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Abstract—Previous works on scene classification are mainly
based on audio or visual signals, while humans perceive the
environmental scenes through multiple senses. Recent studies on
audio-visual scene classification separately fine-tune the large-
scale audio and image pre-trained models on the target dataset,
then either fuse the intermediate representations of the audio
model and the visual model, or fuse the coarse-grained decision
of both models at the clip level. Such methods ignore the detailed
audio events and visual objects in audio-visual scenes (AVS),
while humans often identify a scene through both audio events
and visual objects within, and the congruence between them. To
exploit the fine-grained information of audio events and visual
objects in AVS, and coordinate the implicit relationship between
audio events and visual objects, this paper proposes a multi-
branch model equipped with contrastive event-object alignment
(CEOA) and semantic-based fusion (SF) for AVSC. CEOA aims to
align the learned embeddings of audio events and visual objects
by comparing the difference between audio-visual event-object
pairs. Then, visual objects associated with certain audio events
and vice versa are accentuated by cross-attention and undergo SF
for semantic-level fusion. Experiments show that: 1) the proposed
AVSC model equipped with CEOA and SF outperforms the
results of audio-only and visual-only models, i.e., the audio-visual
results are better than the results from a single modality. 2)
CEOA aligns the embeddings of audio events and related visual
objects on a fine-grained level, and the SF effectively integrates
both; 3) Compared with other large-scale integrated systems, the
proposed model shows competitive performance, even without
using additional datasets and data augmentation tricks.

Index Terms—audio-visual scene classification, audio event, vi-
sual object, contrastive learning, semantic-based fusion, attention

I. INTRODUCTION

Audio-visual scene classification (AVSC) aims to use both
audio and visual modalities to classify a video recording
into one of the predefined scene categories (such as metro
station, airport, or street pedestrian). Compared with scene
classification relying solely on audio or visual modality, AVSC
is able to not only exploit the richer information from the data
but also leverage the relationship between the two modals to
achieve better accuracy. Recently, AVSC has attracted many
interests due to its wide applications [1] [2] [3] [4].

Scene classification provides semantic information to effec-
tively guide higher-level audio or visual content understanding.
Prior works [5] [6] [7] [8] on scene classification are mainly
based on either audio or image information, and the related
tasks are called acoustic scene classification (ASC) or image
scene classification (ISC), respectively. The ASC models in

these works [5] [6] make decisions based on the clip-level
information about scenes. In real life, an acoustic scene and
the audio events took place within are naturally correlated.
For example, in a park scene, birds singing and dogs barking
are more likely to occur than keyboard sounds, where the
later are often found in the office scenes. To exploit the
inherent relationships between the coarse-grained scenes and
corresponding fine-grained events, relation-guided ASC [9]
coordinates scene-event relationships for the mutual benefit
of scene and event recognition. For ISC models [10] [11], the
input is usually an image or image sequence [12], and then
the scene is recognized based on the rich object information,
spatial layout information, as well as the relationship between
the objects and layouts. ASC and ISC aim to understand scene
semantic information from the perspective of human cognition
based on either audio or visual information, while humans of-
ten use audio-visual information to distinguish various scenes.

Human naturally recognizes diverse scenes based on var-
ious objects they see and complex audio events they hear.
Inspired by this simple observation, an increasing number
of studies expect to jointly model audio-visual information
within scenes. Recent works [13] [14] show that the joint
learning of acoustic and visual features can bring additional
benefits to AVSC. To exploit the audio-visual information
simultaneously, a multi-modal system based on convolutional
recurrent neural networks (CRNN) is presented in [15]. For
better integration of audio-visual information, a multi-modal
ensemble approach [16] enhanced by CLIP [17] with late
fusion is proposed for AVSC. The above AVSC systems fine-
tune pretrained audio and image models on target datasets,
and then fuses the intermediate representations from audio and
image models, or fuses the classification decisions of audio
and image models. The decision fusion (DF) is also called late
fusion, and intermediate fusion (IF) is also called early fusion
[13]. However, no matter using IF or DF, the above AVSC
systems did not fully leverage the rich information of audio
events and visual objects in scenes, as well as the correlation
between them. To exploit the fine-grained information of
audio events and visual objects within coarse-grained scenes,
this paper proposes a contrastive learning-based alignment
for audio events and visual objects to model the detailed
relationship between audio-visual information.

