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Abstract. Feature selection is a crucial step in developing robust and
powerful machine learning models. Feature selection techniques can be
divided into two categories: filter and wrapper methods. While wrap-
per methods commonly result in strong predictive performances, they
suffer from a large computational complexity and therefore take a sig-
nificant amount of time to complete, especially when dealing with high-
dimensional feature sets. Alternatively, filter methods are considerably
faster, but suffer from several other disadvantages, such as (i) requiring
a threshold value, (ii) many filter methods not taking into account inter-
correlation between features, and (iii) ignoring feature interactions with
the model. To this end, we present powershap, a novel wrapper feature se-
lection method, which leverages statistical hypothesis testing and power
calculations in combination with Shapley values for quick and intuitive
feature selection. Powershap is built on the core assumption that an in-
formative feature will have a larger impact on the prediction compared to
a known random feature. Benchmarks and simulations show that power-
shap outperforms other filter methods with predictive performances on
par with wrapper methods while being significantly faster, often even
reaching half or a third of the execution time. As such, powershap pro-
vides a competitive and quick algorithm that can be used by various
models in different domains. Furthermore, powershap is implemented as
a plug-and-play and open-source sklearn component, enabling easy in-
tegration in conventional data science pipelines. User experience is even
further enhanced by also providing an automatic mode that automati-
cally tunes the hyper-parameters of the powershap algorithm, allowing
to use the algorithm without any configuration needed.

Keywords: Feature selection · Shap · Benchmark · Simulation · Toolkit
· Python · Open source

1 Introduction

In many data mining and machine learning problems, the goal is to extract and
discover knowledge from data. One of the challenges frequently faced in these
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problems is the high dimensionality and the unknown relevance of features [10].
Ignoring these challenges will more than often result in modeling obstacles, such
as sparse data, overfitting, and the curse of dimensionality. Therefore, feature
selection is frequently applied, among other techniques, to effectively reduce the
feature dimensionality. The smaller subset of features has the potential to ex-
plain the problem better, reduce overfitting, alleviate the curse of dimensionality,
and even facilitate interpretation. Furthermore, feature selection is known to in-
crease model performance, increase computational efficiency, and increase the
robustness of many models due to the dimensionality reduction [10].

In this work, we present a novel feature selection method, called powershap,
that is a faster and easy-to-use wrapper method. The feature selection is realized
by using Shapley values, statistical tests, and power calculations.

First, in Section 2, a short overview of the related work is given to show
how powershap improves upon all these methods. Subsequently, in Section 3,
the method and the design choices are explained as well as the resulting algo-
rithm. Finally, the performance of powershap is compared to other state-of-the-
art methods in Section 4 and 5 using both simulation and open-source benchmark
datasets and the results are discussed in Section 6. Finally, the conclusions are
summarized in Section 7.

