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Abstract

A linearized spectral Galerkin/finite difference approach is developed for variable fractional-order nonlinear diffusion-
reaction equations with a fixed time delay. The temporal discretization for the variable-order fractional derivative is
performed by the L1-approximation. An appropriate basis function in terms of Legendre polynomials is used to
construct the Galerkin spectral method for the spatial discretization of the second-order spatial operator. The main
advantage of the proposed approach is that the implementation of the iterative process is avoided for the nonlinear
term in the variable fractional-order problem. Convergence and stability estimates for the constructed scheme are
proved theoretically by discrete energy estimates. Some numerical experiments are finally provided to demonstrate
the efficiency and accuracy of the theoretical findings.

Keywords: variable order diffusion, time delay, L1 difference scheme, Galerkin spectral method, convergence and
stability estimates

1. Introduction

Fractional theory of calculus of variable-order has recently attracted considerable attention as a powerful math-
ematical tool for modelling a wide range of discontinuities and nonlinear phenomena [1]. Because many physical
systems involve dynamics with memory effects whose behavior changes over time, even while transiting from one
fractional-order to another, interest in fractional operators moved increasingly to their variable-order counterparts.
The powerful practical implications of these variable-order objects, of course, come at the price of a more complicated
mathematical characterization. In contrast to integer-order and fixed fractional-order operators, the variable-order of
the fractional operators can be considered as a function of internal or external system variables such as, for example,
time, space, state of stress, system energy, temperature, or even a combination of the various variables. Such an ex-
tension from fixed-order to variable-order operators also allows the formulation of mathematical models in which the
order of the underlying governing equations can be modified using either the system’s instantaneous state or its history.
As a result, the corresponding model can evolve seamlessly to capture widely dissimilar dynamics without changing
the structure of the governing equations which describe the system’s response [2]. This emphasizes the evolutionary
nature of the variable-order fractional calculus formalism, which indeed can play a critical role in the simulation of
nonlinear dynamical models. Recognizing this untapped potential and unique capability of variable-order operators,
the scientific community has been intensively investigating applications of variable-order fractional calculus to the
modelling of physical and engineering systems [3–9].
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It is worth noting that viscoelasticity is certainly the playground of the most widespread applications of variable-
order fractional calculus since its appearance [10–12]. Although some examples of fractional operators with constant
fractional-order successfully mimic experimental test findings, these operators may not always be suited for character-
izing viscoelastic behavior. Indeed, nonlinear and complex phenomena occur in several materials, such as biological
tissues, polymers, and rubbers. These phenomena imply significant variations in the material’s mechanical charac-
teristics that cannot be described by fractional viscoelastic models of constant-orders [2]. Similar problems arise to
characterize the mechanical behavior of viscoelastic materials under variable environmental conditions, for instance,
changes in temperature or viscoelastic aging effects. As a result, variable-order fractional operators have recently been
proposed and utilized in a wide range of applications. For more comprehensive literature review on variable-order
fractional operators, associated differential equations and latest applications in natural sciences, we refer the reader to
Patnaik et al. [13], Samko [14], Sun et al. [1] and Ortigueira et al. [15].

Time-fractional diffusion equations serve as effective tools for modelling and simulation of various processes
with hereditary or memory features, such as anomalous diffusion transport, and hence attract considerable interest
[16–19]. Moreover, the theory, application, and implementation of several numerical approaches for the solution of
time-fractional differential equations have been proposed in [20–25]. However, the singularity of the solutions of
constant-order time-fractional diffusion equations at the beginning of time seems to be physically irrelevant to the
subdiffusive transport of the model. The fundamental reason why this phenomenon occurs lies in the incompatibility
between the global nature of the power law decaying tails and the locality of the classical initial condition at the
beginning of time [26, 27]. It was pointed out in [28] that the regularity of the solution to the variable-order Riemann-
Liouville fractional diffusion equation depends on the behavior of the variable order and its derivatives at time t = 0,
in addition to the standard smoothness assumptions. It was demonstrated that the solution to the problem exhibits full
regularity like its integer-order analogue if the variable order has an integer limit at t = 0, or it has a singularity at t = 0
like in the case of the constant-order time-fractional diffusion equations if the variable order has a non-integer value
at time t = 0. Accordingly, the variable-order fractional operators can eliminate the nonphysical singularity of the
solutions to constant-order time-fractional diffusion equations and produce solutions with full regularity. To the best of
our knowledge, up to now, there are no closed form solutions to variable-order fractional diffusion equations. The main
reason is that, due to the impact of variable fractional order, analytic techniques such as the Laplace transform cannot
be utilized to solve variable-order fractional models. Recently, there are several investigations on numerical schemes
to approximate the solutions of variable-order time-fractional diffusion equations in the literature. We mention here
the works by Tavares et al. [29], Chen et al. [30], Karniadakis et al. [31–33], Zheng et al. [34–36], Pang and Sun [37],
Wei et al. [38, 39] and Liu et al. [40]. Nevertheless, rigorous numerical and mathematical analysis of variable-order
fractional differential equations remains wide-open.