Unlike previous studies on AVSC using IF or DF, this



paper aims to exploit the fine-grained information of audio
events and visual objects contained in audio-visual scenes to
coordinate and fuse audio-visual modalities information for
better joint modeling of the audio-visual scenes. Therefore,
this paper proposes an AVSC model equipped with contrastive
event-object alignment (CEOA) and semantic-based fusion
(SF). The CEOA based on contrastive learning [18] aims
to explore the event-object similarity within the intra-class
scene and analyze the differences in the composition of audio
events and visual objects between different scenes to enhance
the discriminability of the model for various scenes. The SF
aims to coordinate the information of audio events and visual
objects after CEOA to generate the semantic-level audio-visual
information required for the final scene classification.

The contributions of this paper are: 1) we propose con-
trastive learning-based event-object alignment to coordinate
the relationship of fine-grained information between audio and
visual modalities in scenes to assist AVSC; 2) To better fuse
the audio-visual information after the alignment from CEOA,
we propose SF based on cross-attention to derive the visual
objects caused by audio events and the audio events caused by
visual objects, and then fuse them. 3) Quantitative evaluation
shows the proposed model achieves competitive performance
when compared with other large-scale integrated systems, even
without using additional datasets and data augmentation tricks.
Visual analysis of the intermediate representations of the pro-
posed model provides further justification for the model. This
paper is organized as follows, Section II proposes the AVSC
model. Section III describes the dataset, baseline, experimental
setup, and analyzes results. Section IV gives conclusions.

II. MULTI-BRANCH AVSC MODEL WITH CEOA AND SF

The proposed AVSC model in Fig. 1 consists of an audio
branch, a visual branch, contrastive event-object alignment
(CEOA), and semantic-based fusion (SF). The audio branch
and the visual branch generate global-level embeddings of au-
dio events and visual objects in audio-visual clips, respectively.
CEOA aligns embeddings of audio events and visual objects
in scenes to enhance the model’s ability to capture the re-
lationship between audio-visual information. Then, semantic-
level SF leverages the aligned audio-visual representations
by applying cross-sensory attention and fusing the bi-modal
event-object information to classify the scene.
A. The audio branch

The structure of the audio branch evolved from the Trans-
former [19], more specifically an Audio Spectrogram Trans-
former (AST) [20]. Convolution-free AST can be applied to
audio spectrograms and is able to capture long-range global
context information [20]. The input of the audio branch is
the log-mel spectrograms [21] of a whole audio clip, and
the output are probabilities of audio events that may be
contained in this audio clip. The spectrograms containing
acoustic features are split into a sequence of patches. Each
patch is flattened and projected onto a lower dimensional
embedding space via a linear projection layer. Referring to
AST [20], the total number of Transformer encoder layers
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Fig. 1. The proposed multi-branch AVSC model with CEOA and SF.

in Fig. 1 is 12, and each layer has 12 heads for multi-head
attention (MHA) [19]. The dimension of embedding in MHA
is 768 and the dimension of each head is 64 (768/12 = 64),
which are the same as those in [22]. The encoder layers are
followed by a linear embedding layer with ReLU activation
that maps the high-level representations of audio events to
labels for classification. As the audio branch performs multi-
label classification, binary cross-entropy (BCE) loss is used
[9]. Denote the output of audio branch as ŷe ∈ RCe , and the
corresponding label as ye ∈ RCe , the loss can be defined as:

Le = −
∑Ce

i=1
yei log(ŷei) + (1− yei) log(1− ŷei) (1)

where Ce is the total number of event classes in the dataset,
ŷei ∈ [0, 1] is the occurrence probability of the i-th event in
the audio clip, and yei ∈ {0, 1} is the corresponding label.

