
Implementing a Network-Aware Kubernetes
Scheduler on top of a Mesh Network

Jerico Moeyersons, Brecht Stamper, Bruno Volckaert and Filip De Turck
IDLab, Department of Information Technology

Ghent University - imec, Ghent, Belgium
Email: jerico.moeyersons@ugent.be

Abstract—A recent trend observed in the Kubernetes world
is trying to deploy a Kubernetes cluster entirely or partially to
the edge. When further looking into these edge environments,
it is often noted that wireless technologies are used. Kubernetes
is not designed to support these wireless network setups and
will have to be extended to run smoothly on these networks.
One of the most used network setups in edge environments is
a wireless mesh network. Therefore the main focus will be on
running Kubernetes on top of a wireless mesh network. Other
mesh networks will also be supported with a minimal set of
changes needed. The main goal of this paper is to list all the
problems encountered when running Kubernetes on top of a mesh
network and provide a framework of components and extensions
to solve these problems. The majority of these components will
be implemented, and demonstrations show that these components
are able to solve most of the listed problems when used in a
setup with some predefined restrictions. When deploying a demo
application with the proposed solution, the required bitrate is
observed 97 percent of the time compared to 42 percent with the
native Kubernetes scheduler.

Index Terms—Kubernetes, network, mesh network

I. INTRODUCTION

With the recent trend of deploying Kubernetes to the edge,
a lot of challenges of these deployments are discovered.
Some of them are for example running Kubernetes on low-
end hardware, network setup and how to manage a highly
distributed cluster. This paper will focus on the network setup
of a wireless mesh network. Running Kubernetes on top of a
wireless mesh network can be done without any modifications
but will have a lot of problems. The goal of this paper is to
give an overview of these problems and propose a framework
of components to solve these problems.

A Wireless Mesh Network (WMN) is a communications
network made up of radio nodes organized in a mesh topol-
ogy [1]. In a traditional WMN, mobility of the nodes is
expected to be relatively infrequent. It consists of three types
of nodes: mesh routers, mesh gateways, and mesh clients.
The mesh routers are responsible for routing and forwarding
network packets to their destination. Mesh clients connect to
mesh routers and can use the network without knowing the
underlying mesh topology. Mesh gateways are mesh routers
that connect the WMN to other networks, such as the public
internet.

The main benefits of using a wireless mesh network are
(1) all devices can communicate with each other, (2) self-
organization and configuration of the network, (3) the ability

to still work if one or some nodes fail, and (4) gateways
support external connectivity. The main downsides are (1)
latency/bandwidth dependent on distance and hops, which is
dynamic, and (2) shared medium access problems.

In order to extend Kubernetes, some native extensions points
were used, together with a modification to the internal routing
of a service resource. Kubernetes services are routed with
iptables rules, these are configured by the kube-proxy (more
options are available but iptables is used as the default one).
The used extensions points are: replacing or adding Kuber-
netes controllers, adding custom resources through Custom
Resource Definitions (CRDs) and extending the scheduler
controller through the scheduler framework. Extensions that
use this framework are called scheduler plugins. This allows
the scheduler to be easily extended without having to write
a new one and also supports multiple running plugins at the
same time.

The remainder of the paper is organized as follows. In
Section II, related work is discussed. Section III will give an
overview of the encountered problems and propose new com-
ponents to solve these problems. In Section IV, the previously
discussed components will be implemented and discussed in
detail. Then, in Section V, the proposed component setup will
be evaluated, followed by the discussion on which additions
are still required the support a fully dynamic mesh network.
Finally, some conclusions are made in Section VI.

II. RELATED WORK

In this section, the related work for this article is discussed
in two parts. In part one, network-aware routing extensions
in Kubernetes are discussed, followed by some of the more
promising papers regarding the end-to-end available through-
put in a mesh network in part two. The research was split into
these two parts since no papers were published concerning
running Kubernetes on a wireless mesh network at the time
of writing.

A. Network aware routing in Kubernetes

In towards network-aware resource provisioning [2] the
Kubernetes scheduler gets extended to take network bandwidth
and latency into account. The supported environment is a static
network with predefined available bandwidth. The available
bandwidth is only dependent on this predefined value after
subtracting the required bandwidth used by the pods already



deployed on that node. It only takes required bandwidth into
account when scheduling and does not enforce this later on.
The main focus of this paper is reducing the network latency
observed by deployed workloads. In this article, the main focus
will be on providing the requested bitrate and handling this
in a mesh network. Because of this, the proposed solution
of this paper was not used. However, the idea of abstracting
most logic out of the scheduler was used, this is to make the
scheduler as fast and straightforward as possible. This also has
the added benefit that separate components can be replaced in
the future without having to remake the scheduler.