Most studies in the literature have been absorbed in the linear variable-order fractional diffusion equations without
delay [27, 41, 42]. Although the generalized nonlinear ones are much more useful in real applications, the existing
works on the numerical solutions of such problems are quite sparse. Fractional differential equations with delay
have recently played a significant role in modelling of many real areas of sciences. A consideration of a method
of backward differentiation formula type for solving them is done in [43]. Most recent studies investigated the finite
difference/spectral solutions of the fractional diffusion-reaction equations only in implicit schemes [23, 44, 45]. In this
work, we develop a linearized explicit finite difference/spectral Galerkin approach for nonlinear variable fractional-
order diffusion-reaction equations with a fixed time delay and a drift term, and discuss its stability and the convergence
rate. The main advantage of the proposed approach is that the implementation of the iterative process is avoided for
the nonlinear term in the variable fractional-order problem. More specifically, we consider the following nonlinear
variable order time-fractional reaction–diffusion equations with delay

∂β(t)u

∂tβ(t)
+ λ

∂u

∂t
= κ

∂2u

∂x2
+ f(u(x, t), u(x, t− s)) + g(x, t), 0 < β(t) ≤ β̄ < 1, x ∈ Ω, t ∈ I, (1.1)

with the initial-boundary conditions of the form{
u(x, t) = φ(x, t), x ∈ Ω, t ∈ [−s, 0],
u(a, t) = u(b, t) = 0, t ∈ I, (1.2)

where I = (0, T ] ⊂ R and Ω = (a, b) ⊂ R are the time and the space domains, respectively. The parameters κ, λ,
and s are positive constants. Throughout the paper, we assume that g is a continuous function and f is Lipschitz
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continuous with the Lipschitz constant L, that is,

|f(u1, v1)− f(u2, v2)| ≤ L (|u1 − u2|+ |v1 − v2|) , ∀ui, vi ∈ R.

In addition, we suppose that φ is a smooth function which vanishes at the endpoints of Ω.
The variable-order fractional integral operator 0I

β(τ)
τ , and the variable-order fractional Caputo operator ∂β(τ)

∂τβ(τ)
are

defined as [46, 47]

0I
β(τ)
τ u(τ) :=

1

Γ (β(τ))

∫ τ

0

u(r)

(τ − r)1−β(τ)
dr,

∂β(τ)

∂τβ(τ)
u(τ) := 0I

1−β(τ)
τ u′(τ) =

1

Γ (1− β(τ))

∫ τ

0

u′(r)

(τ − r)β(τ)
dr. (1.3)

The well-posedness of the linear hidden-memory variable–order Caputo time-fractional diffusion equations was dis-
cussed in [48, 49], and the space-dependent variable-order fractional Caputo case was discussed in [42]. The well-
posedness and the regularity of the solutions to Riemann–Liouville variable-order fractional nonlinear differential
equations were discussed in [50, 51]. As a special class of the problem under consideration, an initial boundary value
problem for the fractional delayed semilinear diffusion equation with the fractional Laplacian was discussed in [52].
The existence and uniqueness of mild solutions for the abstract time-space evolution equation with delay are investi-
gated by using the semigroup theory of operators and the monotone iterative technique under some quasi-monotone
conditions. The maximum principle for multi-term space-time variable-order Riesz-Caputo fractional diffusion equa-
tions with nonlinear source function was discussed in [53]. This principle was employed to show the uniqueness of
solutions of the variable-order Riesz-Caputo fractional diffusion equations and the continuous dependence of solu-
tions on initial-boundary value conditions. The existence of a solution to nonlinear equations with delay of type (1.1)
is a fundamental research question. However, we leave this as an open problem for future work. To the best of our
knowledge, we can construct a maximum principle for the problem under consideration by invoking the methodology
in [53] and by noticing the existence of a delay in (1.1)-(1.2). This can also be done by invoking the techniques of
Barrier analysis in [52]. In the meantime, we investigate the problem’s numerical solution and its convergence and
stability analysis.

The rest of the paper is arranged as follows. In Section 2, we construct the fully discrete finite difference/Galerkin
method for the above model equation. In Section 3, we prove that the fully discrete scheme is unconditionally stable,
and the numerical approximation is convergent. In Section 4, we perform two numerical examples to show the accuracy
and efficiency of the proposed scheme. Finally, we give the concluding remarks in Section 5.

2. The linearized numerical scheme

Let τ = s/Ns be the temporal step size, where Ns is a positive integer. Denote M =
⌈
T
τ

⌉
. Define tk = kτ , for

each −Ns ≤ n ≤M and uk = u(·, tk). The L1-approximation is defined as [54]

∂β(t)f(x, t)

∂tβ(t)

∣∣∣∣
t=tk

=

∫ tk

0

f ′(x, z)ω1−β(tk)(tk − z)dz

=
1

Γ(1− β(tk))

k∑
q=1

f(x, tq)− f(x, tq−1)

τ

∫ tq

tq−1

(tk − z)−β(tk)dz + rkτ

=
1

τβ(tk)Γ(2− β(tk))

k∑
q=1

akk−q (f(x, tq)− f(x, tq−1)) + rkτ ,

(2.4)

where ωβ(t)(t) = tβ(t)−1

Γ(β(t)) , t > 0, akq = (q + 1)1−β(tk) − q1−β(tk), for each q ≥ 0. Let f ∈ C2([0, T ];L2(Ω)). Then

the truncation error rkτ fulfills ‖rkτ ‖ ≤ Cτ2−β̄ , for each k = 0, 1, . . . ,M .
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Definition 1. Define [54]

Dβk

τ uk =
τ1−βk

Γ(2− βk)

k∑
q=1

akk−qδtu
q =

τ−β
k

Γ(2− βk)

k∑
q=0

bkk−qu
q, ∀k = 1, . . . ,M. (2.5)

In this expression, we define δtuq = uq−uq−1

τ and

bk0 = ak0 , bkk = −akk−1, bkk−q = akk−q − akk−q−1, for q = 1, . . . , k − 1.

