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Abstract: Buildings are fundamental components of urban areas and they play a vital 

role in supporting human activities in daily life. Understanding the actual building 

functions is essential for many urban applications, such as city management, urban 

planning, and optimization of transportation systems. Existing studies for inferring 

building functions are mainly based on a building’s own features, and ignore its 

“geographic context” (e.g., the influences of nearby buildings). This paper introduces a 

novel geo-aware neural network to infer the functions of individual buildings. To this 

end, the proposed model integrates information about the built environment and human 

activity of a target building and its “geographic context”. The model further includes a 

geo-aware position embedding generator and transformer encoders to better capture the 

complex relationships between buildings. The evaluation results demonstrate that the 

proposed model outperforms all baselines and achieves a classification accuracy of 

90.8%. Meanwhile, the proposed model works well even with a small amount of training 

dataset and has a good transferability to another urban area. In summary, the proposed 

model is an effective and reliable approach for inferring the functions of individual 

buildings and has high potential for city management and sustainable urban planning. 
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1. Introduction 

The world’s population has grown gradually over the past decades and will continue 

to grow in the future. Meanwhile, cities are becoming more densely populated, which 

means that a reasonable and fair distribution of service facilities is of great importance to 

sustainable urban development (Xiao et al. 2022, Haberl, Wackernagel and Wrbka 2004). 

As the main element of urban physical space, buildings play a key role in supporting 

human activities and fulfilling people’s needs in daily life. Understanding the actual 

functions of individual buildings is essential for city managers, urban planners, and 

policymakers to make informed decisions about managing existing urban spaces and 

planning future land-use configuration to improve the quality of life of city residents and 

create sustainable cities (Srivastava et al. 2020). For example, transportation and land use 

have been combined to develop an effective planning strategy for sustainable urban 

development (Liu et al. 2022, Ibraeva et al. 2021). Understanding the building-use 

configuration of an area is also helpful to analyze its energy consumption owing to the 

different energy consumption patterns in various building function and time (Xiao et al. 

2022). Knowing the spatial distribution of building function also contributes to address 

the issue of urban heat islands and improve the local climate in urban areas (Rahnama 

2021, MacKillop 2012). However, traditional authoritative surveys to identify building 

function are time-consuming, and cannot be used frequently. Additionally, the 

authoritative function of a building might sometimes differ from its actual usage by 

people. Therefore, it is essential to propose a framework to automatically infer the 

functions of individual buildings.  
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Inferring building function at a fine level, however, has always been a challenging 

topic due to the complexity of human-environment interactions and the complexity of 

extracting useful semantic information. Generally, building function or land use is not 

invariant, and the actual function is likely to be affected by the demand/supply market. In 

terms of the complexity of extracting useful semantics, it is hard to extract the function 

of a building or its service information from remote sensing imagery. While POI data 

might provide hints of the actual usage of some buildings, they are often jumbled. For 

instance, many buildings often do not contain any POIs (Deng et al. 2022), while other 

buildings might have many POIs with different categories. This makes it difficult to 

directly employ POIs for inferring the functions of individual buildings. 

While land use classification of large spatial units (e.g., street blocks, neighborhood 

area) has been intensively studied in literature, research on building-level function 

inference is still at an early stage. Several studies employ taxi trajectories and street-view 

imagery for inferring building function (Niu et al. 2017, Liu et al. 2018, Srivastava et al. 

2018, Zhuo et al. 2019, Srivastava et al. 2020), which can only cover buildings along a 

road. Meanwhile, these studies mainly infer the function of a building based on its own 

features and ignore its “geographic context” (e.g., the influences of nearby buildings). 

Additionally, conventional machine learning methods are often employed, but these 

methods have difficulties in capturing the complex relationships between a building’s 

features.  

In recognizing these research gaps, this study proposes a novel geo-aware neural 

network model for building function identification, which captures the deep-level 

relationships between a target building and its “geographic context” (i.e., its surrounding 

buildings). The model makes use of the POI information around the buildings as well as 
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human mobility patterns in these buildings. The proposed model includes a geo-aware 

position embedding generator and a set of Transformer encoders (Vaswani et al. 2017) to 

generate an embedding vector that characterizes each building (considering its 

surrounding context). The embedding vectors are then combined to further infer the 

functions of individual buildings. Our contributions are three-fold: 

1) The proposed model integrates a geo-aware position embedding generator and 

Transformer encoders to jointly model the built environment and human activity 

pattern, aiming to capture the complex links between a target building and its 

“geographic context” in the process of building-level function inference.  

2) The evaluation results show that our proposed model significantly outperforms 

the baselines and has a better classification accuracy than the state-of-the-art 

studies on building function inference. It achieves a classification accuracy of 

90.8%, and a kappa coefficient of 0.87. Meanwhile, the model performs well even 

when the amount of training dataset is limited, and it also has a good 

transferability for other urban areas. All these results demonstrate that the 

proposed model is effective and reliable for inferring the functions of individual 

buildings.  

3) We also show that when inferring the function of a target building, it is important 

to consider its nearby buildings, as the information regarding these nearby 

buildings helps to “contextualize” the target building. Meanwhile, considering 

features of service facility and human mobility of buildings leads to the 

improvement of the classification accuracies. 

 

2. Related Works 
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2.1 Land-use classification 

Traditionally, modelling the functional information of a city is often based on remote 

sensing images and on large spatial units, such as traffic analysis zones (TAZs) and big 

street blocks. Spectral and textural characteristics of remote sensing images are often 

considered to differentiate land use of different areas (Pacifici, Chini and Emery 2009, 

Hu and Wang 2013). Recently, deep learning approaches for land-use classification have 

been developed and shown to achieve high classification accuracy (Huang, Zhao and 

Song 2018, Tong et al. 2020). However, only considering the spectral and textural 

characteristics in classification might significantly impact the classification accuracy (Pei 

et al. 2014). Generally, urban land use is strongly associated with social interaction, 

making it difficult to differentiate land use according to remote sensing images alone (Tu 

et al. 2017, Zhang et al. 2021). Therefore, various social sensing datasets and location-

based big data (Huang et al. 2021) were introduced into land-use classification, for 

instance, phone signal data (Pei et al. 2014), taxi GPS trajectory data (Liu et al. 2016), 

and social media check-in data (Zhang et al. 2020). Meanwhile, multi-source datasets also 

offer the opportunity for mapping essential urban land use information across a city and 

even a country (Gong et al. 2020, Zong et al. 2020, Liu and Long 2015). To further 

improve classification accuracy, deep learning methods have been also applied in recent 

years to extract deep-level features from remote sensing imagery and social sensing 

datasets (Srivastava, Vargas-Muñoz and Tuia 2019, Cao et al. 2020, He et al. 2021). 

However, these studies mainly focus on land use classification in large spatial units, such 

as big street blocks, neighborhood areas, or TAZs. 