B. The visual branch

Motivated by the superior performance of convolutional
neural networks (CNN) in image processing, the structure of
the visual branch is referred to as ConvNeXt [23], which is
a recent version of CNN that utilizes the key components
that made Transformers work well. ConvNeXt uses depth-
separable convolution, inverse bottleneck layer, Gaussian error
linear unit GELU [23], and a larger convolution kernel (7x7)
to increase the receptive field to extract richer features. To
capture the contextual and dynamic features between images
of an audio-visual scene stream, the image sequence is used as
input to the visual branch. The output of the visual branch are
the probabilities of the target objects that might be contained
in the image sequence. Referring to ConvNeXt-Base [23], the
visual branch contains 4 stages, the number of ConvNeXt
blocks of 4 stages are (3, 3, 27, 3), respectively, the number
of convolution channels of 4 stages is (128, 256, 512, 1024),
where the number of channels doubles at each new stage.
After ConvNeXt blocks, a linear embedding layer with ReLU
activation maps the high-level representations of visual objects
to labels. As the visual branch also performs multi-label
classification, BCE loss is used. Denote the output of the visual
branch as ŷo ∈ RCo , and the corresponding visual object label
as yo ∈ RCo , the loss of the visual branch can be defined as:

Lo = −
∑Co

i=1
yoi log(ŷoi) + (1− yoi) log(1− ŷoi) (2)

where Co is the total number of object classes in the dataset,
ŷoi ∈ [0, 1] is the occurrence probability of the i-th object in
the image sequence, yoi ∈ {0, 1} is the corresponding label.



C. Contrastive event-object alignment (CEOA)

CEOA aims to model the relationship between audio and
visual modal information, and to align the fine-grained audio-
visual event-object information. Due to the complexity of real-
life scenes, explicit event-object correlation in diverse scenes
is often unknown from the input data. This paper expects to
learn the relative distances of event-object pairs in different
scenes indirectly through contrastive learning [24]. CEOA tries
to embed and coordinate representations of audio events and
corresponding visual objects into the same area of the latent
space so that they can be aligned in the semantic space for
cross-modal fusion in the fusion part of the model.

CEOA adopts the pairwise contrastive loss (PCL). The
goal of PCL is to make the representations corresponding to
positively correlated samples closer together, and the repre-
sentations of samples that are less or negatively correlated
farther apart. The PCL is guided by the gap between positive-
positive (PP) and positive-negative (PN) pairs [25]. During the
optimization of PCL, the model will automatically focus on
expanding the distance between the PP pairs and PN pairs, so
as to cluster embeddings in the positive pairs and align the
corresponding embeddings of audio events and visual objects
to achieve fine-grained alignment of audio-visual information.
Given Pe ∈ RK×1024 and Ne ∈ RK×1024 are the weights of
K audio events with the highest and lowest probabilities from
the last classification layer in audio branch. Po ∈ RK×1024

and No ∈ RK×1024 are the weights of K visual objects with
the highest and lowest probabilities of the same input sample
from the classification layer in visual branch. These weight
matrices in final classification layers can be viewed as the
core knowledge about targets learned by the model. For the
audio branch, Pe is used as positive samples, Po and No are
the corresponding positive and negative samples, respectively.
to jointly construct the event-to-object contrastive loss by PP
pair PePTo and PN pair PeNT

o .

Le2o = − ln(mean(
ePeP

T
o

ePePT
o + ePeNT

o

))

= − ln(mean(σ(PeP
T
o − PeNT

o ))

(3)

where σ is the logistic sigmoid: σ(x) = 1/(1 + e−x). For the
visual branch, Po is used as positive samples, Pe and Ne are
the corresponding positive and negative samples, to build the
object-to-evet contrastive loss:

Lo2e = − ln(mean(σ(PoP
T
e − PoNT

e )) (4)

The method of composing negative samples based on K
components with the lowest probabilities is called the lowest
K mode (LKM) in this paper. In addition to LKM, random
K mode (RKM) can also be used. That is, randomly select
K classes of events or objects from the weights that do
not contain positive classes of events or objects. RKM will
increase the difficulty of model learning and bring more
challenges. For example, the K audio events with the lowest
probabilities in LKM are the K audio events that the audio
branch is most confident with the least likely to occur in the
input clip, while the confidence for the randomly selected

K audio events in RKM is ambiguous. So, Ne in RKM
will have larger information uncertainty (larger entropy) than
Ne in LKM. Greater entropy will bring more burdens and
possibilities for model learning, the impact of K and 2 modes
on model performance will be explored in the experiments.