2 Related Work

Feature selection approaches can be categorized into filter and wrapper methods.
Filter methods select features by measuring the relevance of the feature using
model-agnostic measures, such as statistical tests, information gain, distance,
similarity, and consistency to the dependent variable (if available). These meth-
ods are model-independent as this category of feature selection does not rely
on training machine learning models [6], resulting in a fast evaluation. However,
the disadvantages of filter methods are that they frequently impose assumptions
on the data, are limited to a single type of prediction, such as classification
or regression, not all methods take inter-correlation between features into ac-
count, and often require a cut-off value or hyperparameter tuning [8]. Examples
of these filter methods are rank, chi² test, f-test, correlation-based feature selec-
tion, Markov blanket filter, and Pearson correlation [6].
Wrapper methods measure the relevance of features using a specific evaluation
procedure through training supervised models. Depending on the wrapper tech-
nique, models are trained on either subsets of the features or on the complete
feature set. The trained models are then utilized to select the resulting feature
subset, using the aforementioned performance metrics, or by ranking the inferred
feature importances. In general, wrapper methods tend to provide smaller and
more qualitative feature subsets than filter methods, as they take the interaction
between the features, and between the model and the features, into account [4].
A major drawback of wrapper methods is the considerable time complexity asso-
ciated with the underlying search algorithm, or in the case of feature importance
ranking the hyperparameter tuning. Examples of wrapper methods are forward,
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backward, genetic, or rank-based feature importance feature selection.
In the interpretable machine learning field, one of the emerging and proven
techniques to explain model predictions is SHAP [13]. This technique aims at
quantifying the impact of features on the output. To do so, SHAP uses a game-
theory inspired additive feature-attribution method based on Shapley Regression
Values [13]. This method is model-agnostic and implemented for various models,
e.g., linear, kernel-based, deep learning, and tree-based models. Although SHAP
suffers from shortcomings, such as its TreeExplainer providing non-zero Shapley
values to noise features, it is technically strong and very popular [11].
The strength of the SHAP algorithm facilitates the development of new fea-
ture selection methods using Shapley values. A simple implementation would
be a rank-based feature selection, which ranks the different features based on
their Shapley values on which a rank cut-off value determines the final feature
set. However, there are more advanced methods available. One of these more
advanced techniques is borutashap [7]. Borutashap is based on the Boruta al-
gorithm that makes use of shadow features, i.e. features with randomly shuffled
values. Boruta is built on the idea that a feature is only useful if it is doing
better than the best-performing shuffled feature. To do so, Boruta compares the
feature importance of the best shadow feature to all other features, selecting only
features with larger feature importance than the highest shadow feature impor-
tance. Statistical interpretation is realized by repeating this algorithm for sev-
eral iterations, resulting in a binomial distribution which can be used for p-value
cut-off selection [9]. Borutashap improves on the underlying Boruta algorithm
by using Shapley values and an optimized version of the shap TreeExplainer [7].
As such, implementations of Borutashap are limited to tree-based models only.
Another shap-based feature selection method using statistics is shapicant [3].
This feature selection method is inspired by the permutation-importance method,
which first trains a model on the true dataset, and afterward, it shuffles the labels
and retrains the model on the shuffled dataset. This process is repeated for a set
amount of iterations, from which the average feature importances of both models
are compared. If for a specific feature, the feature importance of the true dataset
model is consistently larger than the importance of the shuffled dataset model,
that feature is considered informative. Using a non-parametric estimation it is
possible to assign a p-value to determine a wanted cut-off value [1]. Shapicant im-
proves on this underlying algorithm by using Shapley values. Specifically, it uses
both the mean of the negative and positive Shapley values instead of Gini impor-
tances, which are only positive and frequently used for tree-based model impor-
tances. Furthermore, shapicant uses out-of-sample feature importances for more
accurate estimations and an improved non-parametric estimation formula [3].
Powershap draws inspiration from the non-parametric estimation of shapicant
and the random feature usage in borutashap and improves upon all these state-
of-the-art filter and wrapper algorithms resulting in at least comparable perfor-
mances while being significantly faster.
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3 Powershap

Powershap builds upon the idea that a known random feature should have, on
average, a lower impact on the predictions than an informative feature. To realize
feature selection, the powershap algorithm consists of two components: the Ex-
plain component and the core powershap component. First, in the Explain part,
multiple models are trained using different random seeds, on different subsets of
the data. Each of these subsets is comprised of all the original features together
with one random feature. Once the models are trained, the average impact of the
features (including the random feature) is explained using Shapley values on an
out-of-sample dataset. Then, in the core powershap component, the impacts of
the original features are statistically compared to the random feature, enabling
the selection of all informative features.

