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Abstract—In real life, acoustic scenes and audio events are
naturally correlated. Humans instinctively rely on fine-grained
audio events as well as the overall sound characteristics to
distinguish diverse acoustic scenes. Yet, most previous approaches
treat acoustic scene classification (ASC) and audio event classifi-
cation (AEC) as two independent tasks. A few studies on scene
and event joint classification either use synthetic audio datasets
that hardly match the real world, or simply use the multi-task
framework to perform two tasks at the same time. Neither of
these two ways makes full use of the implicit and inherent relation
between fine-grained events and coarse-grained scenes. To this
end, this paper proposes a relation-guided ASC (RGASC) model
to further exploit and coordinate the scene-event relation for
the mutual benefit of scene and event recognition. The TUT
Urban Acoustic Scenes 2018 dataset (TUT2018) is annotated
with pseudo labels of events by a simple and efficient audio-
related pre-trained model PANN, which is one of the state-of-
the-art AEC models. Then, a prior scene-event relation matrix is
defined as the average probability of the presence of each event
type in each scene class. Finally, the two-tower RGASC model is
jointly trained on the real-life dataset TUT2018 for both scene
and event classification. The following results are achieved. 1)
RGASC effectively coordinates the true information of coarse-
grained scenes and the pseudo information of fine-grained events.
2) The event embeddings learned from pseudo labels under the
guidance of prior scene-event relations help reduce the confusion
between similar acoustic scenes. 3) Compared with other (non-
ensemble) methods, RGASC improves the scene classification
accuracy on the real-life dataset.

Index Terms—Acoustic scene classification, audio event classi-
fication, pseudo label, collaboratively classify

I. INTRODUCTION

Acoustic scene classification (ASC) tags audio recordings
using the predefined semantic labels that characterize the en-
vironment and situation in which it was recorded. Audio event
classification (AEC) is dedicated to multi-label classification
on audio clips and aims to identify the presence of target
audio events. ASC and AEC can be used in a wide variety
of applications such as robot hearing [1], audio forensics [2],
emergency detection [3] and road surveillance [4].

Prior studies related to IEEE AASP Challenges in Detection
and Classification of Acoustic Scenes and Events (DCASE)
[5]–[7] commonly handle ASC and AEC as two separate tasks
and tune models for each task individually. However, real-
world audio streams include both acoustic scenes and events
and they are inherently correlated. For example, in the acoustic

scene metro station, audio events of bell ringing and engine
starting are likely to occur. Such fine-grained events are the
fundamental building blocks of polyphonic acoustic scenes.
Therefore, a joint scene and event recognition method based on
an artificially synthesized dataset is proposed in [8], expecting
to train a shared acoustic feature encoder for scenes and events.
However, the artificial dataset in [8] does not accurately catch
complexities between real-world acoustic scenes and events.
Then in [9], robust representations for environmental audio
scenes and events are learned by generative model-driven
representations and have proved to be effective in audio-related
tasks. Another class of studies for joint analysis of scene
and event refers to multi-task learning (MTL) [10]. Several
convolutional layers are shared in a multi-task model as they
[11] expect to learn and utilize shared low-level representations
and separated high-level representations of scenes and events.
However, the one-hot hard labels of scenes used in [11] cannot
model the extent to which audio events and acoustic scenes
are related. To alleviate this issue, the output of a trained
scene model is used as the teacher in [12] to guide the
learning of the scene branch, which works as the student, in
the joint scene-event classification model based on the teacher-
student learning [13]. To learn the knowledge of events under
scene conditions, a scene-event joint analysis model based on
scene-conditioned loss is proposed [14]. Overall, in previous
scene and event joint analysis works, papers [8] [9] [11]
do not explore the implicit scene-event relation, paper [12]
exploits the one-way scene-to-scene relation. Although paper
[14] uses the one-way scene-to-event relation by conditional
loss, that relation is derived from the artificial dataset in [8],
and is difficult to match the complex and intricate scene-event
relation in the real world.