In a network-aware scheduler plugin [3], a plugin is pro-
posed to extend the behavior of the scheduler to take network
information into account when scheduling. The environment
supported here is more extensive than the previous static one.
It adds support to store network weights between multiple
regions and zones by implementing a network topology CRD.
Bandwidth is also supported through the use of extended
resources, a native Kubernetes implementation of exposing
node-specific resources. Once pods are scheduled, the deci-
sions made by the scheduler are not persisted and enforced.
This could lead to unforeseen problems in the future. The
bandwidth requirements are also only node ingress and egress
specific and not more detailed such as node-to-node or node-
to-zone. This paper was used as the starting point of the
proposed component framework. Therefore a more detailed
look at what was used and what was not will be given next.
The first main similarity is the use of the scheduler framework
to make a scheduler plugin, this is currently the recommended
way to extend the scheduler, and the other approaches are dis-
couraged. The second similarity is the use of a CRD to abstract
the network topology. In this paper, the network topology
CRD is used to store network info between multiple zones and
regions. A similar approach will be used in this article and will
store network metrics between nodes within the same zone.
This allows the proposed solution to be partially merged in the
future and support both static networks combined with mesh
networks while still using a different optimized approach for
both use cases. The paper also introduces an appgroup CRD to
specify all the network requirements between nodes. This CRD
was not used since it requires modeling the entire application
data flow between all components. While we see the benefits
in this approach for more traditional server deployments, we
also think this approach is too complicated and restrictive for
edge deployments. Therefore, a new CRD will be proposed
that is easier to use and supports mesh routing.

Wojciechowski et al. [4] propose a network metrics-aware
Kubernetes scheduler (NetMARKS) powered by the Istio
service mesh. The underlying network is a static one connected
with cables. Instead of predefined bitrate requirements between
multiple components, the information gathered by the Istio
proxy is used. All pod traffic passes through at least one
of these proxies and allows the scheduler to calculate the
bitrate requirements dynamically. The biggest downside of this
approach is that pods need to be deployed before the bitrate
requirements are known. This introduces a problem in a mesh

network where there is possibly a high chance that the initial
deployment of pods will not offer the required bitrate. In this
case, the metrics gathered by Istio will not reflect the required
bitrate but the available bitrate. This approach, however, looks
very promising when combined with the proposed solution.
An initial bitrate requirement needs to be set in the proposed
solution, but once the initial deployment is done, a shift could
be made to use these dynamic metrics. This would allow the
user to set safe initial bitrate requirements, which would then
change over time to reflect the actual bitrate requirements.

B. End-to-end available throughput in a mesh network

Sarr et al. [5] propose a passive approach to estimate avail-
able bandwidth between neighboring nodes has been proposed.
It does this by monitoring channel usage, probabilistically
combining these values to take synchronization error into
account, and finally estimating collision probability between
each pair of nodes. This information is then spread out in
the network through to use of hello packets in the AODV
routing algorithm. However, it could easily be implemented
similarly in a different routing algorithm. This approach is
then later extended to support multi-hop bandwidth estimation.
The greatest difficulty in this approach is the need for channel
usage metrics. These metrics are not naively exposed by
the Linux kernel, and driver support will need to be added.
More research is also required to see if this approach actually
delivers the promised results and in which scenarios it does
not.

Venkatesh et al. [6] propose a modification to low-overhead
packet probing bandwidth estimation techniques to accurately
estimate end-to-end throughput while still maintaining the
original low-overhead and fast convergence of the original
algorithms. The results look promising but are obtained by
running tests in a simulated and controlled environment.
Further analysis would be needed before fully committing to
this algorithm.

This is not only the case for this paper but for most papers
published in this research topic [7]–[9]. They all suggest
a new bandwidth estimation technique or modification and
then continue to show some promising results in a simulated
controlled environment. However, most of them fail to deliver
real-world results and prove that their approach also works
in an uncontrolled environment. Therefore non of these ap-
proaches were used in this article.