D. Semantic-based fusion (SF)
SF aims to perform cross-modal fusion of audio and visual

embeddings to generate semantic-level audio-visual represen-
tations after fine-grained alignment by CEOA. To consider
the possible interactions and correlations of audio events and
visual objects in diverse scenes, this paper proposes SF based
on the multi-head attention (MHA) [19], which is calculated
on a set of queries (Q), keys (K), and values (V).

MHA(Q,K,V) = Concat(head1, ..., headh)wO

where headi = A(QwQ
i ,KwK

i ,VwV
i ),

A(QwQ
i ,KwK

i ,VwV
i ) = Φ(QwQ

i KwK
i

T
/
√
d)VwV

i

(5)

Referring to settings of Transformer [19], Φ is softmax func-
tion, the total number of attention heads h is 8, learnable
weights {wQ

i ,w
K
i ,w

V
i } ∈ R1×d and d = 64, wO ∈

R(h∗d)×1. When K and V are core event embeddings from
the final event classification layer ({K,V} ∈ RCe×1), and Q
is core object embeddings from the final object classification
layer (Q ∈ RCo×1), the output of MHA can be viewed as
visual objects embeddings caused by audio events, which is
denoted as MHAo by e ∈ RCo×1. In this, QwQ

i KwK
i

T ∈
RCo×Ce can be regarded as the transformation matrix from
audio space to visual space. In contrast, when K and V
are core object embeddings ({K,V} ∈ RCo×1), and Q is
core event embeddings (Q ∈ RCe×1), the output of MHA
can be viewed as audio events embeddings caused by visual
objects, which is denoted as MHAe by o ∈ RCe×1. Next,
as shown in Fig. 1, MHAo by e is added with object embed-
dings ŷo to produce audio-visual enriched objects embeddings,
MHAe by o is added with event embeddings ŷe to produce
audio-visual enriched events embeddings. Then, the event
and object embeddings are concatenated together to form
audio-visual semantic embeddings, and the fusion layer with
ReLU activation maps the audio-visual embeddings into scene
classes. As scene classification performs single-label multi-
class classification, cross-entropy loss [9] is used between the
output ŷs ∈ RCs and the scene label ys ∈ RCs ,

Ls = −
∑Cs

i=1
ysi log(ŷsi) (6)

where Cs is the total number of scene classes in the dataset,
ŷsi ∈ [0, 1] is the occurrence probability of the i-th scene in
the input clip, and ysi ∈ {0, 1} is the corresponding label.

In the training phase, to help the model comprehensively
consider the fine-grained information of audio events (Le),
visual objects (Lo), contrastive event-to-object (Le2o), con-
trastive object-to-event (Lo2e), and coarse-grained global in-
formation of audio-visual scene (Ls) within the input clips,
the final loss of the proposed model can be defined as:

L =λ1Le + λ2Lo + λ3Le2o + λ4Lo2e + λ5Ls (7)

where λi is the scale factor of each loss and defaults to 1.



III. EXPERIMENTS AND RESULTS

A. Dataset, Baseline, Experiments Setup, and Metrics
TAU Audio-Visual Urban Scenes 2021 development

dataset [26] used in this paper consists of 12291 10-seconds
clips totaling 34.14 hours and contains 10 different classes
of audio-visual scenes. This real-life dataset does not contain
labels for audio events nor visual objects. AST1 [20] and
ConvNeXt2 [23] are used to tag each clip with pseudo labels
indicating the probability of audio events and visual objects
for model training. Since AST and ConvNeXt are trained
on Audioset [27] (527 classes) and ImageNet-1K [28] (1000
classes), respectively, the number of classes of audio events
and visual objects in pseudo labels is 527 and 1000. We set
the thresholds (0.0365 and 0.9216) for the occurrence of audio
events and visual objects to binarize the probabilities output
by pre-trained models into hard labels consisting of 1 and 0.