2.2 Building function inference  
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As more datasets become available, fine-grained land-use classification tasks such as 

inferring functions of individual buildings can be conducted. Ground-based pictures (e.g., 

street-view images) were introduced for multi-label building functions classification 

(Srivastava et al. 2018). To obtain more semantic information, deep-level semantics were 

simultaneously extracted from multi-perspective street-view images to infer building 

functions (Srivastava et al. 2020) and even from the combination of street-view and 

remote sensing imagery (Srivastava et al. 2019). However, street-view images are only 

located along roads, indicating that the buildings away from a road cannot be considered 

using street-view imagery alone (Zhong et al. 2014). Subsequently, many studies 

integrated more datasets such as POIs, social media data and taxi trajectory data to infer 

building functions (Niu et al. 2017, Liu et al. 2018, Zhuo et al. 2019). Additionally, Chen 

et al. (2017) took advantage of the similarity of human activity pattern in the same 

building function to infer the function of other buildings using the k-medoids method. 

However, these studies inferred a target building’s function mainly based on its own 

features, ignoring the influences of other nearby buildings on the target building.  

2.3 Neural network embedding for capturing spatial correlations 

From a methodological perspective, neural network embedding, originally 

introduced for natural language processing, provides an opportunity to abridge this gap 

by allowing more context information to be taken into account when modelling the inner 

semantics of “words” (Niu and Silva 2021). Such an embedding in neural network, e.g., 

word2vec, maps a word or term in sentences into a low-dimension vector taking account 

of the context of the word. The output vector represents the word and its context (Mikolov 

et al. 2013b). Researchers can then use these embedding vectors to improve the training 

efficiency and model performance of subsequent regression and classification tasks (Li 
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and Yang 2018). This way of modelling a target’s context is interesting and relevant for 

many geography-related problems, as many spatial objects in space often influence each 

other, making it important to consider the “geographic context” in many applications.  

Yao et al. (2017) first applied the word2vec approach proposed by Mikolov et al. 

(2013a) to model POI sequences, in which the POI sequences were vectorized to obtain 

the embedding of different POI categories, taking into account the POI context for further 

land-use classification. However, this way of modelling POI’s context disregards the 

distance between two adjacent POIs. To accurately model POI’s context, each POI pair’s 

distance and check-in pattern in social media should be considered, which can help to 

address the problem of heterogeneous context (Yan et al. 2017, Wang and Moosavi 2020). 

While some researchers have deployed these methods to classify the land use in large 

spatial units (Zhai et al. 2019, Hu et al. 2020), they simply used an average of all 

categories of the POI embedding vectors in a spatial unit, which fails to portray spatial 

heterogeneity (Niu and Silva 2021). Additionally, Zhang et al. (2021) employed human 

activity trajectories to classify land use of street blocks, but ignored the distance-decay 

influence of two areas. Although previous studies have started to consider “geographic 

context” for land use classification, there exist two main limitations: 1) Previous studies 

do not consider the distance between two areas; 2) These studies mainly focus on parcel-

level (e.g., TAZs), which cannot be directly used in building-level function classification. 

In short, applying neural networks to infer building functions while considering the 

relationships between two buildings is still missing.  

2.4 Major studies related to this study 

Table 1 shows the major studies related to this study. In summary, although most 

previous studies involving building-level classification achieve good classification 



 8 

performance, the datasets used cannot cover an entire urban area. For example, taxi 

trajectory and street-view imagery can only cover buildings along roads. Additionally, 

current studies classify the function of a building based on its own features, disregarding 

the influences of nearby buildings (i.e., ignoring the “geographic context” of the target 

building). This work aims to address these issues, by making use of POIs and human 

mobility data and introducing a geo-aware transformer encoder model to capture the 

complex relationships between the target building and its “geographic context” (i.e., its 

nearby buildings). 

Table 1. Major studies related to this study 
Study Spatial units Number of 

categories 
Data source Classification 

methods 
Accuracy 

Niu et al. 
(2017) 

Building level 10 POI, Tencent location 
data, Taxi trajectory 

Density-based 
method 

72% 

Liu et al. 
(2018) 

Building level 7 POI, Tencent location 
data, Taxi trajectory 

Probabilistic 
model 

85% 

Zhuo et al. 
(2019) 

Building level 5 Tencent location data, 
Taxi trajectory 

Iterative 
clustering method 

85% 

Srivastava 
et al. (2020) 

Building level 16 Street view imagery CNN-based deep 
learning method 

63% 

Deng et al. 
(2022) 

Building level 5 POI, remote sensing 
imagery, street view, 

building physical 
properties, land use 

map 

XGBoost 85% 

Yao et al. 
(2017) 

TAZ level 14 POI Word2vec 87% 

Zhai et al. 
(2019) 

Neighborhood 
area 

7 POI Place2vec 70% 

Zhang et al. 
(2021) 

Street block 5 POI, mobile phone 
positioning data 

Word2vec and 
random forest 

77% 

Our Building level 12 POI, Tencent 
mobility location 

data 

Transformer-
based deep 

learning  

91% 

3. Study Area and Dataset 

3.1 Study area 

Figure 1 shows the study area located in the Nanshan district of Shenzhen city in 

Guangdong province, China. Since performing reform and opening door policy, 

Shenzhen became the first Special Economic Zone and is currently one of the most 
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successful cities in China. Our study area Nanshan district, with a total area of 187.53 

km2, is the most prosperous and developed district in Shenzhen. We selected the Nanshan 

district as the study area, since it is filled with a variety of facilities and buildings. 

 

Figure 1. The study area: Nanshan District, Shenzhen, China. 

3.2 Datasets 

3.2.1 Building footprint data 

The building footprint dataset used in this study was collected from Gaode Map 

(http://gaode.com), which is a popular map service in China. The dataset contains not 

only the building footprint but also the number of floors of each building. To assign 

functions to each building, we refined the land use categories based on the Chinese 

Standard of Land Use Classification. We then assigned the refined categories to all 

buildings by manually checking the corresponding high-resolution images and buildings’ 

name in the year of 2019, following the procedure defined in Liu et al. (2018). Table 2 

shows the refined land use categories. 

Table 2. Building category schemes. 