The coefficients akq satisfy
1 = ak0 > ak1 > ak2 > · · · > akk > 0, (2.6)

and
(1− βk)(q + 1)−β

k

≤ akq ≤ (1− βk)q−β
k

.

According to (2.6) and [55], the following property is satisfied:(
Dβk

τ uk, uk
)
≥ 1

2
Dβk

τ (uk)2. (2.7)

The nonlinear source term is discretized and linearized by Taylor’s expansion. As a result, we get the following
time-discrete system

λ δtu
m +Dβm

τ um = κ
∂2um

∂x2
+ f(−um−2 + 2um−1, um−Ns) + gm, 1 ≤ m ≤M, ∀x ∈ Ω; (2.8)

um(x) = φ(x), −Ns ≤ m ≤ 0, x ∈ Ω.

We here introduce some fundamental properties of Jacobi polynomials. LetN be a positive integer. Denote P γ,ςq (y), γ
with ς > −1 as the q-th order Jacobi polynomial of indices γ, ς defined on (−1, 1). They satisfy the following three-
term-recurrence relation

P γ,ς0 (y) = 1,

P γ,ς1 (y) =
1

2
(2 + γ + ς)y +

1

2
(γ − ς),

P γ,ςq+1(y) =
(
Aγ,ςq y −Bγ,ςq

)
P γ,ςq (y)− Cγ,ςq P γ,ςq−1(y), if 1 ≤ q ≤ N,

where 

Aγ,ςq =
(2q + γ + ς + 1)(2q + γ + ς + 2)

2(q + 1)(q + γ + ς + 1)
,

Bγ,ςq =
(2q + γ + ς + 1)(ς2 − γ2)

2(q + 1)(q + γ + ς + 1)(2q + γ + ς)
,

Cγ,ςq =
(2q + γ + ς + 2)(q + γ)(q + ς)

(q + 1)(q + γ + ς + 1)(2q + γ + ς)
.

Let ωγ,ς(y) = (1− y)γ(1 + y)ς . Then, one has∫ 1

−1

P γ,ςq (y)P γ,ςj (y)ωγ,ς(t)dy = hγ,ςq δq,j , ∀q = 0, 1, 2, . . . ,

where δq,j is the Kronecker delta and

hγ,ςq =
2(γ+ς+1)Γ(q + γ + 1)Γ(q + ς + 1)

(2q + γ + ς + 1)q!Γ(q + γ + ς + 1)
, ∀q = 0, 1, 2, . . . .

For the special case γ = ς = 0, we get the Legendre polynomials Lr(t) = P 0,0
r (t). As a result, we introduce the

following space to provide adequate base functions satisfying the boundary conditions [56, 57]

W0
N = span {ϕs(x) : s = 0, 1, . . . , N − 2} ,
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where, for each x ∈ [a, b], the function ϕs is given by

ϕs(x) = Ls(x̂)− Ls+2(x̂) =
2s+ 3

2(s+ 1)
(1− x̂2)P 1,1

s (x̂),

where x̂ := 2x−b−a
b−a ∈ [−1, 1]. Next, we introduce the coefficients

dk =
λ

τ
+

τ−β
k

Γ (2− βk)
, b̂ki =

λ

τ
δi,k−1 −

τ−β
k

Γ (2− βk)
bkk−i.

Hence, the scheme (2.8) can be rewritten in the following equivalent form:

dmum − κ ∂
2um

∂x2
=

m−1∑
i=0

b̂mi u
i + f(−um−2 − 2um−1, um−Ns) + gm, ∀m = 1, . . . ,M.

The fully scheme includes the set of approximations ukN ∈ W0
N , satisfying the system

dk
(
ukN , υ

)
− κ

(
∂2

∂x2
ukN , υ

)
=
∑k−1
i=0 b̂

k
i

(
uiN , υ

)
+
(
INf(2uk−1

N − uk−2
N , uk−NsN ), υ

)
+
(
INg

k, υ
)
, ∀υ ∈ W0

N , ∀k = 1, . . . ,M,

ukN = π1,0
N φ(tk, x), −Ns ≤ k ≤ 0,

(2.9)

where π1,0
N is an appropriate projection operator and IN is the Lobatto-Gauss type Legendre interpolation operator.

The numerical solution can be expanded as

ukN =

N−2∑
m=0

ûkmϕm.

Lemma 2.1 (Lemma 4.2, [58]). The stiffness matrix S and the mass matrix M̄ which invoked later in (2.10) are
respectively a diagonal matrix and symmetric matrix with the nonzero elements. There elements can be specified as

sii = 4i+ 6, i = 0, 1, . . . ,

mij = mji =


b−a
2j+1 + b−a

2j+5 , i = j,

− b−a
2j+5 , i = j + 2.