In contrast to prior works, this paper is not only interested
in obtaining a shared representation encoder with scenes and
events knowledge, but also in how the real-world implicit and
inherent scene-event relation can be used to guide the model to
bidirectionally fuse the information of coarse-grained scenes
and fine-grained events to reduce confusion of similar scenes,
even if the event information is derived from unverified pseudo
labels (a proxy to unavailable ground-truth labels) [15].

To the best of our knowledge, there are no publicly available
large real-life datasets that contain both acoustic scene and



event labels. Hence, a large real-life acoustic scene dataset,
TUT Urban Acoustic Scenes 20181, with diverse audio events
is used in this paper [7]. In order to obtain labels for events
in the real-life acoustic scene dataset, a simple and efficient
pre-trained audio-related model PANN [16] is used to tag each
audio clip with pseudo labels of 527 classes of audio events.
Relying on true labels of scenes and pseudo labels of events,
a scene-event relation matrix is derived to model the implicit
relation between real-life scenes and events. Then, with the
aid of pseudo labels and the prior knowledge of joint scene-
event relation matrix, a relation-guided ASC and AEC two-
tower model is proposed to mutually estimate the knowledge
of scenes and corresponding events and explore the possibility
of collaboratively classifying scenes and events.

This paper is organized as follows. Section 2 introduces the
method. Section 3 describes the dataset, experimental setup,
results, and analysis. Finally, Section 4 gives conclusions.

II. METHOD

In this section, the scene-event relation matrix is presented
and is applied to the relation-guided two-tower convolutional
neural networks (CNN) for the acoustic scene classification
(ASC) and audio event classification (AEC) tasks.

A. Prior scene-event relation matrix

Coarse-grained acoustic scenes are highly correlated with
fine-grained audio events, for example, car passing and horn
screeching are more likely to occur in the street scene than
cheerful music. In contrast, joyful music accompanied by
people walking is more common in the shopping mall scene.
The relation between real-life scenes and events is not simply 1
for presence or 0 for absence, but rather a likelihood expressed
by probability. Inspired by such an intuitive observation, this
paper attempts to build the scene-event relation matrix on
the real-world acoustic scene dataset, instead of the simple
connections in [14] represented by 0 and 1 on synthetic
datasets. Since there are no public large real-life datasets
that contain both acoustic scenes and events labels, an audio-
related model PANN [16] is used in this paper to tag audio
clips with pseudo labels of events. PANN [16] is trained and
performs well on Audioset [17], which contains 527 classes
of polyphonic audio events in daily life.

Given the probability of 527 classes of events for the i-th
audio clip (ai) of the j-th scene Sj is P (Sj , ai) ∈ R1×527,

P (Sj , ai) = [pe1 , pe2 , pe3 , ..., pe527 ] (1)
where pen ∈ [0, 1], n ∈ [1, 527], and pen is the probability
of the occurrence of the n-th event in the audio clip. The
pen ∈ [0, 1] implies that in the AEC task, different audio events
are generally considered to be independent of each other. Then,
the average probability of audio events in the acoustic scene
Sj can be notated as P (Sj),

P (Sj) = 1/Ij
∑Ij

i=1
P (Sj , ai) (2)

1Dataset available: https://zenodo.org/record/1228142#.YfJ-Qv7MJnI
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Fig. 1: The architecture of the relation-guided acoustic scene
classification (RGASC) model.

where Ij is the total number of audio clips in the scene Sj .
Then, the prior scene-event relation matrix RSE is composed
of P (Sj) rows for all scenes: RSE ∈ RK×527,

RSE = [P (S1), P (S2), P (S3), ..., P (SK)]T (3)
where K is the number of acoustic scenes in the dataset.
Next, RSE from the training set will be introduced into the
two-tower model of ASC and AEC. The role of RSE is to
guide the model to coordinate and utilize the implicit relation
between coarse-grained scenes and fine-grained events during
the training phase.

