ are P ± K1, P ± K2, . . . , P ± K(N(a)−1)/2, and an easy calculation
shows that the x-coordinates of these points are b/x1, b/x2, . . . , b/x(N(a)−1)/2.
This implies that the function

x

(N(a)−1)/2∏
i=1

x− b
xi

x− xi

2

viewed on E has the same divisor as x ◦ ϕ, therefore both functions are propor-
tional. To determine the constant involved, we can assume that our curve E′ is
obtained through an application of Vélu’s formulae [52], composed with a trans-
lation along the x-axis that positions P ′ at (0, 0). From [24, Rmk. 8.1] we then
see that x ◦ ϕ = g(x)/h(x) with

h(x) =

(N(a)−1)/2∏
i=1

(x− xi)2

and with g(x) a degree-N(a) polynomial with leading coefficient N(a)−3(N(a)−
1) + 2(N(a)− 1) = 1. So the involved constant is just 1, i.e. equality holds.
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We then compute

−b′ = x(ϕ(Q)) · x(πq(ϕ(Q)))

= (x ◦ ϕ)(Q) · (x ◦ ϕ)(πq(Q))

= −b

(N(a)−1)/2∏
i=1

(
√
b− b

xi
)(−
√
b− b

xi
)

(
√
b− xi)(−

√
b− xi)

2

=
(−b)N(a)(∏(N(a)−1)/2
i=1 xi

)4 ,
and (6) follows by raising both sides to the power (q − 1)/4. ut

5 Impact on DDH-CGA and countermeasures

5.1 Impact on decisional Diffie–Hellman for class group actions

It is clear that any non-trivial character χ (or δ, ε, δε) can be used to determ-
ine whether a sample (E(1) = [a] ? E,E(2) = [b] ? E,E(3)) is a true Diffie-
Hellman sample, i.e. whether E(3) = [a · b] ? E or not. For instance, one could
compute χ([a]) in two different ways, namely as χ(E,E(1)) and compare with
χ(E(2), E(3)). Similarly, one could compute χ([b]) in two ways, as χ(E,E(2)) as
well as χ(E(1), E(3)). If the sample is not a true Diffie–Hellman sample this will
be detected with probability 1/2. In many cases we have more than one char-
acter available, so if we assume that s < µ linearly independent characters are
computable (see below for the complexity of a single character), this probability
increases to 1− 1/2s.

Supersingular curves For supersingular curves over Fp with p ≡ 1 mod 4,
the character δ exists and is always non-trivial (see Example 6). As shown in
Section 4, computing this character requires computing a 2-torsion point, one
inversion and one exponentiation in Fp, so in this case, DDH-CGA can be broken
in time O(log p ·Mp) with Mp the cost of a multiplication in Fp.

Ordinary curves For ordinary curves, we will order the characters (if they ex-
ist) according to their complexity: δ, ε, δε, χmi for i = 1, . . . , r. From genus the-
ory, it follows that at most one of the µ characters is trivial (since # cl(O)[2] =
2µ−1), so if the easiest to compute character is trivial, we immediately con-
clude that the second easiest to compute character is non-trivial. To determine
the complexity, assume that m is an odd prime divisor of ∆O. To be able to
apply our attack, we first need to find the smallest extension Fqk such that
valm(#E(Fqk)) ≥ 1. Since m | ∆O | t2 − 4q, we conclude that the matrix of
Frobenius on E[m] is of the form(

λ 1
0 λ

)
or

(
λ 0
0 λ

)
,
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with λ2 ≡ q mod m. In both cases, for k = ord(λ) ∈ Z/(m)∗, we conclude that
valm(#E(Fqk)) ≥ 1. Furthermore, since the determinant of the k-th power equals
qk ≡ λ2k ≡ 1 mod m, we conclude that µm ⊂ Fqk and thus the m-Tate pairing is
defined over Fqk . We see that in the worst case, we have k = m− 1. Computing
the m-Tate pairing requires O(logm · Mqk) which is O(m1+ε · Mq) assuming
fast polynomial arithmetic and using k < m. The cost of walking down the
volcano [49] over Fqk in the worst case is given byO(h·(m3+ε·log q)·Mq) assuming
fast polynomial arithmetic (and k < m−1), with h a bound on the height of the
volcano. Once we reached the floor of the volcano, we need to solve the equation
mv−1Q = P , with P an m-torsion point, and v = valm(#E(Fqk)). This can
be computed deterministically using division polynomials, or probabilistically as
follows: first generate a point Q1 of order mv, and compute P1 = mv−1Q1. Since
we are on the floor, E(Fq)[m] is cyclic, so there exists a k with P = kP1. Then
Q = kQ1 is a solution. This randomized approach can be done in expected time
O(m3+ε · log q ·Mq).