Substituting this formula into (2.9) and taking υ = ϕk, we get the following matrix form representation of the
proposed scheme (

dk M̄ + κS
)
Uk = Kk−1 +Rk−1 +Gk, (2.10)

where 

sij =

∫
Ω

ϕ′i(x)ϕ′j(x)dx, S = (sij)
N−2
i,j=0 ,

mij =

∫
Ω

ϕi(x)ϕj(x)dx, M̄ = (mij)
N−2
i,j=0 ,

gk−1
i =

∫
Ω

ϕi(x)
(
INg

k
)

(x)dx,

Gk = (gk−1
0 , gk−1

1 , . . . , gk−1
N−2)>,

hk−1
i =

∫
Ω

ϕi(x)
(
INf(2uk−1

N − uk−2
N , uk−NsN )

)
(x)dx,

Rk−1 = (hk−1
0 , hk−1

1 , . . . , hk−1
N−2)>,

Uk = (ûk0 , û
k
1 , . . . , û

k
N−2)>,

Kk−1 = −
∑k−1
j=0 b̂

k
k−jM̄U j .
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3. Theoretical analysis of the fully discrete scheme

The goal of this section is to investigate the effectiveness of the proposed approach for approximating the solution
to problem (1.1)-(1.2). In the first subsection, we discuss the stability analysis and provide the stability theorem. In
the second subsection, we discuss the convergence analysis. We begin with introducing some technical lemmas that
will be of great importance in the following context.

3.1. Technical lemmas
This section introduces several lemmas that will be used in our analysis [see, Section 3 [58]]. In the sequel, C and

Cv will be used to denote generic positive constants that are independent of n, N , and τ and may vary depending on
the conditions. We shall also utilize the following notation

B(v, f) = κ (∂xv, ∂xf) . (3.11)

The orthogonal projection operator π1,0
N : H1

0 (Ω)→W0
N satisfies

B(v − π1,0
N v, f) = 0, v ∈ H1

0 (Ω), ∀ f ∈ W0
N .

We define the following semi-norms and norms for theoretical purposes [59]:

|v|B := B(v, v)1/2, (3.12)

‖v‖B := (‖v‖2 + |v|2B)1/2.

We recall the following three lemmas from [56].

Lemma 3.1. Let L be an arbitrary real number satisfying L > 1. Then, for any function w ∈ H1
0 (Ω) ∩HL(Ω), the

following estimate holds true

|w − π1,0
N w|B ≤ CN1−L‖w‖HL .

The following lemma and remark summarize the properties of the interpolation operator IN , see [44, 56, 58].

Lemma 3.2. Let L ≥ 1. If w ∈ HL(Ω) then

‖w − INw‖Hq ≤ CN
q−L ‖w‖HL , ∀0 ≤ q ≤ 1.

Remark 3.1. A smooth solution to a partial differential equation with fractional order does not always imply a smooth
source term, and vice versa. As a result, the regularity order L of the solution u differs from the regularity order r of
the source term g, i.e.

‖g − INg‖ ≤ CN−r ‖g‖Hr , ∀g ∈ Hr(Ω),

‖INg‖ ≤ C ‖g‖ .

The following discrete Grönwall inequality will be needed in our analysis later.

Lemma 3.3. Assume that {uk|k = 0, 1, · · · ,M} be non-negative sequence, and it satisfies

uk ≤ A+Bτ

k∑
s=1

us, k = 0, 1, · · · ,M,

then, when τ ≤ 1
2B , it holds that

uk ≤ A exp(2Bkτ), k = 0, 1, · · · ,M,

where A and B are non-negative constants.

The following lemma is a direct consequence of Young inequality and inner product properties.
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Lemma 3.4. Suppose that {ukN}Mk=1 ∈ W0
N , then it holds that(

δtu
k
N , u

k
N

)
≥ 1

2τ

(∥∥ukN∥∥2 −
∥∥uk−1

N

∥∥2
)
.

Lemma 3.5. Suppose that {ukN}Mk=1 ∈ W0
N , then it holds that(

Dβk

τ ukN , u
k
N

)
+ (δtu

k
N , u

k
N ) ≥ 1

2τ

(∥∥ukN∥∥2 −
∥∥uk−1

N

∥∥2
)

+
τ−β

k

2Γ(2− βk)

[∥∥ukN∥∥2 −
k−1∑
i=1

(akk−i−1 − akk−i)
∥∥uiN∥∥2 − akk−1

∥∥u0
N

∥∥2

]
.

Proof. A direct consequence of Lemma 3.4 and Eq. (2.7) gives that(
Dβk

τ ukN , u
k
N

)
+ (δtu

k
N , u

k
N ) ≥ 1

2τ

(∥∥ukN∥∥2 −
∥∥uk−1

N

∥∥2
)

+
1

2
Dβk

τ

∥∥ukN∥∥2
.

Hence, the result follows from Eq. (2.5).