One of the more recent trends observed is estimating
throughput through the use of artificial models. Seeing how
accurately these models are able to predict values in all kinds
of research fields, especially in very complex ones, their usage
seems ideal here. Munaye et al. [10] propose a deep learning-
based model to predict throughput in a UAV-assisted network.
Their model manages to estimate the actual throughput with
high accuracy and could potentially do the same in other
similar problems, such as estimating the throughput in a
mesh network. Samba et al. [11] propose a predictor that can
instantaneously predict the achievable bitrate (with reasonable
accuracy) in a cellular network between the operator and a



mobile node. This environment shares many problems with a
mesh network, such as a shared medium and dynamic moving
nodes. The main one it does not share is having to support
multi-hop paths. However, it is reasonable to say that this
approach could also work in a mesh network. Overall this
new trend seems very promising and could potentially solve
this problem in the near future.

III. SYSTEM OVERVIEW

This section is split into two parts. The first part will give an
overview of the problems generated by the setup and explain
the origin of these problems. The second part will then list the
new components needed to solve these problems. The details
and actual implementation of these components are explained
in Section IV.

A. Problems

This section explains the most important problems encoun-
tered in this article. Some of these problems are inherent to
mesh networks, while others are only encountered when trying
to run Kubernetes on a mesh network. The goal of this section
is to give a clear understanding of what problems the following
sections try to solve and why these problems are encountered
in the first place.

1) Bandwidth and latency metrics: Gathering latency met-
rics is very easy and has almost no overhead on the network,
but estimating throughput metrics on the other side is the
complete opposite [5]–[7], [12]–[16]. This problem is then
made more difficult by specifying the underlying network to
be a multi-hop wireless mesh network.

2) Bandwidth requirements: When taking into account the
available bandwidth, the amount of this bandwidth that will
be used by our application needs to be known as well. In
its most simple form, pods will send data to each other at a
constant bitrate that never changes. In a real world deployment
however, this bitrate would be dynamic and would depend on
a combination of all inputs.

3) Dynamic environment: When nodes have the ability to
move, it is required to check if all requirements are still met
periodically. In case they are not, appropriate action has to
be taken. In almost every real-world environment, every static
environment becomes a dynamic one because of interference.
What this means when looking at statistics is that a static
environment can almost immediately be skipped. So from now
on, when looking at a static environment, we mean a stationary
setup with no moving nodes. The exact definition of this static
environment will be specified in more detail later.

4) Service load-balancing: In Kubernetes, services are
wildly used and one of the essential building blocks in a micro-
service architecture. One of the main goals of this article is
to be as hidden as possible for the end-user. Therefore it was
a requirement not to change the outer working of services
too much. The inner workings, however, have been modified.
This was done to disable load-balancing where needed. Load-
balancing at first seems like a useful feature to enable, but
setting static pod-to-pod routes is required to maintain the

bitrates needed between these pods. If the outgoing requests
are load-balanced, they will be routed to a random node every
time from a network point of view instead of to the same
node every time. Routing is required to be predictable and
static between nodes to calculate the required bandwidth and
check if enough bandwidth is available.

B. Required components to solve these problems

Four new components will be introduced in Section IV, and
the native scheduler is extended to solve the above described
problems. The components can be split into two groups,
one group responsible for gathering metrics and one group
responsible for setup and enforcing network routing. In the
first group, there is a mesh topology controller responsible for
requesting and updating bandwidth and latency metrics. And
a mesh agent which runs on every node and is controlled by
the topology controller. This component will be responsible
for getting the actual metric and returning this metric to the
controller. Dividing the agent from the controller allows us to
center all the logic in the controller and have minimal agents.
This clear separation between logic and the way metrics
are gathered, allows us to easily swap this agent out for a
different one and support multiple types of mesh networks and
bandwidth test implementations. In the second group, there is
a mesh connection controller responsible for setting up and
maintaining all routes within the mesh network we are able
to control. And a mesh proxy to enforce these routes in the
background while still appearing to work as a normal service
to the end-user. Lastly, the scheduler will use the information
provided from both the mesh topology controller and mesh
connection controller to decide on which node a pod can be
scheduled, taking into account the network requirements.

IV. IMPLEMENTATION

This section explains the implementation of the components
introduced in the previous section in depth. The hardware
setup and test environment used are explained first. Then
every component is discussed in detail. An overview of all
components can be seen in Figure 1.