As remarked before, we note that in the majority of cases (probability roughly
1− 1/m), the height of the m-volcano is zero and the complexity of the attack
is solely determined by the computation of the Tate pairing.

Computing the exact coset modulo cl(O)2 Genus theory shows that cl(O)2

equals the intersection of the kernels of the assigned characters. Thanks to the
class group relation (1), we are allowed to omit one character. If all remaining
characters have a manageable complexity then, given two elliptic curves E and
[a] ? E, this allows to determine completely the coset of cl(O)2 inside cl(O) to
which the connecting ideal class [a] belongs. In general, we can determine which
coset of C ⊃ cl(O)2 contains [a], where C denotes the intersection of the kernels
of the characters whose computation is feasible.

As an application, one can reduce the vectorization problem for cl(O) to that
for C. Indeed, one simply chooses an ideal class [b] belonging to the same coset
as [a], so that [a ·b] ∈ C, and one considers the vectorization problem associated
with E and [a · b] ? E = [b] ? ([a] ? E). After finding [a · b], one recovers [a] as
[b]−1 · [a · b]. In the optimal case where C = cl(O)2, this reduces the group size
by a factor 2µ−1. We emphasize that this reduction is classical; quantumly, such
a reduction follows from earlier work due to Friedl, Ivanyos, Magniez, Santha
and Sen [30], see [14, §2] for a more detailed discussion.

5.2 Implementation results

We implemented our attack in the Magma computer algebra system [5] and the
resulting code is given in the GitHub repository [18]. The main functions are
equipped with the names ComputeEvenCharacters, ComputeOddCharacter and
ComputeSupersingularDelta. We also use a very simple randomized method
to walk to the floor of the volcano in the function ToFloor. A more efficient
approach can be found in [49].
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To illustrate the code, we apply it to an example found in [25, Section 4]. In
particular, let

p = 7

 ∏
2≤`≤380
` prime

`

− 1

and consider the elliptic curve E : y2 = x3 +Ax2 + x with

A =108613385046492803838599501407729470077036464083728

319343246605668887327977789321424882535651456036725

91944602210571423767689240032829444439469242521864171 ,

then End(E) is the maximal order and E lies on the surface of a volcano of
height 2. By construction, the curve has Fp-rational subgroups of order ` with
` ∈ [3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723]. The discriminant is of the form
−4n with n ≡ 2 mod 8, so we will be able to compute the character δε.

The code first computes a random isogeny of degree 523 (easy to compute
since it is rational), to obtain the “challenge” E′ = [a] ? E. After going to a
degree 2 extension, it then descends the volcano to the floor, and on the floor,
it computes both δ as well as ε, from which it derives that δε(E,E′) = 1, which
is consistent with the fact that δε([a]) = δε(523) = 1.

5.3 Countermeasures

Since the attack crucially relies on the existence of 2-torsion in cl(O), the simplest
countermeasure is to restrict to a setting where cl(O)[2] is trivial, e.g. supersin-
gular elliptic curves over Fp with p ≡ 3 mod 4. This corresponds precisely to the
CSIDH setting [16], so our attack does not impact CSIDH.

Another standard approach is to work with co-factors: since all characters
become trivial on cl(O)2 we can simply restrict to elements which are squares,
i.e. in the Diffie-Hellman protocol one would sample [a]2 and [b]2.

Warning We advise to be much more cautious than simply squaring. Genus
theory gives the structure of cl(O)[2], but one can also derive the structure
of the 2-Sylow subgroup cl(O)[2∞] using an algorithm going back to Gauss
and analyzed in detail by Bosma and Stevenhagen [6]. Although our attack is
currently not refined enough to also exploit this extra information, we expect
that a generalization of our attack will be able to do so. As such, instead of
simply squaring, we advise to use as co-factor an upper bound on the exponent
of the 2-Sylow subgroup.