B. Relation-guided collaborative two-tower model

The core of this part is how to embed the existing fixed
prior relation matrix RSE relating coarse-grained information
from true labels of scenes and fine-grained information from
pseudo labels of events into the learning process of the model.
To exploit the fixed prior knowledge of RSE , a relation-guided
two-tower model is proposed in Fig. 1.

The raw waveform is first converted to time-frequency (T-
F) representations using log mel spectrograms [18]. Then,
the first N convolutional blocks of the two-tower model are
used to extract shared basic acoustic features of scene and
event as inspired by [8], [9] and [11]. Compared with high-
level acoustic features, basic local acoustic features learned
by models are more transferable and applicable [19], which is
beneficial for model generalization [20]. Then, the remaining
M convolutional blocks are applied to the ASC tower and
the AEC tower to capture local patterns that are beneficial
to scenes and events, respectively. There are a total of 6
convolutional blocks in the proposed model. Therefore, given
the first N convolution blocks are shared, the remaining
M = 6−N convolutional blocks will be used to learn the task-



oriented representations of each tower. The optimal ratio of N
and M will be further explored in the experimental section.

Referring to CNNs in VGG [21], each convolutional block
contains 2 convolutional layers with the kernel size of (3 ×
3). Batch normalization [22] and ReLU activation functions
[23] are used to accelerate and stabilize the training. Next, a
linear dense layer is applied to the high-level representations,
followed by a scene classification dense layer with softmax
activation function and an event classification dense layer with
sigmoid activation function, respectively. More details and
code, please see the homepage2.

ASC is a task dedicated to single-label multi-class classifi-
cation, so the cross entropy loss [7] is used as the loss function
in the ASC tower between the scene prediction ŷs ∈ RK and
the scene true label ys ∈ RK ,

Lscene = −
∑K

j=1
ysj log(ŷsj ) (4)

AEC aims to perform multi-label classification on audio clips
to detect multiple targets simultaneously. Therefore, the binary
cross-entropy [16] loss is used in the AEC tower between the
event prediction ŷe ∈ R527 and the pseudo label ye ∈ R527,

Levent = −
∑527

i=1
yei log(ŷei) + (1− yei) log(1− ŷei) (5)

To guide the model to explore relations between scenes and
events based on the prior knowledge of RSE from the training
set. The scene prediction ŷs is mapped to the latent event
space via RSE to obtain the corresponding event information
ỹe inferred from the scene prediction, ỹe = ŷs ·RSE . The RSE

is derived from the probability of events in each scene, hence
the embedding vector ỹe uses the prior information of events
in the scene. To measure the distance between the inferred
event vector ỹe and the actual event prediction ŷe in the latent
space, the ŷe from the AEC tower is used as the reference in
the mean squared error (MSE) loss,

Le by scene = 1/527
∑527

i=1
(ŷei − ỹei)

2 (6)

The embedding vector ỹe is not a probability distribution, so
the regression loss MSE is used to minimize the relation-
guided Le by scene loss of inferred event by scene information.
This expects the inferred event vector ỹe to be close to
the actual event vector ŷe in the latent representation space.
Furthermore, the study [24] on the entropy-based loss and
MSE shows that MSE loss can better correct the error between
the estimated value and the target.

Similarly, the inner product ỹs = ŷe · RT
SE defines the

relation-guided embedding vector for scenes. The relation-
guided embedding vector ỹs from event prediction indicates
the possibility of different scenes, and higher similarity means
the corresponding scene is more likely to occur. Similar to
ỹe, ỹs is not a probability distribution, so MSE is adopted to
minimize the loss of inferred scene by event information to
expect the inferred scene vector ỹs to be close to the actual
scene vector ŷs in the latent representation space.

Ls by event = 1/K
∑K

i=1
(ŷsi − ỹsi)

2 (7)

2Homepage: https://github.com/Yuanbo2020/RGASC

The final loss function of the two-tower models is given by
the weighted sum of the separate loss functions:
L = λ1Lscene + λ2Ls by event + λ3Levent + λ4Le by scene (8)

where λi is the scale factor of each loss function. λi defaults
to 1. In the experimental section, various configurations of
λi are explored. The ASC tower will benefit from Lscene
and Le by scene. The loss Le by scene is fed to the ASC tower,
expecting to obtain a more coordinated scene prediction with
the event prediction of AEC tower. Likewise, the AEC tower
will benefit from Levent and Ls by event, the loss Ls by event
benefits the collaborative learning of AEC tower.