Lemma 3.6. Suppose that {ukN}Mk=1 ∈ W0
N , then it holds that

k∑
p=1

(
‖upN‖

2 −
∥∥∥up−1

N

∥∥∥2
)

+

k∑
p=1

τ−β
p

Γ(2− βp)

[
‖upN‖

2 −
p−1∑
i=1

(app−i−1 − a
p
p−i)

∥∥uiN∥∥2 − app−1

∥∥u0
N

∥∥2

]

≥
(∥∥ukN∥∥2 −

∥∥u0
N

∥∥2
)

+
1

T βkΓ(1− βk)

k∑
i=1

∥∥uiN∥∥2
+
∥∥u0

N

∥∥2
k∑
p=1

τ−β
p

Γ(2− βp)
app−1.

Proof. Invoking (2.20) in [60], we similarly have that

I :=

k∑
p=1

(
‖upN‖

2 −
∥∥∥up−1

N

∥∥∥2
)

+

k∑
p=1

τ−β
p

Γ(2− βp)

[
‖upN‖

2 −
p−1∑
i=1

(app−i−1 − a
p
p−i)

∥∥uiN∥∥2 − app−1

∥∥u0
N

∥∥2

]

=

k∑
p=1

(
‖upN‖

2 −
∥∥∥up−1

N

∥∥∥2
)

+

k∑
p=1

p∑
i=1

τ−β
p

Γ(2− βp)
app−i

(∥∥uiN∥∥2 −
∥∥ui−1

N

∥∥2
)

=
(∥∥ukN∥∥2 −

∥∥u0
N

∥∥2
)

+

k∑
i=1

τ−β
k

Γ(2− βk)
akk−i

∥∥uiN∥∥2
+
∥∥u0

N

∥∥2
k∑
p=1

τ−β
p

Γ(2− βp)
app−1.

As
ak0 > ak1 > ak2 > · · · > akk−1 ≥ (1− βk)(k)−β

k

,

we see that

I ≥
(∥∥ukN∥∥2 −

∥∥u0
N

∥∥2
)

+
1

T βkΓ(1− βk)

k∑
i=1

∥∥uiN∥∥2
+
∥∥u0

N

∥∥2
k∑
p=1

τ−β
p

Γ(2− βp)
app−1.

3.2. Stability analysis
The weak formulation of the proposed method is as follows: find {umN}Mm=1 ∈ W0

N such that(
Dβm

τ umN , υN

)
+ λ(δtu

m
N , υN ) +B (umN , υN )

=
(
IN f(2um−1

N − um−2
N , um−NsN ), υN

)
+ (IN g

m, υN ) , ∀υN ∈ W0
N , (3.13)
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with
umN = π1,0

N ϕm, −Ns ≤ m ≤ 0.

It is a linear iterative approach, which means that we just need to find a solution to a system of linear equations at each
time level. The well-known Lax-Milgram lemma proves that the scheme is well-posed.

Now, assume that
{
ũkN
}M
k=1

is the solution to(
Dβm

τ ũmN , υN

)
+ λ(δtũ

m
N , υN ) +B (ũmN , υN )

=
(
IN f(2ũm−1

N − ũm−2
N , ũm−NsN ), υN

)
+ (IN g̃

m, υN ) , ∀υN ∈ W0
N , (3.14)

with initial conditions
ũmN = π1,0

N ϕm, −Ns ≤ m ≤ 0.

In the following theorem, we provide the stability with respect to the source function g.

Theorem 3.1. Assume that λ > 0, 1 ≤ m ≤M . Then, the fully discrete scheme (3.13) is unconditional stable, which
means that for all τ > 0, it holds that

∥∥umN − ũmN∥∥2 ≤ CC̃T

λ

m∑
s=1

‖gs − g̃s‖2,

where C̃ = exp
(

4
λ

(
1 + 7C2L2

)
T
)

is a positive constant, in which C is a generic positive constant independent on
τ and N .

Proof. Denote ηkN = ukN − ũkN . Subtracting (3.14) from (3.13), it holds that(
Dβk

τ ηkN , υN

)
+ λ(δtη

k
N , υN ) +B

(
ηkN , υN

)
=
(
IN f

(
2uk−1

N − uk−2
N , uk−NsN

)
− IN f

(
2ũk−1

N − ũk−2
N , ũk−NsN

)
, υN

)
+
(
IN g

k − IN g̃k, υN
)
. (3.15)

Using the ε-Young inequality and the Minkowski inequality side by side to the Lipschitz condition on f , we derive the
following by the aid of Remark 3.1,(

IN f(2uk−1
N − uk−2

N , uk−NsN )− IN f(2ũk−1
N − ũk−2

N , ũk−NsN ), υN

)
≤
∥∥∥IN (f(2uk−1

N − uk−2
N , uk−NsN )− f(2ũk−1

N − ũk−2
N , ũk−NsN )

)∥∥∥ ‖υN‖
≤ ε

2

∥∥∥IN (f(2uk−1
N − uk−2

N , uk−NsN )− f(2ũk−1
N − ũk−2

N , ũk−NsN )
)∥∥∥2

+
1

2ε
‖υN‖2

≤ ε

2
C2L2

(
‖2ηk−1

N − ηk−2
N ‖+ ‖ηk−NsN ‖

)2

+
1

2ε
‖υN‖2

≤ εC2L2‖2ηk−1
N − ηk−2

N ‖2 + εC2L2‖ηk−NsN ‖2 +
1

2ε
‖υN‖2

and (
IN g

k − IN g̃k, υN
)
≤ ε

2
C ‖gk − g̃k‖2 +

1

2ε
‖υN‖2.