Categories Descriptions 
001 Urban village (UV) Buildings of rural residential housing surrounded by 

urban blocks 
002 Urban residential (UR) Modern buildings for residential housing 
003 Business office (BO) Buildings of financial, internet, insurance offices 
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004 Big Catering (CA) Buildings for catering 
005 Shopping centre (SC) Buildings for big shopping centres 
006 Hotel (HT) Buildings for hotels 
007 Recreation & Tourism 
(RT) 

Buildings for entertainment and tourism 

008 Company & Factories 
(CF) 

Buildings for small companies and factories 

009 Industrial Park (IP) Buildings for big industrial park 
010 Administrative (AM) Buildings for government and public service agencies 
011 Education (EDU) Buildings for schools 
012 Medical (MD) Buildings for hospitals and healthcare 

3.2.2 Point of interest and Tencent location datasets 
Point of interest (POI) datasets often contain information of the services offered by 

buildings. Hence, this study employed the POI dataset, which is collected from Gaode 

Map in the year of 2018, as one of the main features to portray buildings’ function. Gaode 

Map divided all POIs into 20 categories: auto service, auto dealers, auto repair, 

motorcycle service, catering, shopping, life service, sport & recreation, medical service, 

hotel, tourist attraction, residential, administrative organization, education science & 

research, transportation service, financial & insurance, company, road-related facilities, 

road & place signs, and small public facilities. Due to the existence of huge redundant 

information and inappropriate category for inferring building function in the POI dataset, 

we combine the four categories of auto service, auto dealers, auto repair and motorcycle 

service as automotive service. We remove the categories of transportation service, tourist 

attraction, road-related facilities, road & place signs, and small public facilities, as they 

are normally not linked to individual buildings. Therefore, we finally reclassified the 

dataset using the following 12 POI categories: catering, company, shopping, financial & 

insurance, education & research, automotive service, residential, life service, sport & 

recreation, medical service, administrative organization, and hotel. 

Given that buildings with different functions present different human activity 

patterns, we thus introduced Tencent location dataset, collected from the big data platform 
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of Tencent (https://heat.qq.com), to represent the temporal characteristics of human 

activity in buildings. The dataset recorded all location requests from users of a variety of 

Tencent’s location based services, including social media, gaming, travel, online 

shopping, communications and payment tools. Given the ubiquity of Tencent users in 

China, the Tencent location dataset has a better user representativeness than other alike 

data (e.g., Twitter data, Weibo data, taxi trace data, and bike-sharing data), and therefore 

can better reflect the real human activity in a city. The Tencent location dataset used in 

this study was collected in 2015 with a spatial resolution of 25m ×	25m at a 1-hour 

interval, divided into two types of days: weekdays and weekends. Since there was no big 

construction change in the Nanshan district from 2015 to 2019, using the Tencent dataset 

in 2015 to represent human behavior pattern is acceptable. 

4. Methodology 

4.1 Problem definition 

This study aims to infer a building’s function based on its services provided and 

human activity patterns, as well as those of its nearby buildings. Supposing every building 

b can be described as two vectors from the perspectives of service facilities and human 

activity pattern, respectively: 𝑋!" = [𝑥!#, … , 𝑥!$ , … , 𝑥!%, 𝑥!
& , 𝑥!', 𝑥!! , 𝑥!

(]  and 𝑋!) = 

[𝑥′
!

#
, … , 𝑥′

!

*
, …, 𝑥′

!

+
], where s is the number of POI categories (in this work 𝑠 = 12; see 

Section 3.3.2) and 𝑥!$  represents how many POIs of the ith POI category are located within 

the building b, wherein 𝑖 ∈ [1, 𝑠]. Additionally, 𝑥!
&  denotes its number of floors; 𝑥!' 

refers to the Euclidean distance between building b and its nearest metro station; 𝑥!! 

represents the Euclidean distance of that building to its nearest bus station; 𝑥!
( indicates 

the distance of that building to its nearest park. 𝑥′
!

*
 represents how many humans were 
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active in this building at jth time, wherein 𝑗 ∈ [1, 𝑡] and 𝑡 = 48 in this work. This study 

aims to use (𝑋!", 𝑋!!
" … ,𝑋!"

" ) and (𝑋!) , 𝑋!!
) , … , 𝑋!"

) ) for inferring the function of the 

building 𝑏, where 𝑏#… , 𝑏, are its n-nearest buildings (using Euclidean distances between 

the building centers) and serve as its “context”. Hence, the problem of building function 

inference can be defined as:  

               𝑦#" = 𝑓%𝑋#$, 𝑋#!
$ … ,𝑋#"

$ , 𝑋#% , 𝑋#!
% , … , 𝑋#"

% )  (1) 

Where the output 𝑦!5 is a building function category in Table 2, e.g., “006 Hotel 

(HT)”; the hyperparameter 𝑛 denotes the number of nearby buildings to be additionally 

considered.  

To solve such a problem, we employ neural network approaches. From a high-level 

perspective, neural network is a model that consists of layers of neurons that are 

interconnected to allow information to flow among layers while being processed. Because 

of the non-linearity introduced by the activation functions, neural networks can capture 

the complex relationships in the data (e.g., the relationships between buildings and the 

environments), and may handle complex problems (e.g., inferring functions of individual 

buildings, as in this work).  

4.2 Framework of the proposed model 
Figure 2 demonstrates the framework of our model, which mainly consists of two 

parts: the left one is proposed to characterize the service facilities offered by the target 

building (i.e., building 𝑏) and its nearby buildings (i.e., the “context” of building 𝑏), and 

the right one aims to portray the human activity characteristics of these buildings. The 

architecture of these two parts is the same. Both include a fully connected feature 

embedding layer, a geo-aware position embedding generator (Geo-PEG), multiple 

transformer encoders, and a gated recurrent unit (GRU) based fusion. These two parts 
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help to capture the relationships between the target building 𝑏 and its nearby buildings 

(i.e., its “context”), which are then used to infer the function category of the target 

building 𝑏. 

Take the left part (i.e., for the service facilities) as an example. A fully connected 

layer is firstly applied to transform the sparse input feature vectors of the 𝑛 + 1 buildings 

(i.e., 𝑋!", 𝑋!!
" … ,𝑋!"

" ) to dense vectors, with the aims to improve computational efficiency. 

The results are then fed into Geo-PEG to assign positional and geo-contextual information 

to every building, taking into account the distance-decay influence and geographical 

distribution difference. Such Geo-PEG solves the problem of constant contextual 

distance. With this, an embedding vector for each building is generated.  

These embedding vectors are then fed into a set of transformer encoders, each of 

which is a self-attention mechanism translator model developed by Vaswani et al. (2017). 

The transformer encoders are used to capture the correlations among these buildings 

based on distance and semantic. The resulting embedding vector for each building can 

then better capture the links between the target building and the others, and therefore can 

be considered as a “contextualized” embedding vector for a building.  

At the next step, these refined embedding vectors are combined via a GRU and two 

fully connected layers to create a fused vector for the target building 𝑏. This fused vector 

captures the key information between the target building and its nearby buildings (i.e., its 

“geographic context”). The fused vectors of the left (i.e., in terms of service facilities) 

and right (i.e., in terms of human activity patterns) parts are then concatenated and 

inputted into a fully connected layer to infer the function category of the target building 

𝑏.  
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Figure 2. Framework of the proposed model. 