III. EXPERIMENTS AND RESULTS

A. Dataset and Experimental Setup

The dataset used in this paper is the TUT Urban Acoustic
Scenes 2018 development dataset (TUT2018) [7] with 8640
10-seconds clips totaling 24 hours and contains 10 classes
of acoustic scenes from real life. For each acoustic scene,
there are 864 examples. These audio recordings were recorded
in 6 different European locations. This real-life dataset does
not contain labels for events. Therefore, to obtain the event
labels, a pure CNN-based pre-trained model PANN3 [16] is
used to tag each audio clip with a pseudo label indicating the
probability of 527 classes of audio events.

The log mel-bank energy with 64 banks [18] is used as the
acoustic feature in this paper. This is extracted by the Short-
Time Fourier Transform (STFT) with a Hamming window
length of 46 ms and a window overlap of 1/3 [25]. Dropout
[26] and normalization are used in the training to prevent
over-fitting of the model. Adam optimizer [27] with a default
initial learning rate of 0.001 minimizes the loss function. The
default training batch size is 64. To facilitate the comparison
of experimental results with other systems, the training/testing
split of the TUT2018 dataset follows the default split of the
DCASE 2018 Task 1 Subtask A4. The model is trained on a
single graphical card (Tesla V100-SXM2-32GB) for a fixed
amount of 100 epochs. The average accuracy (Acc) [25] is
used as the metric in this paper. A higher Acc indicates a
better performance to distinguish different scenes.

B. Results and Analysis

This section analyzes the performance of the proposed
method based on the following Research Questions (RQ):
• RQ1: How many convolutional blocks should be shared?

As discussed in Section II-B, the first question to be
explored is what proportion of the joint scene-event repre-
sentations should be shared? From another perspective, the
ratio between shared and individual blocks determines whether
the model is dedicated to learning shared knowledge or is
more inclined to explore task-dependent knowledge. There is
both competition and mutual influence between the shared and
separated blocks in the RGSAC model.

3We used the CNN14 in PANN in this paper. The pre-trained model
(the model named Cnn14 16k mAP=0.438.pth) of CNN14 is available here:
https://zenodo.org/record/3987831

4http://dcase.community/challenge2018/task-acoustic-scene-classification
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Fig. 2: The effect of different numbers of shared blocks on
the proposed model on the test set of real-life dataset. X-axis
is the number of shared blocks, and y-axis is the accuracy of
scene classification.

There are a total of 6 convolution blocks in the proposed
RGASC model. Therefore, when the number of shared blocks
is 0 in Fig. 2, the learning of scene representations and
event representations in the two-tower RGASC model will be
independent, and the model will not be able to learn the joint
scene-event representation. When the number of shared blocks
is 6, the learning of scene and event representations will be
completely overlapping, then the model can only rely on the
subsequent dense layer of each tower to learn the individual
task-oriented representations.

As shown in Fig. 2, increasing the number of shared blocks
does not consistently improve the classification accuracy of the
model. The performance of the model peaks when the number
of shared blocks is 2. Then, further increase in the number
of shared blocks will degrade the performance of the model.
That means the optimal structure of the two-tower model is the
structure when the number of shared blocks is 2. Subsequent
experiments will be conducted on this model structure.
• RQ2: How do different weights λi for the four losses
influence the performance of the model?

During the training phase, different values of λi rep-
resent the difference in importance of scene information
(Lscene), scene information inferred from the event prediction
(Ls by scene), event information (Levent), and event information
inferred from the scene prediction (Le b event), respectively.
Except for the scene information, the other three types of
information are derived from pseudo labels. Since only the
labels of scenes are available in the real-life dataset TUT2018,
where the accuracy of the pseudo labels of events tagged by
the pre-trained model PANN [16] cannot be evaluated due to

TABLE I: The ablation study of the proposed model.