A. Hardware setup and test environment

Four Raspberry Pi’s 4 model b were used to make a mesh
network. The specifications for these RPis can be found in
Table I. The built-in wireless module will be used to set
up the mesh network. The RPis are set up with the default
Raspberry Os image running Debian Bullseye 64 bit. A Better
Approach to Mobile Ad-hoc Networking Advanced version
IV (BATMAN advanced IV or batman-adv IV) was used to
interconnect these RPIs. BATMAN [17] is a routing protocol
for multi-hop mobile ad-hoc networks operating on network
layer 2. Batman-adv [18] is the Linux kernel implementation
of this routing protocol. This routing protocol was chosen
for ease of implementation while still offering competitive
performance compared to other routing protocols [19]. From
this point on, the RPis are referred to as nodes, the term used
by Kubernetes to refer to a virtual or physical machine running



Fig. 1. Overview of all components

TABLE I
SPECIFICATION OF USED RASPBERRY PI

Raspberry Pi 4 model b 2GB specification
Processor Broadcom BCM2711, 64-bit SoC @ 1.5GHz
Memory 2GB LPDDR4-3200 SDRAM
Connectivity 2.4 GHz and 5.0 GHz IEEE 802.11ac BCM4345/6,

Bluetooth 5.0 BLE, Gigabit Ethernet
Input Power 5V DC via USB-C connector (minimum 3A*)

workloads. Because these nodes are deployed in a home
environment and not an isolated test environment, external
interference will also play a big role.

B. Components

Four components, an extension to the native scheduler
and two custom resource definitions (CRDs) are required
to support running Kubernetes on a mesh network. This
subsection will look at these components and CRDs, and give a
detailed explanation of how they were designed and what their
requirements are. Since a CRD is only used to store data and
its goals are tightly coupled to its accompanying controller,
each CRD will be introduced together with its accompanying
controller.

1) Mesh topology controller: This controller, together with
the mesh topology CRD, is responsible for storing, creating,
and updating all the needed metrics for every mesh topology.
From the start, support was added to have multiple nodes in
different mesh networks. Every mesh topology is defined by a
corresponding Kubernetes zone. In a typical Kubernetes setup,
nodes are grouped in regions and zones. This info might then
be used by plugins to offer additional services such as fail-
over zones within the same region, ingress routing within the
same region, etc. In this article, this functionality is extended
by optionally coupling a zone to a mesh network. When a
zone is coupled to a mesh network by a mesh topology CRD,
the controller will then gather all the required info, such as
which nodes are in this zone and node-to-node metrics.

The metrics are not gathered by the controller itself but
by a separate agent, instructed with remote procedure calls
(RPC). This is done for two reasons. The first one being the
current implementation needs an agent running on both the
sender and receiver. This could be done by deploying the
controller on all required nodes but has the disadvantage of

complicating the logic that would now need to be negotiated
between multiple of these controllers. The agents are also
considerable smaller 14MB versus the 52MB for the controller,
because no Kubernetes libraries are needed. The second reason
is to implement an extensible solution, one of the goals of
Kubernetes itself. By replacing the agents, a different approach
to gathering metrics can be used. This can be a more efficient
one or even one that supports a different kind of mesh network,
such as 5G.

2) Mesh agent: This component has three functions: (i) a
TCP ping test, (ii) a TCP goodput test, and (iii) sending TCP
traffic at a certain bitrate. These functions are exposed through
remote procedure calls (RPC) and are initiated by the mesh
topology controller. The TCP ping test and sending TCP traffic
at a certain bitrate are relatively trivial to implement and will
not be discussed further. Implementing a simple TCP goodput
test was also relatively trivial; however, implementing one that
was fast, accurate, and had low overhead on the network was
not done successfully.

The one used in this article works as follows: a TCP
goodput test is started from the source node and tries to send a
configurable amount of data to the destination node. This test
was optimized to give fast results while still estimating the true
available goodput with good accuracy. A maximum duration
of two seconds was also put on this test. In case this duration
is exceeded, the test is stopped, and only the received data
is taken into account. To limit the negative influence this test
has on other network traffic, the test traffic with marked with
a type of service (TOS) of background (lowest priority), and
priority queuing was enabled on the WiFi modules. Metrics
for this solution can be seen in Figure 2 and Figure 3. Both a
1-hop and multi-hop environments are shown. These metrics
were taken at different times because they influence each other
but are still shown on top of each to show they clearly reflect
the same underlying trends.