4.3 Fully connected feature layer 

Fully connect neural network (FCN) is the most popular and classic neural network 

in deep learning. To improve computational efficiency, this study applies FCN to transfer 

the sparse input feature vector of each individual building to a dense vector, which can 

be described as: 

𝑋&'() = ∅(𝑊'() × 𝑋& 	+ 𝑏'()) (2) 

Where 𝑊-./ denotes to the learnable weights in FCN; 𝑏-./ represents the learnable 

biases; 𝑋0 is the input feature vector (either the service facilities vector 𝑋0" or the human 

activity pattern vector 𝑋0) ) of building 𝑘  ∈ {𝑏, 𝑏#… , 𝑏,} , which is one of the 𝑛 + 1 

buildings. ∅ refers to the activation function, we use relu activation function in this study. 

In short, FCN is applied to each building’s own input feature vector to create a refined 

feature vector 𝑋0-./. However, the learnable parameters 𝑊-./ and 𝑏-./ are shared by all 
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buildings. In this work, we define the dimensions (i.e., the dimension of 𝑋0-./) of the 

refined vectors of service facilities and human activities as hyperparameters.  

4.4 Geo-aware position embedding generator (Geo-PEG) 
Taking the refined input feature vectors of the target building and its nearby buildings 

as inputs, the Geo-PEG component (Figure 3) aims to embed positional and geo-

contextual information among the buildings into these vectors. This is needed, as the 

transformer encoders used afterwards need such positional information to account for the 

“ordering” of the “words” (i.e., individual buildings in this work) in the input sequence.  

Conventionally, the position index of each word is assigned according to their 

appearance in the sequence, for instance, the first position (i.e., the target building 𝑏) is 

assigned as 0, the second position (i.e., 𝑏#, the nearest building to the target building) is 

assigned as 1, and the (n+1)th (i.e., 𝑏, , the n-nearest building) is assigned as n. This 

conventional way (typically used in natural language processing), which is one 

dimensional and assumes uniform spacing between “words”, is not sufficient to capture 

the spatial configurations between buildings in 2D spaces.  

 

Figure 3. Architecture of geo-aware position embedding generator. 
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To address this issue, a new approach considering the spatial distances between 

buildings and spatial distribution around individual buildings is proposed (Figure 3). 

Firstly, considering distance-decay influence, we apply Gaussian kernel function to 

assign initial position indexes for all buildings, based on their Euclidean distances to the 

target building 𝑏.  

𝑔& = exp	(− *#,%
&

+	×	.&	
)   (3) 

Where 𝑘 ∈ {𝑏#… , 𝑏,} denotes a building surrounding the target building 𝑏.	𝑑0,!	is	

the	Euclidean	distance	between	buildings	𝑘 and	𝑏.	σ is a bandwidth and a trainable 

parameter to determine how far away a building still needs to be considered. 

Each of these initial position indexes, i.e., 𝑔0, is then added to the input feature of its 

corresponding building 𝑘 after forward propagation using a fully connected network layer 

(FCN). The result of this step is a feature vector enriched with “spatial distance” index 

for each building.  

Secondly, we add more information regarding the spatial distribution around each 

individual building. Suppose there are two buildings (red and green triangles in Figure 3) 

that have the same Euclidean	distance to the target building 𝑏, while these two buildings 

have different spatial distributions around them. For instance, the red building has its 

surrounding buildings only on one side, and the green building is surrounded uniformly 

by other buildings. In this case, it is problematic to assign a same position index for these 

two buildings from the Gaussian kernel function. Hence, we apply a convolutional layer 

to portray the spatial distribution around each building and assign an additional weight 

for every individual building. The convolutional layer can be described as: 

𝑐& = 𝑓(𝑊(/)0 ∗ 𝐷& + 𝑏(/)0)  (4) 
Where * denotes to convolutional operation, 𝑊.2/3 are learnable parameters, and 

𝑏.2/3 represents the learnable biases. f indicates the activation function, using sigmoid 
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activation function in this study. The input 𝐷0 represents the number of buildings in each 

of the 3 × 3  cells around building 𝑘 ∈ {𝑏#… , 𝑏,} . This 3 × 3  kernel size, which is 

commonly applied in many studies, is chosen considering the following two aspects: 1) 

The nearest buildings provide the most relevant “geographic context” to the target 

building; 2) The number of trainable parameters grows quadratically with the kernel size, 

which makes big kernels not cost-efficient. 

 𝑐0 is the output weight considering spatial distribution around building 𝑘. Note that 

this convolutional operation is applied to each of the 𝑛  buildings, sharing the same 

learnable parameters 𝑊.2/3 and 𝑏.2/3. The spatial distribution weight of each building 

𝑐0 is integrated into its input feature vector (enriched with “spatial ordering” index 𝑔0; 

from the previous step) to create a final input feature vector for each building. Each final 

input feature vector embeds the information regarding the “spatial ordering” and 

surrounding spatial distribution of its owning building.  

In summary, the Geo-PEG component can be described as: 

𝑋12 = (𝑋1 + 𝐹𝐶𝑁(𝐺)) × 𝐶 (5) 

Where 𝑋4 = [𝑋!-./ , 𝑋!!
-./ … ,𝑋!"

-./] are refined feature vectors (results of equation 

(2)) of the target building 𝑏 and its n-nearest buildings 𝑏#… , 𝑏,. 𝐺 = [1, 𝑔!! … , 𝑔!"] are 

the “spatial distance” indexes (results of equation (3)), and 𝐶 = [1, 𝑐!! … , 𝑐!"] represent 

the “spatial distribution” weights of each building (results of equation (4)). Note that the 

first element in both 𝐺 and 𝐶 is 1, as they both refer to the targe building itself.  

The output of the Geo-PEG component 𝑋45  is a set of embedding vectors, each for 

the target building 𝑏  and its n-nearest buildings 𝑏#… , 𝑏, . These embedding vectors 

consider the “spatial ordering” of their corresponding buildings. They will serve as input 

for a follow-up transformer encoder component. 
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4.5 Transformer encoder 

This module is applied to model the complex relationships between a target building 

and its nearby buildings. It outputs an embedding vector for each building, which captures 

the building’s characteristics and its links to other buildings. From a high-level 

perspective, the resulting vector of a building can be considered as a “data point” in an 

embedding space. Such an embedding space can be used to compute the “distance” 

between any two buildings.  

Taking the embedding vectors 𝑋45  of the target building 𝑏 and its n-nearest buildings 

from the previous step as input, the transformer encoder component outputs another 

embedding vectors 𝑋46  that capture the correlations between these buildings. The 

transformer encoder component is a stack of encoder layers. The number of encoder 

layers 𝑙 is a hyperparameter. The first encoder layer takes 𝑋45  as input, and its output is 

then fed to the next encoder layer.  

 

Figure 4. The architecture of a transformer encoder. 