6 An exploration in higher dimension

The goal of this section is to convince the reader that the central idea behind our
attack naturally generalizes from elliptic curves to principally polarized abelian
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varieties (ppav) of any dimension g ≥ 1. A proper and complete generalization of
our work to arbitrary ppav’s is the subject of future research. In particular, we do
not claim to break a generalization of DDH-CGA (even though we believe that
such a break should be possible, once we acquire a better understanding of what
this generalization looks like; see Section 6.6 for a brief discussion). Our current
goal is merely to give a proof-of-concept example, which is about determining the
parity of the length of a secret chain of Richelot isogenies between the Jacobians
of two given genus-2 curves having appropriate 3∞-torsion.

6.1 Generalizing the main idea

As before, we work over a finite field Fq of characteristic p, we fix an integer m
coprime to p, and we let k denote the corresponding embedding degree. Then
on any ppav A/Fq one can consider the reduced Tate pairing

Tm : A(Fqk)[m]×A(Fqk)/mA(Fqk)→ µm : (P,Q) 7→ tm(P,Q)(q
k−1)/m ,

where tm denotes the non-reduced Tate pairing, taking values in F∗q/(F∗q)m. The
latter can be defined using Galois cohomology as outlined in [34, §3]. See also
the note by Bruin [10], who focuses directly on the reduced Tate pairing. If A
is a Jacobian, as will be the case in our example below, then one can avoid co-
homology and define tm (and hence Tm) using Miller functions as in Section 2.5,
see e.g. [10, 33]. We refer to the proof of Lemma 12 below for an illustration in
the specific case g = 2 and m = 3.

Crucially, this generalized Tate pairing continues to satisfy the properties of
bilinearity, non-degeneracy, Galois invariance and, most importantly, compatib-
ility in the following sense: if ϕ : A → A′ is an Fq-rational isogeny such that
ϕ̂ ◦ ϕ and ϕ ◦ ϕ̂ correspond to multiplication by a scalar d, then

Tm(ϕ(P ), ϕ(Q)) = Tm(P,Q)d (7)

for all P ∈ A(Fqk)[m] and Q ∈ A(Fqk)/mA(Fqk). We did not manage to pinpoint
an explicit reference for the compatibility property, but this is well-known to spe-
cialists: it follows immediately from the eponymous property of the Weil pairing
em : A[m]× A[m]→ µm, see [38, Lem. 16.2(a)], and the fact that Tm(P,Q) can
be computed as em(P, πq(Q

′)−Q′) for any Q′ ∈ A such that mQ′ = Q, see [34,
§3] or [10, §4].

Thus we can repeat our main reasoning. Concretely, let A be a ppav over Fq
and let m be an odd prime number such that A(Fq)[m∞] is non-trivial and cyclic,
say isomorphic to Z/(mv) for some v ≥ 1. We consider an Fq-rational isogeny
ϕ : A→ A′ to a known ppav A′/Fq and we assume that ϕ splits multiplication
by some unknown d ≥ 1, with the promise that d is coprime to m. Necessarily, we
then also have A′(Fq)[m∞] ∼= Z/(mv). We now pick a point P ∈ A(Fq)[m] \ {0}
and choose Q ∈ A(Fq)[mv] such that mv−1Q = P . Likewise, we pick a point
P ′ ∈ A′(Fq)[m] \ {0} and choose Q′ ∈ A′(Fq)[mv] such that mv−1Q′ = P ′.
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Both ϕ(Q) and Q′ are generators of A′(Fq)[mv], therefore Q′ = λϕ(Q) for some
unknown integer λ that is coprime to m. We see that

P ′ = mv−1Q′ = mv−1λϕ(Q) = λϕ(mv−1Q) = λϕ(P ),

so that
Tm(P ′, Q′) = Tm(λϕ(P ), λϕ(Q)) = Tm(P,Q)λ

2d.

The non-degeneracy of the Tate pairing, along with the cyclic structure of
A(Fq)[m∞], ensures that Tm(P,Q) 6= 1; this can be seen by mimicking the
proof of Theorem 8. Thus a discrete log computation reveals λ2d modulo m. In
particular it reveals the Legendre symbol

(
d
m

)
, exactly as in the elliptic curve

case.