3.1 Powershap Algorithm

In the Explain component, a single known random uniform (RandomUniform)
feature is added to the feature set for training a machine learning model. Un-
like the Boruta algorithm, where all features are duplicated and shuffled, only
a single random feature is added. In some models, such as neural networks, du-
plicating the complete feature set increases the scale and thereby increases the
time complexity drastically. Using the Shapley values on an out-of-sample sub-
set of the data allows for quantifying the impact on the output for each feature.
The Shapley values are evaluated on unseen data to assess the true unbiased
impact [2]. As a final step, the absolute value of all the Shapley values is taken
and then averaged (µ) to get the total average impact of each feature. Compared
to shapicant, only a single mean value is used here, resulting in easier statistical
comparisons. Furthermore, by utilizing the absolute Shapley values, the positive
values and the negative values are added to the total impact, which could result
in a different distribution compared to the Gini importance. This procedure is
then repeated for I iterations, where every iteration retrains the model with a
different random feature and uses a different subset of the data to quantify the
Shapley values, resulting in an empirical distribution of average impacts that will
further be used for the statistical comparison. In the codebase, the procedure
explained above is referred to as the Explain function. The pseudocode of the
Explain function is shown in Algorithm 1.

Given the average impact of each feature for each iteration, it is then pos-
sible to compare it to the impact of the random feature in the core powershap
component. This comparison is quantified using the percentile formula shown
in Equation 1 where s depicts an array of average Shapley values for a single
feature with the same length as the number of iterations, while x represents a
single value, and I represents the indicator function. This formula calculates the
fraction of iterations where x was higher than the average shap-value of that
iteration and can therefore be interpreted as the p-value.

Percentile(s, x) =

n∑
i

I(x > si)

n
(1)
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Algorithm 1: Powershap Explain algorithm

Function Explain(I ← Iterations, M ← Model, Dn×m ← Data, rs←
Random seed)

powershapvalues ←size [I,m+ 1]
for i← 1, 2, . . . , I do

RS ← i+ rs
Dn

random ← RandomUniform(RS) ∈ [−1, 1] size n
Dn×m+1 ← Dn×m ∪Dn

random

D0.8n×m+1
train ,D0.2n×m+1

val ← split D
M ← Fit M(Dtrain)
Svalues ← SHAP(M , Dval)
Svalues ← |Svalues|
for j ← 1, 2, . . . ,m+ 1 do

powershapvalues[i][j]← µ(Svalues[. . . ][j])
end

end
return powershapvalues

Note that this formula provides smaller p-values than what should be observed,
the correct empirical formula is (1 +

∑n
i I(x > si))/(n + 1) as explained by

North et al. [14]. This issue of smaller p-values mainly persists for lower number
of iterations. However, powershap implements Equation 1 as this anticonserva-
tive estimation of the p-value is desired behavior for the automatic mode (see
Section 3.2). This formula enables setting a static cut-off value for the p-value
instead of a varying cut-off value and results in fewer required iterations, while
still providing correct results. This will be further explained at the end of Sec-
tion 3.2.
As the hypothesis states that the impact of the random feature should be on
average lower than any informative feature, all impacts of the random feature
are again averaged, resulting in a single value that can be used in the percentile
function. This results in a p-value for every original feature. This p-value repre-
sents the fraction of cases where the feature is less important, on average than a
random feature. Given the hypothesis and these p-value calculations, a heuristic
implementation of a one-sample one-tailed student-t smaller statistic test can be
done, where the null hypothesis states that the random feature (H1-distribution)
is not more important than the tested feature (H0-distribution) [12]. Therefore,
the positive class in this statistical test represents a true null hypothesis. This
heuristic implementation does not assume a distribution on the tested feature
impact scores, in contrast to a standard student-t statistic test where a stan-
dard Gaussian distribution is assumed. Then, given a threshold p-value α, it is
possible to find and output the set of informative features. The pseudocode of
Algorithm 2 details how the core powershap feature selection method is realized.
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Algorithm 2: Powershap core algorithm

Function Powershap (I ← Iterations, M ← Model, Fset ← F1, . . . , Fm, D←
Data size [n,m], α← required p-value)

powershapvalues ←Explain(I, M , D)
Srandom ← µ(powershapvalues[...][m+ 1])
Pm ← initialize
for j ← 1, 2, . . . ,m do