Then, (3.15) becomes

(Dβk

τ ηkN , υN ) + λ(δtη
k
N , υN ) +B(ηkN , υN )

≤ 1

ε
‖υN‖2 + 4εC2L2‖ηk−1

N ‖2 + 2εC2L2‖ηk−2
N ‖2 + εC2L2‖ηk−NsN ‖2 +

εC

2
‖gk − g̃k‖2,

8



Invoking Lemma 3.4, Lemma 3.5 and taking υN = ηkN yield

(∥∥ηkN∥∥2 −
∥∥ηk−1
N

∥∥2
)

+
τ1−βk

λΓ(2− βk)

[∥∥ηkN∥∥2 −
k−1∑
i=1

(akk−i−1 − akk−i)
∥∥ηiN∥∥2 − akk−1

∥∥η0
N

∥∥2

]
+

2τ

λ
|ηkN |2B

≤ 2τ

λε
‖ηkN‖2 +

8ετC2L2

λ
‖ηk−1
N ‖2 +

4ετC2L2

λ
‖ηk−2
N ‖2 +

2ετC2L2

λ
‖ηk−NsN ‖2 +

τεC

λ
‖gk − g̃k‖2. (3.16)

Eliminating the positive term |ηkN |2B , replacing k by p in (3.16) and summing the result up for p from 1 to k give

k∑
p=1

(
‖ηpN‖

2 −
∥∥∥ηp−1
N

∥∥∥2
)

+

k∑
p=1

τ1−βp

λΓ(2− βp)

[
‖ηpN‖

2 −
p−1∑
i=1

(app−i−1 − a
p
p−i)

∥∥ηiN∥∥2 − app−1

∥∥η0
N

∥∥2

]

≤
(

2τ

λε
+

14ετC2L2

λ

) k∑
p=1

‖ηpN‖
2 +

τεC

λ

k∑
p=1

‖gp − g̃p‖2.

Let ε = 1. By the aid of Lemma 3.6, we get that

(∥∥ηkN∥∥2 −
∥∥η0
N

∥∥2
)

+
1

T βkΓ(1− βk)

k∑
i=1

∥∥ηiN∥∥2
+
∥∥η0
N

∥∥2
k∑
p=1

τ−β
p

Γ(2− βp)
app−1

≤
(

2τ

λ
+

14τC2L2

λ

) k∑
p=1

‖ηpN‖
2 +

τC

λ

k∑
p=1

‖gp − g̃p‖2. (3.17)

As η0
N = 0 and due to the positivity of the second term of the l.h.s of (3.17), we finally get that

∥∥ηkN∥∥2 ≤ 2

λ

(
1 + 7C2L2

)
τ

k∑
p=1

‖ηpN‖
2 +

CT

λ

k∑
p=1

‖gp − g̃p‖2.

An application of the Grönwall inequality (see Lemma 3.3) yields for τ ≤ 4
λ

(
1 + 7C2L2

)
that

∥∥ηkN∥∥2 ≤ CC̃T

λ

k∑
p=1

‖gp − g̃p‖2, C̃ = exp

(
4

λ

(
1 + 7C2L2

)
T

)
.

As a result, the scheme is unconditionally stable.

3.3. Convergence analysis
In this subsection, we use error estimates to analyze the convergence of the fully discrete scheme (3.13).

Theorem 3.2. Assume that λ > 0. Let um be the exact solution to (1.1) at time tm for m = −Ns, . . . ,M , and
let {umN}Mm=−Ns be the solution to (3.13). Assume that u ∈ C2

(
[0, T ];L2(Ω)

)
∩ C1

(
[0, T ];HL(Ω)

)
and g ∈

C ((0, T );Hr(Ω)). Then, it holds that

‖um − umN‖ ≤ C(N1−L +N−r + τ) , 1 ≤ m ≤M,

where C is a suitable positive constant independent of N and τ.

Proof. Let um−umN = emN = (um−π1,0
N um) + (π1,0

N um−umN )
∆
= ẽmN + êmN . The weak formulation of equation (1.1)

at time tm is given by

(C0 D
βm

t um, υN ) + λ(∂tu
m, υN ) +B (um, υN ) = (f(um, um−Ns), υN ) + (gm, υN ). (3.18)

9



Subtracting (3.13) from (3.18), then the error equation satisfies

(Dβm

τ êmN , υN ) + λ(δtê
m
N , υN ) +B(êN , υN )

∆
= Υm

1 + Υm
2 + Υm

3 + Υm
4 , (3.19)

where

Υm
1 =

(
INf(um, um−Ns)− INf(2um−1

N − um−2
N , um−NsN ), υN

)
,

Υm
2 =

(
f(um, um−Ns)− INf(um, um−Ns), υN

)
,

Υm
3 =

(
(Dβm

τ + λδt)π
1,0
N um − (C0 D

βm

t + λ∂t)u
m, υN

)
,

Υm
4 = (gm − INgm, υN ) .