6.2 An example

As an elementary application, we consider two genus-2 curves C, C ′ over a finite
field Fq of odd characteristic p, along with their Jacobians Jac(C), Jac(C ′), and
we assume that the latter are connected through a chain of Fq-rational (2, 2)-
isogenies of some unknown length r. Suppose we can find a prime m ≡ 3, 5 mod 8
different from p such that Jac(C)(Fq)[m∞] ∼= Jac(C ′)(Fq)[m∞] is cyclic. Then,
as shown above, we can use the Tate pairing Tm to reveal(

2r

m

)
=

(
2

m

)r
= (−1)r

and hence determine the parity of r.

6.3 3-torsion on Jacobians of genus-2 curves

We have implemented this for m = 3 under the assumption Jac(C)(Fq)[3∞] ∼=
Z/(3). The reason is that Jacobians of genus-2 curves admit a nice and explicit
description of their 3-torsion, which we can understand without resorting to
point counting algorithms (currently impractical over large prime fields, see also
Remark 15 below). Following [9], this works as follows: write C : y2 = f(x) for
a squarefree degree-6 polynomial f ∈ Fq[x] and assume that we can decompose

f(x) = g(x)2 + λh(x)3 (8)

for some non-zero constant λ ∈ Fq, some monic quadratic polynomial h ∈ Fq[x],
and some polynomial g ∈ Fq[x] of degree at most 3. Let α1, α2 ∈ Fq be the roots
of h and let ∞1,∞2 denote the two points of C at infinity. The divisor

D = (α1, g(α1)) + (α2, g(α2)) − ∞1 − ∞2

is Fq-rational and its class D is 3-torsion because (g(x) − y) = 3D. Note that
D is non-trivial, because the Riemann-Roch space h0(C,∞1 +∞2) is spanned
by 1, x, so all principal divisors of the form P1 +P2 −∞1 −∞2 satisfy P1, P2 =
(α,±f(α)), which D does not. Also note that the inverse class −D is represented
by (α1,−g(α1)) + (α2,−g(α2)) − ∞1 − ∞2, so it can be viewed as the 3-torsion
point corresponding to the decomposition f(x) = (−g(x))2 + λh(x)3.
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Lemma 12. Consider a curve C : y2 = f(x) with f ∈ Fq[x] squarefree of
degree 6 and assume that q ≡ 1 mod 6 (so that the embedding degree is 1). Let
D ∈ Jac(C)(Fq)[3] arise from a decomposition f(x) = g(x)2 + λh(x)3 as above.
Then

T3(D,D) =

(
2λ

resx(g, h)

)(q−1)/3

,

where resx(g, h) denotes the resultant of g and h.

Proof. This adapts and specializes an argument from [12, Lem. 15]. It suffices to
show that

t3(D,−D) ≡ 4λ2 resx(g, h)

modulo (F∗q)3. Rather than by D, let us represent D by the equivalent divisor
D−(x−c), for some c ∈ Fq\{α1, α2}. Then (g(x)−y)/(x−c)3 is a corresponding
Miller function. The evaluation of this function at the divisor ∞1 +∞2 equals
that of the reciprocal function

g(1/x)− y/x3

(1/x− c)3
=
x3g(1/x)− y

(1− cx)3

on the reciprocal curve y2 = x6f(1/x) at the divisor 01 + 02 above x = 0. This
gives (lc(g)−y(01))(lc(g)−y(02)) = (lc(g)−y(01))(lc(g)+y(01)) = lc(g)2−lc(f) =
λ, where ‘lc’ stands for the leading coefficient. Thus by evaluating our Miller
function at the representant (α1,−g(α1)) + (α2,−g(α2))−∞1 −∞2 of −D we
find

t3(D,−D) ≡ (g(α1) + g(α1))(g(α2) + g(α2))

λ(α1 − c)3(α2 − c)3
≡ 4λ2g(α1)g(α2)

which indeed equals 4λ2 resx(g, h), as claimed. ut

In the proof of [9, Lem. 3] it is argued that every point of order 3 on Jac(C)
that is representable by a so-called “weight two” divisor P1 + P2 −∞1 −∞2,
where P1 and P2 are affine points on C, comes from a decomposition of the
form (8). Unfortunately, this is not the case for 3-torsion points that are “weight
one”, i.e., which are represented by a divisor of the form P −∞i for some affine
P and for some i ∈ {1, 2}. However, the curves C admitting such a weight-one
3-torsion point are very rare. Moreover, it can be shown, see [9, Lem. 1], that
every order-9 subgroup of Jac(C)[3] can be generated by two weight-two divisor
classes.