To compare the performance of the model with other models
on the same benchmark, this paper uses the baseline in
DCASE 2021 Task 1 Subtask B (T1B) [13] as baseline, and
further compares the proposed model with other methods from
different perspectives on the same AVSC task. To facilitate the
comparison with other methods, the training/testing split of the
dataset follows the default split of T1B. Similar to all other
comparison methods using weights from pre-trained models,
the proposed model also uses part of the weights from AST
[20] and ConvNeXt [23] during training.

For training, log mel-bank energy with 128 banks [21] is
used as acoustic features, which is extracted by STFT with
Hamming window length of 25 ms and a hop size of 10 ms
between the window. An image sequence consisting of one
image per second is input to the visual branch. For a 10-
second scene clip, the input to the visual branch is an image
sequence consisting of 10 images. A batch size of 16 and
AdamW optimizer [29] with learning rate of 5e-6 are used
to minimize the losses in the proposed model. To prevent
over-fitting, dropout [30] and normalization are used. Systems
are trained on a single card Tesla V100-SXM2-32GB for 100
epochs. The Logloss and average accuracy (Acc.) [31] are
used as metrics. Larger Acc. and lower Logloss indicate better
performance. More details, please see the homepage3.

B. Results and Analysis

Difference between LKM and RKM. There are 2 modes in
CEOA when selecting negative samples, LKM based on the
lowest occurrence probabilities and RKM based on random
screening. Compared with LKM, RKM increases the learning
difficulty of the model for fine-grained event-object pairs due
to the greater uncertainty of negative components. Table I
shows the effects of the two modes on model performance.

As the value of K increases, the classification accuracy of
the model in Table I in both modes improves. That is, the
gradual increase in the influence of contrastive learning in

1AST with 0.459 mAP: https://github.com/YuanGongND/ast
2https://download.pytorch.org/models/convnext base-6075fbad.pth
3Homepage: https://github.com/Yuanbo2020/Contrastive-AVSC

model training is beneficial to the model’s recognition of fine-
grained event-object pairs in audio-visual scenes, which in turn
helps to improve the model’s ability to identify differences
between different scenes. When K increases to a certain
value, increasing the value of K will not bring more benefits
to the scene analysis ability of the model. The models in
LKM and RKM achieve the best performance when K is
15 and 10, respectively, where the performance of models
in RKM are slightly inferior to that in LKM. The reason
may be that the randomness of negative components in RKM
brings more challenges and difficulties to the learning of the
model, making it difficult for the model to achieve a balance
between extracting and coordinating audio-visual event-object
representations and efficiently capturing information for scene
classification. However, it is worth noting that in LKM,
varying K values obviously affects the model performance,
while different K values in RKM do not have a much
different impact on the model. This may be due to the fact
that the negative components in event-object pairs of RKM
are randomly selected, which makes the model less sensitive
to the size of the contrastive pairs in aligning event-object
representations. Based on the results in Table 2, LKM and
K = 15 will be used in subsequent experiments.

TABLE I
ACC. (%) OF THE PROPOSED AVSC MODEL IN DIFFERENT MODES.

K value 1 5 10 15 20 25 30
LKM 89.32 90.12 90.83 91.58 91.38 91.00 90.91
RKM 91.00 91.11 91.30 91.27 91.22 91.08 91.05

Gain of adding CEOA and SF to the model. The proposed
AVSC model aims to use the contrastive learning-based CEOA
to align the fine-grained event-object information within audio-
visual scenes to coordinate the relationship between the audio-
visual information, and then utilize the attention-based SF to
collaboratively fuse audio-visual representations across modal-
ities. Table II summarizes the gain of the proposed modules
for the model learning capability. Compared to the basic
backbone, both the contrast learning-based CEOA and the
semantic-level attention-based fusion proposed in this paper
improves the classification ability of the model for audio-visual
scenes. Among them, CEOA has a slightly larger improvement
on the model performance. This also illustrates the benefit of
mining the fine-grained event-object information contained in
diverse scenes for recognition. Finally, the backbone equipped
with CEOA and SF achieves better results.