3) Mesh connection controller: This controller, together
with the mesh connection CRD, is responsible for creating,
updating, and deleting network routes. To model network re-
quirements for an application pods are selected with a selector
such as a label. When modeling connections, some restrictions
were set to make the problem easier to tackle. Firstly data
always get pushed from a source to a destination exposed



Fig. 2. multi-hop environment 2 hops final iteration (duration 2s) compared
to iperf (duration 20s)

Fig. 3. 1-hop environment final iteration (duration 2s) compared to iperf
(duration 20s)

through a service. Secondly, all connections are either push
or pull. The second restriction seems unnecessary but is still
specified if pull connections get supported in the future. This
restriction will be explained in more detail in the subsection
of the Kubernetes scheduler plugin.

A distinction was made between a constant bitrate and
one needed per incoming connection to model the amount
of TCP goodput needed. This currently has no added benefit
but could be used to merge multiple incoming connections to a
single outgoing connection while still considering that a bigger
bitrate would now be required. To be even more flexible,
this could also be replaced by an arbitrary function with
parameters to support even more use cases and distinctions
between different types of incoming connections. Choosing
a destination for a waiting connection is not done by the
controller but by the Kubernetes scheduler plugin when a new
pod gets scheduled, and it is explained in more detail below.

4) Mesh proxy: The mesh proxy component is responsible
for setting up and enforcing all mesh connection routes defined
in mesh connection CRDs. It works similarly to the kube-

Fig. 4. Kubernetes scheduling framework [20]

proxy when in iptables mode (the default mode). It looks
at all mesh connections, and for each one, a routing chain
gets created and appended to the mesh routing chain. This
chain is referenced in the prerouting chain. In each mesh
chain, rules are created to mirror the behavior defined in
the corresponding mesh connection CRD for all waiting and
connected connections. If a connection is in the waiting state
and thus has no destination, pod traffic gets routing to a black
hole IP to prevent the default service routing. Ideally, this
traffic should be dropped or refused, but to keep all the logic
in the prerouting chain, this approach was used.

5) Kubernetes scheduler plugin: A plugin was made for
the Kubernetes scheduler to support scheduling pods in a mesh
network. The Kubernetes scheduler offers extension points
for plugins to register. This can be seen in Figure 4. The
extension points that are used are sort, prefilter, filter, reserve,
and postbind.

The sort extension sorts pods, with the goal to first schedule
pods needed in waiting connections. Then handle pods that
are not part of a mesh connection or are not needed in
a connection currently. In the prefilter extension, all global
information (not depending on the node) for this pod gets
fetched and checked. If a condition is not met the mesh plugin
will be ignored in the following extensions points. In the filter
extension, every possible node gets checked separately if it is
able to schedule the pod using the information calculated in
the prefilter extension. If it does not meet all requirements, the
node is dropped from the list of possible nodes and is not used
further in the scheduling cycle. In the reserve extension, the
node the pod gets scheduled on is known, and all necessary
logic to prepare the cluster is done here. First, the waiting
connection to changed to a connected connection and filled in
with the necessary information. At the same time, fake traffic
is enabled until the pod is either ready or canceled. Lastly, the
mesh topology metrics are set to invalid, so they get updated,
and other iterations of the scheduler know to wait until they
are valid again. Finally, the postbind extension is used when
the pod is deployed and ready to accept connections. Here
only the fake traffic enabled before is disabled again since
this will now be replaced by real traffic from the pod.



TABLE II
OVERVIEW OF COMPONENT OVERHEAD DURING TESTING WITH 30 MESH

PODS AND FOUR NODES

Component Size CPU Memory Replica
placement

Mesh topology
controller 52,6MB 5m 9MB 1 replica

no requirements

Mesh agent 13,7MB 30m 10MB 1 replica
each mesh node

Mesh connection
controller 51.9MB 2m 15MB 1 replica

no requirements

Mesh proxy 53.7MB 400m 20MB 1 replica
each node

V. EVALUATION

This section will discuss the overhead introduced delay and
scalability of the proposed setup. An overview of the overhead
of each component can be found in Table II. This subsection
also explains some future work required on the proposed
components to have better performance and be more scalable.

A. Overhead

The main overhead added to the cluster is situated in the
mesh topology controller, mesh connection controller, and
mesh proxy, as seen in Table II. This is because these three
components contain most of the logic, and all use the Ku-
bernetes controller libraries. These libraries result in a bigger
container size of around 50MB. This could be made smaller by
combining the mesh topology and mesh connection controller
with a controller-manager. Secondly,a n approach similar to the
mesh topology controller and mesh agent workflow could also
be used to reduce the mesh proxy’s overhead. A central mesh
proxy controller would instruct mesh proxy agents to make
the required iptables changes. These agents would be minimal
and contain almost no logic, resulting in a small container
with lower CPU usage. This is especially important since this
component has to run on every node.