# Lscene Ls by event Levent Le by scene Acc (%)

1 " % % % 71.46
2 % % " % 36.90
3 " % " % 72.94
4 % " % " 10.07
5 " % " " 75.80
6 " " " % 74.36

the absence of reference event labels, and the goal of this
paper is to improve the accuracy of scene classification, so
the experiments will focus on the results of ASC.

In this section, the importance of different types of infor-
mation is explored that corresponds to different λ for model
learning. First, an ablation study has been conducted to com-
pare the role of different types of information in the proposed
RGASC. Table I lists the result of enabling and disabling
certain parts of RGASC. For # 1 in Table I, only scene
information is exploited, which is a pure ASC (puASC) model
without the aid of additional information. # 2 predicts scenes
by ỹs = ŷe · RT

SE , which calculates the similarity between
each row of the relation matrix RT

SE and event information
ŷe provided by pseudo labels to derive the possibility of each
scene. The RT

SE with fixed prior knowledge can be viewed
as a table. That is, # 2 in Table I can be regarded as the
result of a lookup table that relies on the event information
from pseudo labels, so its result is poor. # 3 uses the true
information of scenes and pseudo information of events to
obtain a shared joint scene-event representations extractor,
which is similar to prior works [8] [9] [11]. # 4 relies only on
the prior relation matrix to derive each other’s outputs without
learning the knowledge of scenes from the true labels and
the knowledge of events from the pseudo labels. Without the
support of accurate task-dependent representations of scenes
and events, # 4, which only learns the implicit and intricate
scene-event relation through the prior relation matrix, actually
cannot learn the knowledge of scene classification, resulting in
its inability to classify effectively, so its performance is poor.
Compared with # 3, # 5 based on Le by scene expects to obtain
more accurate and coordinated event-related scene prediction
and enhance the discrimination ability of the scene branch,
which in turn brings a better classification result. In contrast
to # 5, # 6 attempts to obtain more accurate scene-related
event information. # 5 outperforms # 6, which indicates that
increasing the weight of scene information is more beneficial
to the ASC task. The ablation study in Table I shows that the
more the model pays attention to the scene-related information,
the better its performance.

Second, fine-grained control of the weight of each loss
function is explored. The fusion of different semantic infor-
mation in Table II tries to adjust the weights of the other
three kinds of information from pseudo labels to maximize
their benefit. In other words, the right amount of noise-filled
pseudo information needs to be introduced to help recognize

TABLE II: The effect of different λi values on the ASC task.

# λ1 λ2 λ3 λ4 Acc (%)
1 1 0 1 0.01 75.92
2 1 0 0.5 0.01 76.27
3 1 0.1 1 0.1 75.05
4 1 0.1 0.1 0.1 75.62
5 1 0.1 0.5 0.1 75.79
6 1 0.01 0.5 0.01 77.35
7 1 0.01 0.01 0.01 76.48
8 1 0.001 0.01 0.001 76.71



TABLE III: Comparison of classification results of different
systems on the development set of TUT2018.

System Model structure Acc (%)
PANN [16] (Fixed mode) VGG-like CNN 56.9

Baseline [7] CNN 59.7
CNN Surrey [25] CNN 68.0

NNF CNNEns [28] CNN and nearest neighbor filters 69.3
Attention [29] CRNN with Self-attention 70.8
ABCNN [30] Attention-Based CNN 72.6

PANN (Fine-tuning mode) VGG-like CNN 73.8
MLTF [31] CNN and SVM 75.3

Wavelet-based DSS [32] CRNN 76.6
Proposed RGASC VGG-like CNN 77.4

similar scenes. Finally, giving maximum weight to Lscene and
secondary weight to Levent, while absorbing the scene-event
relation information (Ls by event and Le by scene) with weaker
weights, makes the best result of # 6 in Table II, which
gradually merges the coarse-grained true information of scene
and the fine-grained pseudo information of event based on
scene-event relation matrix.
• RQ3: Does the proposed RGASC system in this paper
perform better than other systems?