Lemma 13. Consider a curve C : y2 = f(x) with f ∈ Fq[x] squarefree of
degree 6 and suppose that q ≡ 1 mod 6. Assume that f(x) admits a decompos-
ition f(x) = g(x)2 + λh(x)3 for some λ ∈ F∗q , some monic quadratic polyno-
mial h ∈ Fq[x], and an at most cubic polynomial g ∈ Fq[x]. Assume further-
more that this decomposition is unique up to replacing g(x) by −g(x) and that
(2λ/ resx(g, h))(q−1)/3 6= 1. Then Jac(C)(Fq)[3∞] ∼= Z/(3).
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Proof. If there is a decomposition f(x) = g(x)2 + λh(x)3 which is unique up to
multiplying g(x) by −1, then Jac(C)(Fq)[3] ∼= Z/(3) by the discussion preceding
the statement of this lemma. The desired conclusion then follows from the non-
degeneracy of the Tate pairing, along with Lemma 12. ut

6.4 Richelot isogenies

As mentioned, we consider (2, 2)-isogenies between Jacobians of genus-2 curves,
i.e., separable isogenies whose kernel is isomorphic to Z/(2)×Z/(2) and on which
the 2-Weil pairing becomes trivial. Such isogenies are also known as Richelot
isogenies. They admit the following explicit description [8, 47]. As before, we
consider a genus-2 curve C : y2 = f(x) with f ∈ Fq[x] squarefree of degree 6.
The Fq-rational (2, 2)-subgroups of Jac(C) are in 1-to-1 correspondence with the
quadratic splittings of f , by which we mean factorizations of the form

f(x) = g1(x)g2(x)g3(x), gi ∈ Fq[x] of degree 2,

considered up to scaling the gi’s with λi ∈ Fq such that λ1λ2λ3 = 1. More
concretely, if we write

gi(x) = ci2x
2 + ci1x+ ci0 = ci2(x− αi1)(x− αi2),

then the corresponding (2, 2)-subgroup consists of the classes of

(αi1, 0) + (αi2, 0)−∞1 −∞2

for i = 1, 2, 3, along with the neutral element of Jac(C). If

δ =

∣∣∣∣∣∣
c10 c11 c12
c20 c21 c22
c30 c31 c32

∣∣∣∣∣∣
is non-zero then the separable isogeny ϕ emanating from Jac(C) having this
subgroup as its kernel takes us to the Jacobian of the curve

y2 = h1(x)h2(x)h3(x)

with hi = δ−1(g′jgk−gjg′k) for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). Note that this
curve very naturally comes equipped with a quadratic splitting, given by the
factors h1, h2, h3, which corresponds to the kernel of the dual isogeny ϕ̂.

Remark 14. A few remarks are in order. (i) When computing a chain of Richelot
isogenies, one might exceptionally run into an imaginary hyperelliptic curve, i.e.,
one whose right-hand side f has degree 5. In this case there is a unique point
∞ at infinity, and the “quadratic splittings” correspond to factorizations of f
into two quadratic polynomials and one linear polynomial ci1x+ ci0, which has
αi1 = −ci0/ci1 as its unique root. By letting ∞1 = ∞2 = ∞, defining ci2 = 0
and reading (αi2, 0) as ∞, the above descriptions of the (2, 2)-subgroup and the
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(2, 2)-isogeny corresponding to this quadratic splitting remain valid. (ii) Ignoring
the leading factor δ−1 in the definition of the hi’s may amount to replacing the
codomain curve by a non-trivial twist. This is not a problem when working over
Fq, as is done in the hash function from [13], for instance. But in our application
it is crucial to stick to isogenies defined over Fq, therefore the factor must be
included. (iii) If δ = 0 then the formula fails and it can be argued that the
codomain of ϕ is not a Jacobian. Instead, it geometrically splits as a product
of two elliptic curves. These curves may not be defined over Fq, i.e., we may
be dealing with a conjugate pair of elliptic curves over Fq2 , in which case the
codomain is a Weil restriction.