B. Introduced delay

The delay of the proposed solution will manifest itself when
pods are getting scheduled. This is because the plugin will
re-queue scheduled pods part of a mesh connection when
the required mesh topology metrics are invalid. The delay in
scheduling a pod will almost entirely be made up of the time
it takes to wait for valid metrics. The main extra delay (D)
to schedule one pod part of a mesh connection (mesh pod)
is then equal to the time it takes to get a valid metric (T). If
a mesh connection destination pod gets deployed to the same
node as the source pod, the topology metrics will stay valid,
and the time it takes to get a valid metric is zero. The chance
of the topology metric still being valid will be denoted as P.
To extra delay to schedule a pod at position Q in the queue
can then be calculated as:

D = Q ∗ (1− P ) ∗ T (1)

The amount of pods in the queue is application-dependent
and is not dependent on the proposed solution; therefore, this

parameter will not be further discussed when looking at the
introduced delay. An easy way to decrease the introduced
delay would be to give preference to same-node scheduling
to prevent waiting for valid metrics. This approach would
completely go against the native Kubernetes behavior of
balancing the cluster and, as such, was not implemented. The
real solution is to minimize the time it takes to get valid
metrics. This duration is the main bottleneck and unsolved
problem of this research. With the current implementation of
getting one metric in a maximum of two seconds. The time it
takes to get a valid metric after a mesh pod got scheduled to
a different node within a mesh topology consisting of N mesh
nodes has an upper bound given by:

T = N ∗ (N − 1) ∗ 2s (2)

When the environment is not highly dynamic, and the
time it takes to schedule pods is unimportant, the proposed
solution will work to schedule all pods while keeping goodput
requirements. A demo application shown in Figure 5 will be
deployed to a Kubernetes cluster to show how the proposed
solution works. The camera and microphone components will
be deployed as a DaemonSet so that each node will run one
replica. The other components are deployed as Deployments
with enough replicas to satisfy one mesh connection. The
scheduler will decide the node each pod is running on. For this
application, the time it took to schedule each component can
be seen in Table IV. The number of mesh connections where
the source is not on the same node as the destination is also
listed. All components in this application send dummy data to
each other and log the bitrate at which this data was received.
When looking at Table IV, it is possible to experimentally
confirm the given equations 1 and 2. The amount of pods
in the queue is 32. The part Q ∗ (1 − P ) is equal to the
number of times new metrics are needed. This value equals
the number of mesh connections not on the same node (listed
in the table), possibly minus. According to 2 an upper bound
for the duration it takes to get valid metrics is 24 seconds
(N=4). An approximate upper bound for the case of 17 mesh
connections not on the same node, is then 17∗24 = 408 when
the last connection is on the same node or 16∗24 = 384 when
the last connection is not on the same node. These values are
close to the ones that were experimentally observed, and the
difference between them can mostly be assigned to the fact that
the scheduling duration is an upper bound and not an absolute
value. The bitrates at which data was received are listed in
Table III and show that the proposed solution manages to offer
the required goodput 97 percent of the time, compared to 42
percent for native Kubernetes. The experiment was repeated
five times and was run for 30 minutes each time. The results
for native Kubernetes were expected to be around the obtained
values since a Kubernetes service routes requests round-robin.
This means that all connections compete for network access
and will negatively influence each other.



TABLE III
COMPARISON OF NATIVE KUBERNETES COMPARED TO PROPOSED SOLUTION FOR AVERAGE ACHIEVED BITRATE WITH A 95% CONFIDENCE INTERVAL

(TEST DURATION OF 30 MINUTES REPEATED FIVE TIMES)

Connection Required bitrate (Kbps)
Native Kubernetes Proposed solution

Avg achieved
bitrate (Kbps) % of required Avg achieved

bitrate (Kbps) % of required

Camera - Preprocessor 40 000 15 262 ± 896 38.15 ± 2.24 39 698 ± 46 99.24 ± 0.11
Preprocessor - Model A 20 000 8 271 ± 488 41.35 ± 2.44 19 296 ± 1 022 96.48 ± 5.11
Preprocessor - Model B 20 000 7 999 ± 437 39.99 ± 2.18 18 874 ± 1 175 94.37 ± 5.87