TABLE II
THE ABLATION STUDY OF THE PROPOSED MODULES.

# Backbone SF CEOA Acc. (%) Logloss
1 " % % 88.42 0.439
2 " " % 90.34 0.390
3 " % " 90.75 0.357
4 " " " 91.58 0.259

Weighting scale factors in the loss. Audio-visual scene
naturally contains both audio and visual information, and
the proposed CEOA also contains two kinds of contrastive
information from the perspectives of audio events and visual
objects. In training, different coefficients of loss components

https://github.com/YuanGongND/ast
https://download.pytorch.org/models/convnext_base-6075fbad.pth
https://github.com/Yuanbo2020/Contrastive-AVSC


represent the importance of their corresponding targets in
the overall model performance. Different combinations of
coefficients often imply different concerns of the model in the
learning process. Table III summarizes the model performance
with several combinations of loss weights. It shows the effect
of changing the ratio between different components of the loss
on the utilization of diverse information in the training.

TABLE III
THE EFFECT OF DIFFERENT λi VALUES ON THE AVSC TASK.

# λ1 λ2 λ3 λ4 λ5 Acc. (%) Logloss
1 1 1 1 1 1 91.58 0.259
2 0.5 1 1 1 1 91.82 0.258
3 0.5 0.5 1 1 1 92.20 0.237
4 0.25 0.5 1 1 1 93.06 0.226
5 0.25 0.5 0.25 1 1 93.71 0.222
6 0.25 0.5 0.25 0.5 1 94.10 0.192
7 0.25 0.5 0.01 0.01 1 93.99 0.193
8 0.05 0.25 0.05 0.25 1 93.44 0.254
9 0.01 0.5 0.01 0.01 1 93.52 0.209
10 0.01 0.1 0.01 0.1 1 93.33 0.246
11 0.01 0.01 0.05 0.1 1 94.02 0.193
12 0.005 0.1 0.025 0.1 1 93.41 0.219

The fusion of cross-modal information of different types in
Table III aims to maintain as much as possible the recognition
ability of the audio model and visual model for audio events
and visual objects, respectively, while making full use of the
implicit relationship between audio events and visual objects,
so that they both contribute to the model’s ability of classifying
scenes. Several combinations of coefficients are explored to
select the optimal ratio between the information of audio
events, visual objects, event-object pairs and audio-visual
scenes for a better AVSC model. Finally, giving maximum
weight to Ls and secondary weight to the information related
to visual objects (Lo, Lo2e), while absorbing the information
related to audio events (Le, Le2o), makes the best result of # 6
in Table III. This combination of coefficients gives a stronger
emphasis on the visual object information, which means that
the visual object information is more important than audio
event information in the proposed model for the AVSC task.

TABLE IV
PERFORMANCE OF THE MODEL ON DIFFERENT MODAL INFORMATION.

# Audio Visual Acc. (%) Logloss
1 " % 73.55 0.871
2 % " 88.86 0.518
3 " " 94.10 0.192

Comparison of single-modal and multi-modal models.
Compared with the single-modal audio or visual model, the
audio-visual model can utilize both modal information, and un-
derstand differences in the description of the same target from
the perspectives of different modalities. In Table IV, the audio-
visual model that fuses fine-grained information from cross-
modal achieves better results, the audio-only model performs
the worst, while the result of the visual-only model is slightly
better. This is consistent with the trend reflected in Table III,
that is, visual object information is more valuable than audio
event information in the proposed model for the AVSC task.
The reason for this phenomenon may be that in this dataset,
the audio clips between different scenes do not sound very
different, and most of the audio clips are full of noise, making
it difficult for even a human to effectively distinguish target

scenes by relying only on audio clips. However, the differences
between visual objects in different scenes are obvious, a park
with trees and a lake is clearly different from an airport with
monitors and escalators. Therefore, using visual information
can effectively distinguish between different scenes in this
AVSC task, which also leads to the result that the visual object
information plays a more important role than audio events.