6.5 Implementation

Concretely, we have implemented the following experiment, for which Magma
code can be found in [18]. We fix a “cryptographically sized” prime number
p ≡ 1 mod 6 and repeatedly construct

f(x) = (x− α1)(x− α2)(x− α3)(x− α4)(x− α5)(x− α6) (9)

for randomly sampled pairwise distinct αi ∈ Fp, until f(x) admits a decompos-
ition

f(x) = (b1x
3 + b2x

2 + b3x+ b4)2 + b5(x2 + b6x+ b7)3 (10)

over Fp which is unique up to changing all signs of b1, . . . , b4 and which is such
that (

2b5/ resx(b1x
3 + b2x

2 + b3x+ b4, x
2 + b6x+ b7)

)(p−1)/3 6= 1.

Finding all decompositions of the form (10) can be done through a Gröbner
basis computation in the polynomial ring Fp[b1, . . . , b7]. Lemma 13 then tells
us that the resulting genus-2 curve C : y2 = f(x) satisfies Jac(C)(Fp)[3∞] ∼=
Z/(3). Moreover, by having chosen f(x) as in (9), we ensure that it admits many
quadratic splittings, hence there are many Fp-rational (2, 2)-isogenies emanating
from C. To be more specific: the number of such isogenies is 15.

Remark 15. There are, of course, alternative strategies for checking whether
val3(# Jac(C)(Fp)) = 1, for instance by enumerating Jac(C)[9]. But the above
method seems the most efficient; note that first computing # Jac(C)(Fp) and
then determining its 3-valuation is not an option with the current state-of-the-
art in point counting.

Our code then picks a random quadratic splitting, it computes the codomain
curve of the corresponding Richelot isogeny, and it repeats this r times, to end
up with a curve C ′ : y2 = f ′(x) whose Jacobian is connected to Jac(C) by
means of a length-r chain of Fp-rational (2, 2)-isogenies. We then look for a
decomposition of f ′(x) similar to (10), which corresponds to an order-3 point
P ′ ∈ Jac(C ′)(Fp). Similarly, the decomposition (10) already provided us with an
order-3 point P ∈ Jac(C)(Fp). The code then verifies that we can indeed find
r mod 2 as

logT3(P,P ) T3(P ′, P ′)
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with T3(P, P ) and T3(P ′, P ′) computed as in Lemma 12.

For simplicity, the code given in the GitHub repository [18] ignores the follow-
ing events, each of which occurs with probability o(1/p), so there is no practical
issue when the code is ran in large characteristic. Firstly, we ignore that δ could
be 0 in some step; in other words, we assume that all ppav’s in our chain are
Jacobians. Secondly, we assume that we never hit an imaginary hyperelliptic
curve, i.e., we are always dealing with degree-6 polynomials. Thirdly, we as-
sume that Jac(C ′)(Fq)[3] is generated by a weight-two divisor class, so that we
can indeed find a decomposition of the form (10) for f ′(x). Note that it would
be easy to drop the second assumption, by modifying our code along the lines
of Remark 14(i) above. Similarly, the third assumption could be dropped by
extending our chain with a few extra Richelot isogenies if needed.

For practical reasons, backtracking is tolerated. E.g., at step r0 we are allowed
to pick the quadratic splitting corresponding to the dual of the isogeny from
step r0 − 1. The reason is that we cannot expect the polynomials f(x) that we
encounter along the way to keep splitting as nicely as in (9), i.e., the structure of
the Fp-rational 2-torsion can vary. Consequently, our random quadratic splitting
may need to be taken from a set having a smaller size than 15, and tolerating
the dual isogeny ensures that this set is always of size at least 1. Since r is
chosen very large, our path of (2, 2)-isogenies is expected to contain many non-
backtracking segments of considerable length. In any case, dual steps or not, the
theory predicts – and experiment confirms – that we can determine the parity
of r by computing Tate pairings.