We next estimate the right-hand terms Υm
1 , Υm

2 , Υm
3 and Υm

4 . For the first term Υm
1 , we have that

Υm
1 = (INf(um, um−Ns)− INf(2um−1 − um−2, um−Ns), υN )

+ (INf(2um−1 − um−2, um−Ns)− INf(2um−1
N − um−2

N , um−NsN ), υN ) (3.20)
∆
= Υm

11 + Υm
12.

Applying Taylor expansion, it holds that

f(um, um−Ns) = f(2um−1 − um−2, um−Ns) + (um − 2um−1 + um−2) f ′1 (ξ, um−Ns)

= f(2um−1 − um−2, um−Ns) + c̃uτ
2.

Moreover, by means of Hölder’s inequality and Young’s inequality, we have that

Υm
11 ≤ ‖INf(um, um−Ns)− INf(−um−2 + 2um−1, um−n)‖ ‖υN‖
≤ C‖f(um, um−Ns)− f(−um−2 + 2um−1, um−Ns)‖ ‖υN‖

≤ ε

2
c̃uτ

4 +
1

2ε
‖υN‖2, (3.21)

and

Υm
12 ≤ LC(‖2em−1

N − em−2
N ‖+ ‖em−NsN ‖)‖υN‖

≤ LC(‖2êm−1
N − êm−2

N ‖+ ‖êm−NsN ‖+ ‖2ẽm−1
N − ẽm−2

N ‖+ ‖ẽm−NsN ‖)‖υN‖

≤ 8ε

2
CL2‖êm−1

N ‖2 +
2ε

2
CL2‖êm−2

N ‖2 +
ε

2
L2‖êm−NsN ‖2 +

8ε

2
CL2‖ẽm−1

N ‖2 (3.22)

+
2ε

2
CL2‖ẽm−2

N ‖2 +
ε

2
CL2‖ẽm−NsN ‖2 +

1

2ε
‖υN‖2.

Additionally, owing to Lemma 3.1, we notice that

‖ẽm−1
N ‖2 ≤ C

C1
N2−2L‖um−1‖2L, ‖ẽm−2

N ‖2 ≤ C

C1
N2−2L‖um−2‖2L, ‖ẽ

m−Ns
N ‖2 ≤ C

C1
N2−2L‖um−Ns‖2L.

Then, (3.22) becomes

Υm
12 ≤ 4εCL2‖êm−1

N ‖2 + εCL2‖êm−2
N ‖2 +

ε

2
CL2‖êm−NsN ‖2 +

C

C1
N2−2L‖u‖2L +

1

2ε
‖υN‖2. (3.23)

Substituting (3.21) and (3.23) into (3.20), we can derive that

Υm
1 ≤

1

ε
‖υN‖2 + 4εCL2‖êm−1

N ‖2 + εCL2‖êm−2
N ‖2 +

ε

2
CL2‖êm−NsN ‖2 +

C

C1
N2−2L‖u‖2L +

ε

2
c̃uτ

2. (3.24)
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For the second term Υm
2 , by means of Hölder’s inequality, we see that

Υm
2 ≤

ε

2
CN−2r ‖u‖2r +

1

2ε
‖υN‖2 . (3.25)

For the third term Υm
3 , we have that

Υm
3 = ((Dβm

τ + λδt)π
1,0
N um − (C0 D

βm

t + λ∂t)π
1,0
N um, υN ) + ((C0 D

βm

t + λ∂t)π
1,0
N um − (C0 D

βm

t + λ∂t)u
m, υN )

= (π1,0
N ((Dβm

τ + λδt)u
m − (C0 D

βm

t + λ∂t)u
m), υN )− ((C0 D

βm

t + λ∂t)ẽ
m
N , υN ) (3.26)

∆
= Υm

31 + Υm
32.

Using (2.4) and Hölder’s inequality, we obtain that

Υm
31 ≤

ε

2
‖π1,0

N ((Dβm

τ + λδt)u
m − (C0 D

βm

t + λ∂t)u
m)‖2 +

1

2ε
‖υN‖2

≤ ε

2
C‖((Dβm

τ + λδt)u
m − (C0 D

βm

t + λ∂t)u
m)‖2 +

1

2ε
‖υN‖2

≤ ε

2
C1,uτ

2 +
1

2ε
‖υN‖2.

Furthermore, according to Lemma 3.1, we have that

Υm
32 ≤

ε

2
CN2−2L‖C0 D

βm

t um‖2L +
1

2ε
‖υN‖2

≤ ε

2
CN2−2L‖(C0 D

βm

t + λ∂t)u‖2L +
1

2ε
‖υN‖2.

Thus (3.26) becomes

Υm
3 ≤

ε

2
CN2−2L‖(C0 D

βm

t + λ∂t)u‖2L +
ε

2
C2,uτ

2 +
1

ε
‖υN‖2. (3.27)

For the fourth term Υm
4 , by invoking Remark 3.1, it holds that

Υm
4 ≤

ε

2
CN−2r ‖u‖2r +

1

2ε
‖υN‖2 . (3.28)

Substituting (3.24), (3.25), (3.27) and (3.28) into (3.19), we can infer that

(Dβm

τ êmN , υN ) + λ(δtê
m
N , υN ) +B(êN , υN )

≤ 5

2ε
‖υN‖2 + 4εCL2‖êm−1

N ‖2 + εCL2‖êm−2
N ‖2 +

ε

2
CL2‖êm−NsN ‖2 + G̃, (3.29)

where
G̃ = εC̃N2−2L

(
‖(C0 D

βm

t + λ∂t)u‖2L + ‖u‖2L
)

+ εC̃N−2r‖u‖2r + εC̃uτ
2.