Comparison with prior methods. Table V shows the
performance of the proposed model and other systems on the
same AVSC task. The proposed model does not use any data
augmentation (Aug.) methods, nor does it use any ensemble
methods. So, for a fair comparison, we extract the best single
model result of other systems directly from the T1B website.

Table V includes published results of the top 5 teams in
T1B competition, all systems listed in Table V use the weights
of pre-trained models involved. Since the result of a single
model could not be found in the paper [16] of # 6, we
implemented their system according to their settings in [16].
Except for Baseline and the proposed model do not use data
augmentation, other systems use diverse audio or visual data
augmentation methods. The system of # 7 uses an additional
large scene dataset Places365 for training. To compare the
model performance on the same dataset ImageNet, we select
the result based on ImageNet in # 7. The model in # 9 is trained
with both ImageNet and Places365, and also uses a two-stage
fine-tuning strategy. In contrast, the proposed model, which
does not involve data augmentations, achieves similar results
to that of # 9, which uses additional datasets and multiple
data augmentations. That is, even without using additional
datasets and data augmentation tricks, the proposed model
shows competitive performance.

TABLE V
COMPARISON OF AUDIO-VISUAL SCENE CLASSIFICATION RESULTS OF

DIFFERENT SYSTEMS ON THE SAME DATASET.

# System Audio
Backbone

Visual
Backbone

Aug.
Method Acc (%)

1 Baseline [13] OpenL3 OpenL3 None 77.0
2 WaveTransformer [32] OpenL3 OpenL3 3 types 79.5
3 CRNN [15] SE-Net VGG16 1 type 90.0
4 2-stage classifier [33] fsFCNN TimeSformer 8 types 91.5
5 2-stream model [34] OpenL3 ResNet50 3 types 91.7
6 CLIP variants [16] EfficientNet CLIP ViT 6 types 93.3
7 AVSM [35] VGGish ResNet50 8 types 93.5
8 CNN Transformer [36] VGGish Transformer 4 types 93.9
9 2-stage fine-tuning [37] ResNet EfficientNet 5 types 94.1
10 Proposed model Transformer ConvNeXt None 94.1

Visual analysis. To gain concise insights into the event-
object cross-modal alignment, Fig. 2 intuitively visualizes the
core knowledge (weights from the classification layers) about
audio events and visual objects learned by the model with
CEOA using UMAP [38]. Different kinds of audio events
and visual objects are interleaved and regularly distributed
in Fig. 2. (Emergency vehicle (sound); Ambulance (object)),
(Grey wolf; Canidae, wolves), (Mosquite; Wing), and (Clock;
Analog clock) are effectively individually clustered. In addi-
tion, similar audio events and visual objects are located closely,
like (Male singing; CD players, Speakers), (Mechanical fan,
Squeak; Recreational vehicle, Tram). The efficient aggregation
of various event-object pairs in Fig. 2 illustrates that con-
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event classification layer and object classification layer, respectively. Please
visit the homepage to interactively view the label for each point in detail.

trastive learning-based CEOA aligns fine-grained information
of audio events and visual objects across modalities.

IV. CONCLUSION

To exploit the fine-grained information of audio-visual
events-object in diverse real-life scenes and to coordinate the
implicit relationship between audio events and visual objects,
this paper proposes a multi-branch AVSC model equipped
with CEOA for event-object alignment and SF for cross-modal
fusion. Experiments show that 1) the proposed contrastive
learning-based CEOA aligns fine-grained information of audio
events and visual objects, and SF successfully fuses cross-
modal information; 2) The influence of contrastive learning
in model training is beneficial to the model’s recognition of
fine-grained event-object pairs in audio-visual scenes; 3) Even
without using additional datasets and data augmentation tricks,
the proposed model shows competitive performance.
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