The published results of the DCASE2018 Task 1 Sub-
task A challenge are compared in this section in Table III.
Only the non-ensemble methods are taken into considera-
tion5. In addition to the well-performing convolutional neu-
ral networks (CNN) [7] [25], convolutional recurrent neural
network (CRNN) [29] with self-attention works well, where
self-attention [33] is used to model the relationship between
different positions of sequences output by CRNN. Next, to
achieve more optimal classification, an attention pooling layer
is used in CNN to reduce the feature dimension [30]. On
the other hand, in addition to the exploration of feature
dimensions, the paper [31] proposes a CNN-based multiple
layer temporal feature (MLTF) to try to capture the dynamic
temporal information of audio signals efficiently. Furthermore,
wavelet-based Deep Scattering Spectra (DSS) [32] is used
to exploit higher-order information of acoustic features in
the scene classification based on a CRNN model. For a
comprehensive comparison, the pre-trained model PANN [16]
used in this paper is also added to the comparison, and the
performance of PANN is explored in two modes referring to
the transfer learning [19]. In fixed mode, the parameters of
PANN will not be updated during training, it will use the prior
knowledge of 527 classes of events learned from Audioset to
classify scenes. In fine-tuning mode, PANN will learn and
absorb scene information based on the existing knowledge to
update parameters.

5The non-ensemble results are obtained for comparison from the
DCASE2018 Task 1 Subtask A (T1A) website. The proposed RGASC only
uses a single model with one type of acoustic feature and does not involve
any data augmentation methods, while the top 3 methods in T1A are mostly
an ensemble of multiple models with multiple features, so the top 3 results are
omitted in Table III. In detail, the Top-1 in T1A is an ensemble of 2 deep CNN
trained with 11 types of acoustic features. Next, the Top-2 uses depth-wise
separable CNN trained with 3 multi-scale acoustic features. Finally, the Top-
3 is an ensemble of 6 big and deep models trained with 4 types of acoustic
features. Therefore, the ensemble was performed on up to 24 models in total.

TABLE IV: Comparison of ASC results with other scene-event
joint analysis methods on the development set of TUT2018.

# Method Acc(%)
1 Joint scene and event recognition [8] 52.35
2 Joint event and scene analysis using MTL [11] 61.69
3 Conditional scene and event recognition [14] 66.39
4 RGASC 77.35

Results in Table III show that the event knowledge has a
certain ability to distinguish scenes. The score of fixed-mode
PANN is close to Baseline, while the fine-tuned PANN gets a
better result than the CRNN with self-attention. This indicates
that even simple pure CNN without recurrent layers and
diverse attention mechanisms can achieve promising results
with the help of a large dataset (e.g. Audioset totals 5.8
thousand hours). Compared to other submissions in Table III,
the proposed RGASC for recognizing coarse-grained acoustic
scenes aided by relation-guided fine-grained event information
is effective, even if the fine-grained event information is
derived from pseudo labels without any verification.

Table IV also compares the RGASC with some existing
methods for joint scene-event analysis. Among them, the first
listed method [8] performs scene and event classification based
on the same joint embedding space and scores the worst.
This is easy to understand because real-life coarse-grained
scenes and fine-grained events contain their own different
characteristics and attributes. Then, the second-worst model
[11] based on MTL [10] attempts to exploit both shared
joint and separate individual representations of scenes and
events. The third method [14] jointly analyses scenes and
events based on the one-way scene-to-event conditional loss.
The performance of [14] is better than that of [11], which
indicates that the scene-conditioned loss plays the expected
role. Overall, the proposed RGASC scores best out of the
discussed joint analysis models of scenes and events.
• RQ4: Does the introduction of event information from
pseudo labels improve the recognition of acoustic scenes?