P[j]← Percentile(powershapvalues[...][j], Srandom)
end
return {Fi | ∀ i : P[i] < α}

3.2 Automatic Mode

Running the powershap algorithm consisting of the explain and the core compo-
nents, requires setting two hyperparameters: α the p-value threshold and I the
number of iterations. When hyperparameter tuning, one should make a trade-off
between runtime and quality. On the one hand, there should be enough itera-
tions to avoid false negatives for a given α, especially with the anticonservative
p-values. On the other hand, adding iterations increases the time complexity.
To avoid the need for users to manually optimize these two hyperparameters,
powershap also has an automatic mode. This automatic mode, automatically
determines and optimizes the iteration hyperparameter I using statistical power
calculation for α, hence the name powershap.
The statistical power of a test is 1 − β, where β is the probability of false neg-
atives. In this case, a false negative is a non-informative feature flagged as an
informative one. If a statistical test of a tested sample outputs a p-value α, this
represents the chance that the tested sample could be flagged as significant by
chance given the current data. This is calculated using Equation 2. If the data
in the statistical test is small, it is possible to have a very low α but a large β,
resulting in an output that cannot be trusted. Therefore, for a given α, the asso-
ciated power should be as close to 1 as possible to avoid any false negatives. The
power of a statistical test can be calculated using the cumulative distribution
function F of the underlying tested distribution H1 using Equation 3. Figure 1
explains this visually. In the current context, H0 could represent the random
feature impact distribution and H1 the tested feature impact distribution.

α(x) = FH0
(x) (2)

Power(α) = FH1

(
F−1
H0

(α)
)

(3)

The power calculations require the cumulative distribution function F . How-
ever, the underlying distributions of the calculated feature impacts are unknown.
In addition, calculating F heuristically does not enable calculating the required
iteration hyperparameter, which is the goal of the automatic mode. Power-
shap circumvents this by mapping the underlying distributions to two standard
student-t distributions as visualized in Figure 1. It first calculates the pooled
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Fig. 1: Visualization of p-value, effect size, and power for a standard t-test.

standard deviation, using Equation 4, by averaging the standard deviations σ of
both distributions. It then calculates the distance d between these two distribu-
tions, also called the effect size, in terms of this pooled standard deviation using
the Cohen’s d effect size as detailed in Equation 5 [12]. Now, it is possible to
define two standard student-t distributions with distance

√
I · d apart and I − 1

degrees of freedom, where I is the amount of powershap iterations. The standard
central student-t FCT and non-central student-t FNCT cumulative distribution
functions are then used to calculate the power of the statistical test according to
Equation 6. This equation can in turn be used in a heuristic algorithm to solve
for I. Powershap uses the solve power implementation of statsmodels to deter-
mine the required I from the TTestPower equation using brentq expansion for a
provided required power [17]. The powershap pseudocode for the calculation of
the effect size, power, and required iterations is shown in Algorithm 3.

PooledStd(s1, s2) =

√
(σ2(s1) + σ2(s2))

2
(4)

EffectSize(s1, s2) =
µ(s1)− µ(s2)

PooledStd(s1, s2)
(5)

TTestPower(α, I, dcalc) = FNCT

(
F−1
CT (α, k = I − 1), k = n− 1, d =

√
I · dcalc

)
(6)

With the calculated required amount of iterations n, the automatic power-
shap algorithm can be executed. The pseudocode to enable the automatic mode
is shown in Algorithm 4. As can be seen, this is an expansion of the core al-
gorithm (see Algorithm 2) and starts with an initial ten iterations to calculate
the initial p-value, effect sizes, power, and required iterations for all features.
Then, it searches for the largest required number of iterations Imax of all tested
features having a p-value below the threshold α. If Imax exceeds the already
performed number of iterations Iold, automatic mode continues powershap for
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Algorithm 3: Powershap analysis function

Function Analysis(α← required p-value, β ← required power,
powershapvalues)

Srandom ← powershapvalues[...][m+ 1]
P← size [m]
Nrequired ← size [m]
for j ← 1, 2, . . . ,m do