Model A - Storage 5 000 2 867 ± 204 57.35 ± 4.08 4 604 ± 288 92.09 ± 5.76
Model B - Storage 4 000 2 506 ± 168 62.65 ± 4.21 3 911 ± 55 97.77 ± 1.38

Microphone - Storage 1 000 827 ± 41 82.72 ± 4.19 947 ± 37 94.74 ± 3.72
Total 90 000 37 733 ± 1 655 41.92 ± 1.84 87 332 ± 1 324 97.03 ± 1.47

Fig. 5. Demo application

TABLE IV
SCHEDULING DURATION COMPARISON OF DEPLOYING DEMO

APPLICATION TO NATIVE KUBERNETES COMPARED TO THE PROPOSED
SOLUTION

Native
Kubernetes

Proposed
solution

Mesh connections
not on same node

Iteration 1 10s 349s 17
Iteration 2 7s 310s 16
Iteration 3 5s 302s 17
Iteration 4 6s 316s 17
Iteration 5 7s 322s 16
Average 7s ± 1.64s 319s ± 15s 16.6 ± 0.48

C. Scalability

The main change needed to support scalability is a different
solution to get available throughput, just like in the previous
subsection. This current implementation needs a cycle time
that scales O(N2) and will only be usable in larger mesh
networks when the added scheduling time is unimportant. In
most cases, however, when there are a lot of nodes present
in a mesh network, there will also be many pods scheduled
within this mesh network. Combining a large number of pods
together with a significant scheduling duration would make
the proposed solution work very slowly and poorly in most
large mesh networks. One way to combat this difficulty already
present in the current solution is to support having multiple
separate mesh networks. Instead of one large network, the net-
work could be divided into multiple small networks. Gateway
nodes would have to be statically or dynamically defined to
take traffic going in and out of a mesh network into account
to support these mesh networks. This gateway functionality
was not implemented. Once the traffic is outside of a mesh
network, a more traditional network routing approach (one
not taking mesh characteristics into account) could be used,
such as the one proposed in [21].

VI. CONCLUSION

It can be seen in the evaluation section that the proposed
component framework manages to offer the required bitrates
when running Kubernetes on top of a wireless mesh network.
To fully support a dynamic mesh network, a vast amount
of future work is still required. The majority of this work
would be adding the three features listed next. Firstly, support
to have one destination pod for multiple connections at the
same time. Secondly, connecting waiting connections without
the scheduler. This would allow connections to be made
using existing pods and could open new possibilities such
as optimizing network requirements as a whole, restoring
connections by rescheduling all pods, scaling pod replicas if
existing pods cannot fill all connections, etc. Lastly, adding
periodic rechecking of all the requirements would be needed
to support the dynamic nature of a mesh network. Most of
this work is pretty straightforward and extends the proposed
solution. However, the main bottleneck of the current approach
is getting the available goodput of a node-to-node connection,
and as such, this component has to be replaced or modified
when a faster or lower-overhead option is found. Seeing how
cheap and easy mesh networks are to set up, combined with
the increasing trend of deploying Kubernetes to the edge, we
conclude that future research is not only essential but the key
to creating a universal container orchestration platform that
can be run in any environment.

REFERENCES

[1] F. Liu and Y. Bai, “An overview of topology control mechanisms in
multi-radio multi-channel wireless mesh networks,” EURASIP Journal
on Wireless Communications and Networking, vol. 2012, no. 1, pp. 1–12,
2012.

[2] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
Aware resource provisioning in kubernetes for fog computing applica-
tions,” in Proceedings of the 2019 IEEE Conference on Network Soft-
warization: Unleashing the Power of Network Softwarization, NetSoft
2019, 2019, pp. 351–359.

[3] “scheduler-plugins/kep/260-network-aware-scheduling at
KepDevWithNTController · jpedro1992/scheduler-plugins · GitHub.”
[Online]. Available: https://github.com/jpedro1992/scheduler-
plugins/tree/KepDevWithNTController/kep/260-network-aware-
scheduling

[4] L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “NetMARKS: Network metrics-AwaRe kuber-
netes scheduler powered by service mesh,” in Proceedings - IEEE
INFOCOM, vol. 2021-May. Institute of Electrical and Electronics
Engineers Inc., may 2021.