6.6 Higher-genus genus theory?

It seems reasonable that there exist interesting families of higher-dimensional
ppavs for which the general strategy from Section 6.1 can again be turned into
a method for evaluating certain ‘quadratic characters’ in a secret ‘class of hori-
zontal isogenies’ connecting two public ppavs A and A′, thereby breaking a gen-
eralization of DDH-CGA. One good candidate is the family of ordinary ppavs
with maximal endomorphism ring OK in some CM-field K. This family comes
equipped with a free and transitive isogeny-wise action of the Shimura class
group C(K); see [28, §2] and [34, §5] as well as their pointers to [45]. We did
not attempt to elaborate this in any detail, but several challenges are imme-
diate, such as understanding the quadratic characters of C(K) and controlling
the cyclicity of A(Fq)[m∞], which in the elliptic curve case was done by walking
to the floor of an isogeny volcano. Note that the structure of isogeny graphs of
higher-dimensional ordinary ppavs is much more subtle than their elliptic curve
counterparts [7] so, alternatively, one may want to find a workaround for this
cyclicity requirement, along the lines of Appendix A, or by working with the
Weil pairing as in [15].
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7 Conclusion

We showed how the characters defined by genus theory for the class group cl(O)
can be computed from the group action of cl(O) on È `q(O, t), knowing only the
equations of two elliptic curves E and E′ = [a] ? E, for an unknown ideal class
[a]. For a character χ associated to the prime divisor m | ∆O, the complexity
is exponential in the size of m, and it is thus efficiently computable only for
smallish m. However, since only one such character is required to break DDH
for class group actions, we conclude that for a subset of density 1 of ordinary
curves, and for all supersingular curves over Fp with p ≡ 1 mod 4, DDH-CGA
(without appropriate countermeasures) is broken. Note that CSIDH [16] is not
affected, since it relies on supersingular elliptic curves over Fp with p ≡ 3 mod 4.
We have also shown that the main ideas behind these results can be used to tackle
related questions on abelian varieties of arbitrary dimension. Our current results
however, are only the first tiny steps towards a proper and full generalization,
which is the subject of future research.

The main, quite surprising, insight of this paper is that the structure of
the class group cl(O) does actually matter, and cannot be assumed to be fully
hidden when represented as È `q(O, t) under the class group action ?, not even
classically. Philosophically, one might argue that this is inherently caused by the
fact that the structure of cl(O)[2] is easily computable. As such, it is imperative
to analyze the following two cases which also give partial information about the
class group cl(O):

– As already mentioned in Section 5.3, the algorithm described by Bosma and
Stevenhagen [6] determines the structure of the 2-Sylow group cl(O)[2∞].
Can our attack be extended to take this extra information into account?

– The class number formula expressing the class number of a suborder O in
terms of the class number of the maximal order OK and the conductor c

h(O) =
h(OK)c

[O∗K : O∗]
∏
p|c

(
1−

(
∆OK

p

)
1

p

)
,

can be used to derive certain prime factors of h(O) without knowing h(OK).
For instance, in the case of CSIDH with p ≡ 3 mod 8 where O = Z[

√
−p], the

above formula implies that h(O) is divisible by 3. Can an attack be devised
where such factors are exploited?

Finally, we note that in most settings the exact structure of cl(O) is unknown,
so the usual approach of restricting to a large prime order subgroup does not
apply. As a precaution, we therefore advise to work with supersingular curves
E/Fp with p ≡ 3 mod 4, such that End(E) = OK , i.e. restrict to curves on the
surface as was done in the recent CSURF construction [11].
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[19] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. J. Math.
Cryptol., 14(1):414–437, 2020. http://nutmic2019.imj-prg.fr/confpapers/

OrientIsogGraph.pdf.
[20] Jean-Marc Couveignes. Hard homogeneous spaces, 1997. IACR Cryptology ePrint

Archive 2006/291, https://ia.cr/2006/291.
[21] David A. Cox. Primes of the form x2+ny2: Fermat, class field theory, and complex

multiplication. Pure and Applied Mathematics. Wiley, second edition, 2013.
[22] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In Crypto, volume 1462 of
Lecture Notes in Computer Science, pages 13–25. Springer, 1998. https://ia.

cr/1998/006.
[23] ECRYPT – CSA. Algorithms, key size and protocols report (2018),

2018. Available at https://www.ecrypt.eu.org/csa/documents/D5.

4-FinalAlgKeySizeProt.pdf.
[24] Luca De Feo. Fast algorithms for towers of finite fields and isogenies. 2010. PhD

thesis.
[25] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical key exchange

from ordinary isogeny graphs. In Asiacrypt (3), volume 11274 of Lecture Notes
in Computer Science, pages 365–394. Springer, 2018. https://ia.cr/2018/485.