Si ← powershapvalues[...][j]
P[j]← Percentile(Si, µ(Srandom))
effectsize ← EffectSize(Si, Srandom)
Nrequired ← SolveTTestPower(effectsize, α, β)

end
return P, Nrequired

the extra required iterations. This process is repeated until the performed iter-
ations exceed the required iterations. For optimization, when the extra required
iterations (Imax − Iold) exceed ten iterations, the automatic mode first adds ten
iterations and then re-evaluates the required iterations because the required it-
erations are influenced by the already performed iterations. Furthermore, it is
also possible to provide a stopping criterion on the re-execution of powershap to
avoid an infinite calculation. As a result the time complexity of the algorithm is
linear in terms of the underlying model and shap explainer and can be formu-
lated as O(p[Mn+1 + S(Mn+1]), with n the amount of features, p the number
of powershap iterations, S the shap explainer time, and Mx the model fit time
for x features. For the automatic mode, by default, α is set to 0.01 while the
required power is set to 0.99. This results in only selecting features that are more
important than the random feature for all iterations. Furthermore, this also com-
pensates for the anticonservative p-value and avoids as many false negatives as
possible. Realizing the same desired behavior with the more accurate p-value
estimation would require a varying α of 1/n, complicating the power calcula-
tions and increasing the likelihood of false negatives. The resulting powershap
algorithm is implemented in Python as an open-source plug-and-play sklearn
compatible component to enables direct usage in conventional machine learning
pipelines [15]. The codebase 1 already supports a wide variety of models, such
as linear, tree-based, and even deep learning models. To assure the quality and
correctness of the implementation, we tested the functionality using unit testing.

4 Experiments

4.1 Feature Selection Methods

To facilitate a comparison with other feature selection techniques, we benchmark
powershap together with other frequently used techniques on both synthetic and

1 The code, documentation, and more benchmarks can be found using the following
link: https://github.com/predict-idlab/PowerSHAP

https://github.com/predict-idlab/PowerSHAP
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Algorithm 4: Automatic Powershap algorithm version

Function Powershap (M ← Model, Fset ← F1, . . . , Fm, Dn×m ← Data, α←
required p-value, β ← required power)

powershapvalues ←Explain(I ← 10, M , D, rs← 0)
P,Nrequired ←Analysis(α, β, powershapvalues)
Imax ← ceil(Nrequired[MaxArg(P < α)])
Iold ← 10
while Imax > Iold do

if Imax − Iold > 10 then
autovalues ←Explain(I ← 10, M , D, rs← 0)
Iold ← Iold + 10

else
autovalues ←Explain(I ← Imax − Iold, M , D, rs← 0)
Iold ← Imax

end
powershapvalues ← powershapvalues ∪ autovalues

P,Nrequired ←Analysis(α, β, powershapvalues)
Imax ← ceil(Max(Nrequired[i,∀i : P[i] < α]))

end
return [Fi, ∀ i : P[i] < α]