[5] C. Sarr, C. Chaudet, G. Chelius, and I. G. Lassous, “Bandwidth
estimation for IEEE 802.11-based ad hoc networks,” IEEE Transactions
on Mobile Computing, vol. 7, no. 10, pp. 1228–1241, 2008. [Online].
Available: https://hal.inria.fr/inria-00384832

[6] G. Venkatesh and K. C. Wang, “Estimation of maximum achievable
end-to-end throughput in IEEE 802.11 based wireless mesh
networks,” in Proceedings - Conference on Local Computer
Networks, LCN, 2009, pp. 1110–1117. [Online]. Available:
https://tigerprints.clemson.edu/all theses

[7] S. K. Khangura and M. Fidler, “Available bandwidth estimation from
passive TCP measurements using the probe gap model,” in 2017 IFIP
Networking Conference, IFIP Networking 2017 and Workshops, vol.
2018-Janua. Institute of Electrical and Electronics Engineers Inc., jul
2017, pp. 1–9.

[8] T. Goto, A. Tagami, T. Hasegawa, and S. Ano, “TCP throughput
estimation by lightweight variable packet size probing in CDMA2000
1x EV-DO network,” in Proceedings - 2009 9th Annual International
Symposium on Applications and the Internet, SAINT 2009, 2009, pp.
1–8.

[9] Y. S. Liaw, A. Dadej, and A. Jayasuriya, “Estimating throughput avail-
able to a node in wireless ad-hoc network,” in 2004 IEEE International
Conference on Mobile Ad-Hoc and Sensor Systems, 2004, pp. 555–557.

[10] Y. Y. Munaye, A. B. Adege, G. B. Tarekegn, Y. R. Li, H. P. Lin,
and S. S. Jeng, “Deep learning-based throughput estimation for UAV-
Assisted network,” in IEEE Vehicular Technology Conference, vol. 2019-
Septe. Institute of Electrical and Electronics Engineers Inc., sep 2019.

[11] A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, “Instanta-
neous throughput prediction in cellular networks: Which information is
needed?” in Proceedings of the IM 2017 - 2017 IFIP/IEEE International
Symposium on Integrated Network and Service Management. Institute
of Electrical and Electronics Engineers Inc., jul 2017, pp. 624–627.

[12] H. Zhao, E. Garcia-Palacios, J. Wei, and Y. Xi, “Accurate available
bandwidth estimation in IEEE 802.11-based ad hoc networks,” Computer
Communications, vol. 32, no. 6, pp. 1050–1057, apr 2009.

[13] Y. S. Liaw, A. Dadej, and A. Jayasuriya, “Estimating throughput avail-
able to a node in wireless ad-hoc network,” in 2004 IEEE International
Conference on Mobile Ad-Hoc and Sensor Systems, 2004, pp. 555–557.

[14] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Transactions on Networking, vol. 11, no. 4, pp. 537–549, aug 2003.

[15] V. P. Kemerlis, E. C. Stefanis, G. Xylomenos, and G. C. Polyzos,
“Throughput unfairness in TCP over WiFi,” in WONS 2006 - 3rd
International Conference on Wireless on Demand Network Systems and
Services, 2006, p. 1.

[16] B. Veal, K. Li, and D. Lowenthal, “New methods for passive
estimation of TCP round-trip times,” in Lecture Notes in Computer
Science, vol. 3431. Springer, Berlin, Heidelberg, 2005, pp. 121–
134. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
3-540-31966-5 10

[17] B. A. T. M. A. N, “BATMAN - Open Mesh,” p. 29. [Online]. Available:
https://www.open-mesh.org/projects/open-mesh/wiki/BATMANConcept

[18] Open-Mesh, “Wiki - batman-adv - Open Mesh.” [Online]. Available:
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki

[19] L. Liu, J. Liu, H. Qian, and J. Zhu, “Performance evaluation of
BATMAN-adv wireless mesh network routing algorithms,” in Proceed-
ings - 5th IEEE International Conference on Cyber Security and Cloud
Computing and 4th IEEE International Conference on Edge Computing
and Scalable Cloud, CSCloud/EdgeCom 2018. Institute of Electrical
and Electronics Engineers Inc., jul 2018, pp. 122–127.

[20] Kubernetes, “Kubernetes Documentation - Kubernetes,” 2019. [Online].
Available: https://kubernetes.io/docs/home/

[21] “scheduler-plugins/kep/260-network-aware-scheduling at
KepDevWithNTController · jpedro1992/scheduler-plugins · GitHub.”
[Online]. Available: https://github.com/jpedro1992/scheduler-
plugins/tree/KepDevWithNTController/kep/260-network-aware-
scheduling