 

Figure 4 shows the architecture of a transformer encoder layer. The transformer 

encoder used in this study is a self-attention mechanism translator model developed by 

Vaswani et al. (2017), including a layer for self-attention operation, two normalization 
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layers, and two fully connected layers. Additionally, the transformer encoder applied a 

shortcut connection trick, namely deep residual learning framework. To capture more 

details and deeper relationships between any two buildings based on distance and 

semantic, we use a multi-head self-attention mechanism. The detail can be described as 

followed (Vaswani et al. 2017): 

𝑄 = 𝑊3 × 𝑋12  (6) 

𝐾 = 𝑊4 × 𝑋12  (7) 

𝑉 = 𝑊0 × 𝑋12  (8) 

ℎ𝑒𝑎𝑑5 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(3'()*+4'()*+
√*

)𝑉789*+ (9) 

𝑋1: = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑;, … , ℎ𝑒𝑎𝑑5)	𝑊< (10) 

Where Q, K and V are the query, key, and value for operating attention score 

respectively, and they are obtained by multiplying different learnable weights with output 

of the previous Geo-PEG generator. 𝑄789:= , 𝐾789:=  and 𝑉789:=  are gained from 

dividing Q, K and V into m parts for m-head component. Softmax is used as the activation 

function to map the vector into [0,1] in which the sum of every dimension is 1.	

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) 	is	 a	 function	 to	 concatenate	 all	 heads	 and	

subsequently	multiply	heads	by	a	learnable	weight	𝑊; .	𝑋4<	indicates	the	output	of	

multi-head	attention,	capturing	the	relationships	between	buildings.	 

Summarily, the detail of the transformer encoder component can be described as: 

𝑋1>
! = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(2𝐹𝐶𝑁	(𝑁𝑟𝑚𝑎𝑙𝑖𝑧𝑒%𝑋12 +	𝑋?:

!))) (11) 

𝑋1>
, = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(2𝐹𝐶𝑁	(𝑁𝑟𝑚𝑎𝑙𝑖𝑧𝑒 T𝑋1>

,-! +	𝑋?:
,U)) (12) 

Where 𝑋=< is the output of the multi-head self-attention (equation (10)), and 𝑋46
@ is 

the output of layer 𝑖 ∈ [2, 𝑙]. The first encoder layer (equation (11)) takes 𝑋45  as input, and 

its output is then passed into the next encoder layer. All other encoder layers take the 

output of their previous layer (equation (12)).  
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The output of the last encoder layer 𝑋46
A  is the refined embedding vectors for the 

target building 𝑏 and its n-nearest buildings. Each refined embedding vector captures the 

relationships between its corresponding building and all other ones.  

4.6 Gated recurrent unit (GRU) 

The refined embedding vectors are then fed into a GRU layer and two fully connected 

layers to create a fused vector for the target building 𝑏. GRU is a type of recurrent neural 

network capable of capturing important information of a long sequence of “words” (in 

this work, each refined embedding vector can be considered a “word”). The fused vector, 

outputted by GRU, captures the key information between the target building and its 

nearby buildings (i.e., its “context”). This process can be described as: 

𝑋#22 = 2𝐹𝐶𝑁 V𝐺𝑅𝑈T𝑋1>
.UY			  (13) 

The GRU layer contains 𝑛 + 1 GUR units, corresponding to the target building 𝑏 

and its n-nearest buildings. The first GRU unit takes the refined embedding vector of the 

farthest building as input, and the last GRU unit takes the refined embedding vector of 

the target building 𝑏 as input. All other buildings, ordered from the farthest to the closest 

to the target building, correspond to the other GRU units in between.  

A single GRU unit (Figure 5) takes the current input data 𝑋* and state ℎ*># (which 

contains the useful information of the previous 𝑗 − 1 GRU units), and outputs the new 

state ℎ* . It has two gates: an update gate that determines how much of the previous 

information needs to be passed to the future (i.e., ℎ*); a reset gate deciding how much of 

the previous information to forget. The calculation formula of each GRU unit is shown 

below: 

𝑟B = 𝜎(𝑊C × [ℎBD;, 𝑋B\ + 𝑏C) (14) 

𝑢B = 𝜎(𝑊E × [ℎBD;, 𝑋B] + 𝑏E) (15) 
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𝑐B = 𝑡𝑎𝑛ℎ(𝑊F × [𝑟B ∘ ℎGD;, 𝑋B] + 𝑏H) (16) 

ℎB = %1 − 𝑢B) ∘ ℎBD; + 𝑢B ∘ 𝑐B (17) 

𝑈aBI; = 	𝜎(𝑊J × ℎK) (18) 

Where 𝑋*  denotes the current input data (e.g., the refined embedding vector of 

building 𝑗 ∈ [0, 𝑛]), W represents the learnable parameters, 𝜎 and 𝑡𝑎𝑛ℎ refer to sigmoid 

and hyperbolic tangent activation functions which add nonlinearities to the model, 

operator ∘  denotes Hadamard product (i.e., element-wise multiplication). 	𝑟*  and 𝑢* 

denote the reset gate and update gate respectively, which control how much previous 

information ℎ*># (gained from previous time steps) and current information gained from 

𝑋* will be passed to the new state ℎ*. 𝑐* is a candidate state.  

Finally, the output 𝑈q,?# is fed into the two fully connected layers to create a fused 

vector 𝑋!55 for the target building 𝑏. 

 

 
Figure 5. The workflow of a GRU unit 

 

4.7 Final component and loss function 

Finally, the fused vector of the left part (i.e., in terms of service facilities, 𝑋!"
LL) and 

the right (i.e., in terms of human activity patterns 𝑋!)
LL), i.e., the output from the previous 

part (equation (13)), are concatenated into a single vector. The concatenated vector is then 
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fed into a fully connected layer to infer the function category of the target building 𝑏. This 

can be described as: 

𝑃(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶𝑁(𝑐𝑜𝑛𝑐𝑎𝑡%𝑋#$
// , 𝑋#%

//)))                   (19) 

The target building 𝑏 is then assigned the function category (i.e., a category from the 

list in Table 2; e.g., “Hotel”) that has the highest probability value. The loss function used 

in this study is multi-categories cross entropy, which can be described as:  

𝐿𝑜𝑠𝑠 = −∑ 𝑦Mlog	(𝑝M)4
MN;  (20) 

Where K is the number of building function categories. y denotes to the ground truth. 

If category 𝑖 is the truth label, then 𝑦$=1. Otherwise 𝑦$=0. 𝑝$  represents ith category’s 

probability inferred by the model.  

4.8 Example: the workflow of inferring the function of an example building  
Figure 6 shows the workflow of inferring the function of an example building. 