Taking υN = êmN in (3.29) and applying (3.12), we can conclude that

(Dβm

τ êmN , ê
m
N ) + λ(δtê

m
N , ê

m
N ) + |êmN |2 ≤

5

2ε
‖êmN‖2 + 4εCL2‖êm−1

N ‖2 + εCL2‖êm−2
N ‖2 +

ε

2
CL2‖êm−NsN ‖2 + G̃.

Now, we can use the same methodology as in Theorem 3.1 to complete the proof.

4. Numerical verification

In this section, two numerical experiments are considered to demonstrate the effectiveness and convergence orders
of the scheme.
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Table 1: The rate of convergence and the errors versus τ and σ with N = 50 for example 1.

τ
σ = 2 σ = 1.5 σ = 1.1

Error Order Error Order Error Order
1/100 6.585× 10−4 −− 1.882× 10−4 −− 2.509× 10−5 −−
1/200 3.209× 10−4 1.037 2.537× 10−5 1.025 1.237× 10−5 1.020
1/400 1.570× 10−4 1.031 4.566× 10−5 1.019 6.122× 10−6 1.015
1/800 7.715× 10−5 1.025 2.260× 10−5 1.014 3.035× 10−6 1.012

1/1600 3.802× 10−5 1.021 1.121× 10−5 1.010 1.508× 10−6 1.009

Example 1. We consider the following nonlinear delay reaction-diffusion problem

∂β(t)u

∂tβ(t)
(x, t) +

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t)− 2u(x, t) +

u(x, t− 0.1)

1 + u2(x, t− 0.1)
+ g(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

u(x, t) = (1 + t)σ sin(π x), x ∈ Ω, t ∈ [−0.1, 0], β(t) =
2 + sin(t)

4
,

(4.30)

where g(x, t) is a given function such that problem (4.30) has the exact solution u(x, t) = (1 + t)σ sin(π x).

According to the assumptions on the solution u in Theorem 3.2, We can testify the numerical experiments at
σ = 2 but additionally we also run some numerical experiments for different values of σ not exceeds 2 for which
the conditions of Theorem 3.2 cannot be satisfied. So, we devote Table 1 to show the L2-errors and corresponding
convergence orders for σ = 2, 1.5, 1.1 with N = 50. These findings support the theoretically obtained convergence
order in time that was obtained in Theorem 3.2. Figure 1 shows the spatial convergence orders for various values of
σ at τ = 1/1600. Additionally, Figure 2 shows the space-time error functions with σ = 1.1, 1.5, 2, N = 50 and
τ = 1/2000.

Example 2. We investigate the following variable-order fractional equation, where the dynamics of the solution are
intriguing and exact solution is unknown

∂β(t)u

∂tβ(t)
(x, t)+λ

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t)+u(x, t)(1−u(x, t))(1+u(x, t−1.5)), x ∈ (−15, 15), t ∈ (0, 1], (4.31)

with the initial value u(x, 0) = e−2x2

. The variable orders β(t) is given by

β(t) = β(T ) + (β(0)− β(T ))

(
1− t

T
−

sin
(
2π
(
1− t

T

))
2π

)
.

For N = 100 and τ = 0.003, the behavior of the numerical solution to problem (4.31) is displayed in Figure 3
with λ = 0 and in Figure 4 with λ = 1 for the three cases:

(I) β(0) = 0.0 and β(1) = 0.9.

(II) β(0) = 0.5 and β(1) = 0.9.

(III) β(0) = 0.8 and β(1) = 0.9.

For λ = 0, we see that the solution for case (I) has initial weak singularities near t = 0, whereas the solution for
cases (II) and (II) is smooth near t = 0. For λ = 1, these observations do not appear, and the solution is smooth for all
considered cases.
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Figure 1: The rate of Convergence in the spatial direction with different σ at τ = 1/1600.

Figure 2: The absolute error function with σ = 1.1, 1.5, 2, N = 50 and τ = 1/2000.
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Figure 3: Behaviour of the solutions to model (4.31) with λ = 0, N = 100 and τ = 0.003.

Figure 4: Behaviour of the solutions to model (4.31) with λ = 1, N = 100 and τ = 0.003.

5. Conclusions and remarks

A numerical framework based on a combination of L1-difference approximation and Galerkin Legendre spectral
method is introduced to solve variable order subdiffusion equation with delay. The resulted scheme is linear despite
the nonlinearity of the problem under consideration. Standard techniques based on mathematical induction and dis-
crete energy estimates are handled to prove the unconditional estimates of convergence and stability. For the sake of
clearness, some numerical experiments are constructed to show the scheme’s efficiency by examining the convergence
order in both temporal and spatial directions, the absolute error for different time-fractional orders, and the numerical
solution’s physical behaviour.
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