Table V specifically shows the role of pseudo-label informa-
tion. The accuracy of every scene class is compared for puASC
(# 1 in Table I) and the proposed RGASC (# 6 in Table II).
RGSAC effectively improves the classification accuracy except
for the two scenes of park and travelling by an underground
metron (metro). In particular, the classification accuracy of the
metro station (stat.) and pedestrian street (pedes.) is improved
by 17.38% and 13.36%, respectively.

To gain deeper insights, Fig. 3 intuitively visualizes the
gain of relation-guided pseudo-label information using t-SNE

TABLE V: Classification accuracy (%) on test set of the
puASC with only true labels of scenes and the proposed
RGASC aided by pseudo labels of events.

scene airp. bus metro stat. park sq. mall pedes. traff. tram
puASC 82.26 67.35 78.16 64.86 93.38 52.31 73.47 52.63 85.77 64.36
RGASC 86.42 76.86 77.01 82.24 90.50 56.94 74.91 65.99 90.24 72.41



(a) Representations from puASC. (b) Representations from RGASC.

(c) Confusion matrix of puASC. (d) Confusion matrix of RGASC.

Fig. 3: Visualization of high-level representations of acoustic scenes from models of puASC and RGASC using t-SNE [34]
and the corresponding confusion matrices on the test set of the development set of TUT2018.

[34]. There are 9 sub-clusters in Fig. 3 (a) in the 10-class
classification task. Many samples from similar scenes, like bus
and tram, public square (sq.) and park, street traffic (traff.)
and park, are mixed. Even for the human auditory system,
relying on audio alone to distinguish these similar scenes is
challenging [35]. The 10 classes of scenes are clearly shown
in Fig. 3 (b) of RGASC. Even the sq. that are covered by other
scenes in Fig. 3 (a) are delineated as a separate sub-cluster. The
distinction between different scenes represented by different
color sub-clusters is more obvious and the confusion is thus
reduced, achieving a better classification result. This indicates
that the relation-guided information fusion between the fine-
grained event pseudo labels and the coarse-grained scene true
labels works. In addition, in the bottom row of Fig. 3 the
corresponding confusion matrices are presented.

The pseudo-labels of events used in this paper cannot ensure
their accuracy due to the lack of ground-truth reference labels.
However, the experimental results show that the imprecise
pseudo-label information introduced by the relation matrix
does boost the accuracy of scene classification. Pseudo labels
without manual verification may prove their benefits, because
pseudo labels can still depict the possibility of events in
different scenes to some extent [36]. Therefore, the AEC tower

in Fig. 1 trained based on pseudo labels can learn inaccurate
but still effective event representations and distribution infor-
mation, and transform this information into cues that can be
applied to identify different scenes under the guidance of the
relation matrix proposed in this paper, so as to enhance the
recognition ability of the scene classification model. From the
perspective of teacher-student learning [37], the pre-trained
model PANN [16] used to output event pseudo labels in this
paper can be regarded as the teacher model, and the AEC tower
aiming to extract event information based on pseudo labels can
be regarded as the student model. The teacher model outputs
its rich knowledge of events into pseudo labels and transfers it
to the student model [38]. Although the student model may not
perform as well as the teacher model, the student model still
has some discernment about events [39]. In this paper, the fine-
grained event information learned by the student model will be
used as the reference to correct the event information inferred
by the ASC tower to enhance the scene branch’s discrimination
of diverse events within the scene, and further identify the
differences within different scenes to boost the discrimination
of the ASC tower for similar events. And then, the accuracy
of scene classification is improved.



IV. CONCLUSION

Inspired by natural relations between real-life varied acous-
tic scenes and diverse events, this paper proposes to use
the scene-event relation to guide the model to collabora-
tively classify scenes and events. The proposed relation-guided
ASC (RGASC) framework effectively coordinates the coarse-
grained true information of scenes and fine-grained pseudo in-
formation of events. Experiments show that the introduction of
pseudo-label information performs well under the guidance of
fixed prior relation matrix RSE , and RGASC shows promising
performance in differentiating similar polyphonic scenes.

Future work will enable the model to autonomously learn
the RSE during the training phase of model, and test it on
more diverse datasets.
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