Suppose the red building is the target building whose function is to be inferred, the blue 

ones are its 2 nearest buildings being considered. Here we take the service facilities part 

as an example. The input vectors like [2, 3, …, 20] mean how many POIs are located in 

the building, its number of floors, and its distances to the nearest bus, metro and park. 

Thus, for these three buildings, a matrix shaped as (3, 16) can thus be constructed. 

Subsequently, the matrix passes through the fully connected feature layer (Section 4.3), 

and each of its three vectors is transformed into a dense vector, with its dimension being 

changed to a certain value (Here, we select 25 for this sample. Section 5.2 describes how 

the value is selected). After the Geo-PEG (Section 4.4), the information of distance and 

distribution pattern is added into the matrix. Processing the matrix, the transformer 

encoder stack (Section 4.5) then outputs an embedding vector for each building, which 

captures the building’s characteristics and its links to other buildings (i.e., its “geographic 
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context”). The shape of the output matrix of the transformer stack is also (3, 25). 

Subsequently, GRU module (Section 4.6) is used to augment the geographic context again 

by aggregating the matrix to a vector (1, 25). This vector of service facilities, and the 

other vector (1, 36) of human activity pattern, are then concatenated into a joint vector in 

the form of (1, 61), and fed into a fully connected layer with “softmax” (Section 4.7) to 

infer the building function. The output is a list of probability values of the 12 categories 

(Table 2) to which the target building belongs. The category with the highest probability 

value is the inferred function (e.g., “001 Urban village (UV)”) of the target building. 

 

Figure 6. The workflow of inferring the function of an example building (marked 
in red) 

5. Evaluation and Results 

5.1 Evaluation setup 

In this section, we evaluate the proposed model with several other baselines, using 

the dataset of the Nanshan district in Shenzhen (China) described in Section 3. The dataset 

includes 29200 buildings, covering a total area of 187.53 km2. The dataset contains labels 

of each individual buildings and therefore can be considered as the “ground-truth” for this 

study. The dataset was randomly divided into 3 sub-sets by considering the distributions 
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of function categories: 17600 samples are used as the training set, 5800 samples as 

validation set, and the other 5800 as test set.  

As in other classification studies, we made use of the following metrics to evaluate 

the performance of the proposed model: accuracy, Cohen’s kappa coefficient, precision, 

and recall. 

• Accuracy: It is the percentage of correctly inferred buildings out of the total 

number of buildings, and is an intuitive performance measure. It refers to all 

categories. 

• Cohen’s kappa coefficient: It is an accuracy metric normalized by the 

imbalance of classes in the data, by considering the possibility of correct 

identification occurring by chance. It compares the actual accuracy with the 

expected accuracy, which is the accuracy that results from classification by 

random chance. It refers to all categories. 

• Precision: It is the percentage of correctly identified buildings out of the total 

number of buildings identified with that specific function category. For 

example, the precision of function category “Hotel” is the probability that a 

randomly selected building inferred as “Hotel” is actually a “Hotel”. Each 

building function category has a precision value. 

• Recall: It is the percentage of correctly inferred buildings out of the number 

of buildings of that specific function category. For example, the recall of 

function category “Hotel” is the probability that a randomly selected “Hotel” 

building was inferred as “Hotel”. Each building function category has a recall 

value. 
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Five additional classification methods were implemented as benchmarks against the 

proposed model. Note that other state-of-the-art methods for inferring building functions 

require other datasets as input, such as street view images and remote sensing imagery, 

making it difficult to directly use these methods as baselines for the comparisons. 

Therefore, we only compare the performance of our proposed model with three deep 

learning models (Word2vec, Place2vec and Block2vec) and two conventional machine 

learning models (XGBoost and RF). 

• Word2vec: This model was used by Zhai et al. (2019) as a benchmark to infer 

function of a region based on POIs. Briefly, based on the distance between 

POIs, k-nearest POIs around a center POI can be identified. Subsequently, a 

POI sequence is built according to such distances. Each POI sequence is 

viewed as a sentence and fed into Word2vec proposed by Mikolov et al. 

(2013a), in which the context vector of each POI category can be obtained. 

Meanwhile, the building vector can be specified mathematically by weighted 

average of the POI vector in that building according to different categories’ 

POIs. Finally, as the feature, building vectors are fed into random forest (RF) 

to infer building function. 

• Place2vec: This model was proposed by Zhai et al. (2019) to infer function 

of a region based on POIs. The way of building POI sequences is same as 

Word2vec. The only difference is that Place2vec considers the spatial 

information using nearest neighbor approach, which augments the spatial 

context of a region.  

• Block2vec: This model was proposed by Sun et al. (2021) and only considers 

the POI within study entities to infer the function. Briefly, the POI sequence 
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is built according to the distance to the centroid of the building footprint. Here, 

the POI sequence is at a fixed length s. If the POI sequence in this building is 

less than s, the specific characters would be added. Conversely, the excess 

POIs would be eliminated. Additionally, the model also considers the 4 

buildings closest to the target building. The whole model is built by a deep 

learning method, i.e., long-short term memory (LSTM). After constructing 

the vector of a building, random forest is applied to infer the building function. 

• XGBoost: The eXtreme Gradient Boosting (XGBoost) algorithm is a popular 

tree-based method for classification tasks (Chen and Guestrin 2016). For 

XGBoost, we only consider the feature vectors of the target building itself to 

infer its building function category. 

• Random Forest (RF): It is a classic and popular machine learning model for 

classification tasks (Breiman 2001). RF is selected mainly because it is found 

to be easy to train, to have high performances and not to over-fit the data 

(Breiman 2001, Cutler, Cutler and Stevens 2012). For the RF model, we only 

consider the feature vectors of the target building itself to infer its building 

function category.  

5.2 Tunning hyperparameters 

There are four hyperparameters in the proposed model: the number of encoder layers 

𝑙, the number of nearby buildings to be additionally considered 𝑛, the dimension of the 

refined vector of service facilities (see Section 4.3), and that of human activity pattern 

(See Section 4.3). The section mainly focuses on tunning these hyperparameters. Noted 

that the reported accuracies are computed on the validation set (instead of the test set). 
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Figure 7 demonstrates the different accuracies when 𝑙 and 𝑛 are varied. In Figure 7a, 

we fix the number of nearest buildings, the dimension of the refined vector of service 

facilities, and that of human activity pattern as 150 (i.e., 𝑛 = 150), 9, and 25, respectively. 

The blue line shows how the accuracy changes with the number of transformer encoders. 

When the number of transformer encoders is 3, the model is more accurate than other 

values from 1 to 5. Thereby, we use 3 transformer encoders in our model (i.e., 𝑙 = 3). In 

Figure 7b, we fix 3 transformer encoders and observe that the accuracies generally 

increase with the increase of the number of nearby buildings considered. This is expected 

as the more nearby buildings considered, the more “geographic context” information is 

added to the proposed model. When 𝑛 = 120, the accuracy reaches the highest value of 

0.899. Compared to only one nearby building being considered, considering 120 nearby 

buildings improves the accuracy by 16%. 