[26] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersin-
gular elliptic curves over Fp. Designs, Codes and Cryptography, 78(2):425–440,
2016. https://arxiv.org/abs/1310.7789.

[27] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, 1976.

[28] Bogdan Dina, Sorina Ionica, and Jeroen Sijsling. Isogenous hyperelliptic and
non-hyperelliptic jacobians with maximal complex multiplication, 2021. preprint
available at https://arxiv.org/abs/2104.04919.

[29] Mireille Fouquet and François Morain. Isogeny volcanoes and the SEA algorithm.
In Claus Fieker and David R. Kohel, editors, ANTS-V, volume 2369 of Lecture
Notes in Computer Science, pages 276–291. Springer, 2002.
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licacions Matemàtiques, 51:165–180, 2007.

[41] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In FOCS, pages 458–467. IEEE Computer Society,
1997.

[42] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In Crypto, volume 5157 of Lecture Notes in
Computer Science, pages 554–571. Springer, 2008. https://ia.cr/2007/348.

[43] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies. IACR Cryptology ePrint Archive, 2006:145, 2006.
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[51] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory,

volume 163 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, third edition, 2015. Translated from the 2008 French edition by
Patrick D. F. Ion.
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Sup., 2:521–560, 1969.

A Not walking to the floor

As explained in Section 3, our approach to computing χ(E,E′) is to take an
arbitrary walk to the floor of the respective m-isogeny volcanoes of E and E′. In
fact, one can stop walking down as soon as one reaches a level where the m∞-
torsion is sufficiently unbalanced. We illustrate this by means of the following
modification of Theorem 8 (for n = 1), which is likely to admit further general-
izations. Here, we should mention recent follow-up work [15], which shows that
one can avoid walking to the floor by resorting to the Weil pairing instead of the
Tate pairing (although this approach may come with extra costs [15, §4]).
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Theorem 16. Let E/Fq be an ordinary elliptic curve and let m be a prime
divisor of q− 1. Assume that E is not located on the crater of its m-volcano and
that

E(Fq)[m∞] ∼=
Z

(mr)
× Z

(ms)

for some r > s + 1. Let P ∈ E(Fq)[m] \ {0} be such that there exists a point
Q ∈ E(Fq) for which mr−1Q = P . Then the reduced Tate pairing

Tm(P, ·) : E(Fq)/mE(Fq)→ µm : X 7→ Tm(P,X) (11)

is trivial if and only if X belongs to E[ms] mod mE(Fq). In particular, Tm(P,Q)
is a primitive m-th root of unity which, for a fixed P , does not depend on the
choice of Q.

Proof. The assumption m | (q − 1) implies that µm ⊂ Fq. As explained in [2,
IX.7.1], the kernel of Tm(P, ·) is a codimension 1 subspace of E(Fq)/mE(Fq),
when viewed as a vector space over Fm. Therefore it suffices to prove that
Tm(P, ·) is trivial on E[ms] mod mE(Fq), because the latter space indeed has
codimension 1. More precisely, it has dimension 0 if s = 0 and dimension 1 if
s ≥ 1.

Now, since we are not on the crater, we know from Theorem 7 that there
exists an elliptic curve E′/Fq and an Fq-rational m-isogeny ϕ : E′ → E such
that E′(Fq)[m∞] ∼= Z/(mr−1)× Z/(ms+1). We note:

– E[ms] ⊂ ϕ(E′[ms+1]) ⊂ ϕ(E′(Fq)), hence each X ∈ E[ms] can be written
as ϕ(X ′) for some X ′ ∈ E′(Fq).

– The kernel of the dual isogeny ϕ̂ : E → E′ equals 〈P 〉, as otherwise E′

would admit Fq-rational mr-torsion. Therefore P is the image of a point
P ′ ∈ E′[m] ⊂ E′(Fq).

We conclude that

Tm(P,X) = Tm(ϕ(P ′), ϕ(X ′)) = Tm(P ′, X ′)deg(ϕ) = Tm(P ′, X ′)m = 1,

as wanted. ut
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