Since the vector dimension of service facilities and human activity pattern are related 

to the number of multi-head attention mentioned in Section 4.5 (e.g., if the numbers of 

heads are 3 and 6, the vector dimensions are 32 and 62 respectively), we tune the vector 

dimension by changing the number of heads. We randomly fix the number of heads of 

human activity pattern as 5 and change that of service facilities from 2 to 7. In Figure 8a, 

the orange line shows that the performance is the best when the number of heads is 4 and 

7, achieving 0.909. Considering the computational cost, we choose 4. In Figure 8b (the 

green line), we fix the number of heads of service facilities as 4 and change the one of 

human activity pattern from 2 to 7. The results demonstrate that when the number of 

heads equals 5, the performance is better, reaching 0.909.  

Considering the above results, for the follow-up analysis, we set the number of 

encoder layers to 3, the number of nearby buildings to 120, the number of heads in service 



 28 

facilities and human activity pattern to 4 and 5 respectively (i.e., the corresponding vector 

dimensions are 16 and 25 respectively).  

 

Figure 7. Accuracies in different numbers of transformer encoders and nearest 
buildings. 

 

Figure 8. Accuracies in different numbers of heads in service facilities and 
human activity pattern. 

5.3 Performance comparison 

This section compares the performance of our proposed model against the five 

baselines. For each of the baselines, we chose the best model (in terms of predictive 

accuracy) after tuning its corresponding hyperparameters (considering the parameter 

settings of the original studies). All evaluation metrics are calculated on the test dataset. 

Table 3 illustrates that our proposed model outperforms the baseline models in both 

accuracy and kappa coefficient. Our model achieves the highest accuracy of 90.8% with 

the kappa coefficient of 0.87. XGBoost and RF perform relatively worse, because these 

models can only consider the features of the target building itself, and no nearby buildings 



 29 

are considered. This again demonstrates the importance of considering nearby buildings 

(i.e., "geographic context") for inferring the function of a target building. Additionally, 

Block2vec, Word2vec and Place2vec perform significantly worse. Note that these three 

methods were proposed to infer functions of larger spatial regions, e.g., traffic analysis 

zones or big street blocks (instead of individual buildings). Their poor performance is 

presumably due to the fact that many individual buildings do not contain any POIs, 

making it difficult to infer their functions.  

Table 3. Comparison of the proposed model and baselines. 

 Model 
Metric Our model XGBoost RF Block2vec Word2vec Place2vec 

Accuracy 0.908 0.716 0.654 0.441 0.440 0.438 
kappa 0.87 0.58 0.46 0.05 0.05 0.05 

 

5.4 Ablation study 

This section evaluates the importance of different components in our proposed model.  

All evaluation metrics are calculated on the test dataset. The variant “conventional 

transformer encoder” uses the same architecture of the proposed model, but the Geo-PEG 

part was replaced by simply assigning the positions (i.e., 0, 1, …, n) as the “ordering” of 

the buildings. Table 4 illustrates that our model achieves the best performance, followed 

by the conventional transformer encoder, transformer encoder with human mobility only, 

and transformer encoder with service facility only. This suggests that the proposed 

components, i.e., the Geo-PEG module, the service facility features, and the human 

mobility features, all contribute positively to the classification accuracies.  

Table 4. Comparison of the proposed model with its own variants 

 Model 
Metric Our 

model 
Conventional Only service 

facility 
Only human 

mobility 
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transformer 
encoder 

Accuracy 0.908 0.895 0.883 0.886 
kappa 0.87 0.85 0.84 0.84 

 

5.5 Training dataset size 

This section investigates the relationship between the classification accuracy and the 

amount of training samples. We train the proposed model on the training dataset (17600 

samples) that increases by 20% from 20% to 100%, and evaluate the performance of the 

trained model on the test dataset. Table 5 demonstrates that the model’s performance 

increases as the amount of training samples increases. Note that our model can reach a 

classification accuracy of 0.817 and a kappa coefficient of 0.75 when only 20% of the 

training samples (3500 samples) were used. This is desirable and shows that our model 

can achieve a decent performance even with a very limited number of training samples.  

Table 5. Performance of our model on different amount of training samples. 

 Amount of training samples 
Metric 20% 40% 60% 80% 100% 

Accuracy 0.817 0.851 0.872 0.887 0.908 
kappa 0.75 0.79 0.82 0.84 0.87 

 

5.6 Analysis of the classification performance 

5.6.1 Spatial distribution of the classification performance  

To investigate which geographical factors influence the classification performance, 

we visualize the spatial distribution of classification accuracy, building density and 

building function diversity (Figure 9). Firstly, we divide the Nanshan district into 

different areas (DAs) using the road network downloaded from OpenStreetMap. 

Subsequently, for each DA, we calculate the classification accuracy, building density and 

building function diversity, which can be described as:  
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𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦M =
$O,
1),

 (21) 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦M =
1),
1:,

 (22) 

    𝑒𝑛𝑡𝑟𝑜𝑝𝑦M = −∑ 𝑝(𝑐)H 𝑙𝑜𝑔+𝑝(𝑐)   (23) 

Where i represents the ith DA, SI denotes to the number of successfully inferred 

buildings, BN is the number of total buildings, and BA is the area sum of buildings. 

Additionally, Shannon entropy is used to measure the building function diversity in each 

DA, in which 𝑝(𝑐) indicates the proportion of cth categories of building in all categories.  

Figure 9a shows the accuracy of inferring building functions, which is divided into 

five groups relying on the equal interval method. The change from light orange to red 

indicates the increase of the classification accuracy. According to Figure 9a, the majority 

of the areas are red, indicating that the proposed model performs well regardless of the 

location of the area. Both Figure 9b and Figure 9c are classified into five groups using 

the natural breaks method. As can be seen, most of the areas with low classification 

accuracies are located in the areas with low building density.  

 

Figure 9. Spatial distribution of classification accuracy, building density and 
function diversity. 

5.6.2 Confusion matrix 
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To better understand the classification performance of different building categories, 

Table 6 shows the confusion matrix of building function classification of the proposed 

model. Here, RC denotes to the recall, PR refers to the precision. The high performance 

of the categories UV, UR, RT, CF, IP, and EDU indicates the model can predict these 

categories with high accuracy. However, our model has a relatively poor performance in 

the building categories CA and HT, owing to the limited number of samples of these 

categories.  

Table 6. Confusion matrix of the building function classification. 
  predicted 

UV UR BO CA SC HT RT CF IP AM EDU MD Total  RC(%) 

 

 

 

 

 

 

actual 

UV 2415 19 0 0 0 0 0 7 4 4 2 0 2451 98.5 

UR 17 1417 11 0 0 0 1 9 16 3 5 0 1479 95.8 

BO 2 38 77 0 1 1 0 16 11 0 2 0 148 52 

CA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

SC 0 5 4 0 21 0 1 5 0 0 0 0 36 58.3 

HT 0 9 3 0 0 3 2 1 1 0 0 0 19 15.8 

RT 0 15 1 0 0 1 76 4 0 0 3 1 101 75.2 

CF 14 39 7 0 6 0 1 655 17 2 13 0 754 86.9 

IP 2 20 13 0 0 0 0 35 371 1 10 1 453 81.9 

AM 3 19 2 0 0 1 0 11 1 32 2 0 71 45.1 

EDU 4 45 3 0 1 0 1 6 7 2 183 0 252 72.6 

MD 4 11 1 0 0 0 0 1 0 0 1 17 35 48.6 

Total 2461 1637 122 0 29 6 83 750 428 44 221 19 5800  

PR(%) 98.1 86.6 63.1 0 72.4 50 91.6 87.3 86.7 72.7 82.8 89.5   

5.7 Model applicability in another urban area 
To evaluate the applicability of the proposed model in other urban areas, we select 

Luohu district, another district in Shenzhen city, as another test area. Luohu district is the 

old town of Shenzhen, while the study area of Nanshan district is the new town and central 

business district (CBD) of Shenzhen, which means that these two districts have very 



 33 

different built environment and spatial configuration patterns. This section uses 19200 

building samples located in the Luohu district, wherein 4800 samples are randomly 

selected as the training set, and the other 14400 samples are selected as the test set to 

evaluate the performance of the proposed model. Table 7 shows the model performance 

on the Luohu district. Firstly, we directly utilize the trained model from the Nanshan 

district to evaluate performance on the test set, which obtains the accuracy of 66.2% with 

a kappa coefficient of 0.49. Subsequently, we randomly add 500 samples from the Luohu 

training set to further train the model, which achieves an accuracy of 75.32% with a kappa 

coefficient of 0.63 on the Luohu test set. Finally, we completely re-train the proposed 

model using only the Luohu training set and evaluate the trained model on the Luohu test 

set. The results show an accuracy of 81.67% and a kappa coefficient of 0.72. All these 

show that the proposed model has good applicability to other urban areas.  

Table 7. Model applicability in Luohu. 

Model Accuracy Kappa 
Trained in Nanshan dataset 66.2% 0.49 

Model trained in Nanshan dataset + 500 samples in Luohu 75.32% 0.63 
Re-train model with 4800 samples of Luohu 81.67% 0.72 

 

6. Discussions 
The results of the performance comparison between the proposed model and the 

baselines illustrate that: 1) When inferring the function of a target building, it is important 

to consider its nearby buildings; Information regarding these nearby buildings helps to 

“contextualize” the target building. 2) Considering both features about the service facility 

and human mobility of buildings leads to an improvement of the classification accuracies. 

3) Compared to the conventional position embedding method in natural language 

processing, the proposed geo-aware position embedding generator, which considers the 
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spatial distances between buildings and spatial distribution around individual buildings, 

helps to further improve the model performance. In general, our proposed model achieves 

a classification accuracy of 90.8%, and a kappa coefficient of 0.87, which is better than 

all the baselines. This illustrates that the proposed model, i.e., the combination of Geo-

PEG, transformer encoders, service facility features, and human mobility features, has a 

strong ability in inferring building functions.  

Additionally, the performance of varying amounts of training samples illustrates that 

the amounts of training samples can influence the model performance. More importantly, 

the proposed model can achieve an accuracy of 81.7% with a kappa coefficient of 0.75 

on only 20% of the training samples (3500 samples), which illustrates that our proposed 

model performs well even with a limited amount of training dataset. This is desirable, 

especially for the cases when it is difficult to obtain a large amount of labeled data. 

Meanwhile, by evaluating the proposed model at another urban area, we show that the 

proposed model is not specific to the study area and has a good transferability to other 

urban areas.  

The evaluation results also show that the proposed model can successfully infer the 

building function at a high accuracy no matter where the building is located at. While the 

high accuracy is found in most places, there are few places with low accuracy. To better 

understand performance in detail, we visualize the distribution of building density and 

function diversity. The results show that the areas with low classification accuracy are 

often the areas with low building density, suggesting that there is limited “contextual” 

information for inferring the function of the target building in such areas. Meanwhile, 

according to the distribution of building function diversity, our model also can perform 

very well even if in high diversity areas. 
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Looking at the classification accuracies of individual building function categories, 

we found that the function categories of UV ("urban village”), UR ("urban residential”), 

RT ("recreation & tourism”), CF ("company & factories”), IP ("industrial park”), and 

EDU (“education”) can be recognized with high accuracy due to sufficient training 

samples. The categories of BO ("business office”) and AM ("administrative”) have 

relatively sufficient training samples but have relatively low accuracy. In terms of BO, 

around 20% of the BOs are misclassified as URs, presumably because the URs closed to 

CBD have similar architecture characteristics and functional configuration as BOs, 

leading to misclassification. Around 26% of the AMs are misclassified as URs, since most 

of the AMs are local community councils, which is normally surrounded by UR buildings. 

Several limitations in this study should be mentioned. Firstly, while this study 

evaluated the model transferability, we could only evaluate the proposed model on the 

other district in the same city due to the limited datasets. It would be interesting to 

investigate how our model performs when applied to other types of cities. Secondly, in 

the geo-aware position embedding layer, this article uses the same parameter to control 

the range for every building, ignoring the spatial heterogeneity. This can be also improved 

in the future by setting the range of each building according to its geographic context (e.g., 

density of nearby buildings or even the bigger area to which the building belongs). Thirdly, 

when building the input features of a building, this study used Euclidean distances to 

measure its proximity to bus/metro stations and parks, mainly trying to reduce 

computational costs. To better reflect the proximity of buildings to these facilities, it 

might be better to employ network distance.  

7. Conclusion 
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This paper proposed a novel geo-aware neural network model to infer functions of 

individual buildings, which makes use of the POI distributions, human mobility patterns 

of the target building and its nearby buildings. The model includes a geo-aware position 

embedding generator and transformer encoders to better capture the deep relationships 

between the target building and its nearby buildings (i.e., the “geographic context” of the 

target building). In summary, the evaluation results show that our proposed model 

significantly outperforms the baselines. Meanwhile, it performs well even when the 

training dataset is limited. It also has a good transferability for other urban areas. All these 

results demonstrate that the proposed model is an effective and reliable method to infer 

building function, which is important for city management and policy making. Further 

research should aim to improve the model by considering spatial heterogeneity, which 

might help to further enhance the model applicability in other cities around the world. 

Meanwhile, it might be useful to integrate features from remote sensing images and street-

view images to further improve the classification performance of the proposed model.  
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