real-world datasets. In particular, powershap is compared with both filter and
wrapper methods, and state-of-the-art shap-based wrapper methods. To provide
a fair comparison, all methods, including powershap, were used in their default
out-of-the-box mode without tuning. For powershap, this default mode is the
automatic mode. Concerning filter methods, two methods were chosen: the chi-
squared and f-test feature selection from the sklearn-library [15]. The chi-squared
test measures the dependence between a feature and the classification outcome
and assigns a low p-value to features that are not independent of the outcome.
As the chi-squared test only works with positive values, the values are shifted in
all chi-squared experiments such that all values are positive. This has no effect
on tree-estimators as they are invariant to data scaling [12]. The F-test in sklearn
is a univariate test that calculates the F-score and p-values on the predictions
of a univariate fitted linear regressor with the target [15]. Both filter methods
provide p-values that are set to the same threshold as powershap. As wrapper
feature selection method, forward feature selection was chosen. This method is
a greedy algorithm that starts with an empty set of features and trains a model
with each feature separately. In every iteration, forward feature selection then
adds the best feature according to a specified metric, often evaluated in cross-
validation, until the metric stops improving. This is generally considered a strong
method but has a very large time complexity [6]. Powershap is also compared
to shapicant [3] and borutashap [7], two SHAP-based feature selection methods.
The default machine learning model used for all datasets and all feature selec-
tion methods, including powershap, is a CatBoost gradient boosting tree-based
estimator using 250 estimators with the overfitting detector enabled. For classi-
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fication, the CatBoost model uses adjusted class weights to compensate for any
potential class imbalance. The Catboost estimator often results in strong predic-
tive performances out-of-the-box, without any hyper-parameter tuning, making
it the perfect candidate for benchmarking and comparison [16]. All experiments
are performed on a laptop with a Intel(R) Core(TM) i7-9850H CPU at 2.60GHz
processor and 16 GB RAM running at 2667 MHz, with background processes to
a minimum.

4.2 Simulation Dataset

The methods are first tested on a simulated dataset to assess their ability to
discern noise features from informative features. The used simulation dataset is
created using the make classification function of sklearn. This function cre-
ates a classification dataset, however, exactly the same can be done for obtaining
a regression dataset (by using make regression). The simulations are run using
20, 100, 250, and 500 total features to understand the performance on varying
dimensions of feature sets. The ratio of informative features is varied as 10%,
33%, 50%, and 90% of the total feature set, allowing for assessing the quality
of the selected features in terms of this ratio. The resulting simulation datasets
each contain 5000 samples. Each simulation experiment was repeated five times
with different random seeds. The number of redundant features, which are linear
combinations of informative features, and the number of duplicate features were
set to zero. Redundant features and duplicate features reduce the performance
of models, but they cannot be discerned from true informative features as they
are inherently informative. Therefore they are not included in the simulation
dataset as the goal of powershap is to find informative features. The powershap
method is compared to shapicant, chi², borutashap, and the f-test for feature
selection on this simulation dataset. Due to time complexity constraints, forward
feature selection was not included in the simulation benchmarking.

4.3 Benchmark Datasets

Table 1: Properties of all datasets

Dataset Type Source # features train size test size

Madelon Classification OpenML 500 1950 650
Gina priori Classification OpenML 784 2601 867

Scene Classification OpenML 294 1805 867
CT location Regression UCI 384 41347 12153
Appliances Regression UCI 30 14801 4934

In addition to the simulation benchmark, the different methods are also eval-
uated on five publicly available datasets, i.e. three classification datasets: the



Powershap: A Power-full Shapley Feature Selection Method 11

Madelon [19], the Gina priori [20], and the Scene dataset [18], and two regres-
sion datasets: CT location [5] and Appliances [5]. The details of these datasets
are shown in Table 1. The Scene dataset is a multi-label dataset, however, a
multi-label problem can always be reduced to a one-vs-all classification problem.
Therefore only the label “Urban” was chosen here to assess binary classification
performance.
Almost all of these datasets have a large feature set, ideal for benchmarking
feature selection methods. The datasets are split into a training and test set us-
ing a 75/25 split. All methods are evaluated using both 10-fold cross-validation
on the training set and 1000 bootstraps on the test set to assess the robust-
ness of the performance. The test set is utilized to assess generalization beyond
the validation set as wrapper methods tend to slightly overfit their validation
set [6], while the training set is used for feature selection. The forward feature
selection method was performed with 5-fold cross-validation and not 10-fold
cross-validation due to the high time complexity. A validation set of 20% of the
training set is used for shapicant, using the same validation size as powershap in
Algorithm 1. The models are evaluated with the AUC metric for classification
datasets and with the R2 metric for regression datasets.

5 Results

5.1 Simulation Dataset

The results of the simulation benchmarking are shown in Figure 2. Each row of
subfigures shows the duration, the percentage of informative features found, and
the number of selected noise features. These measures are shown for each feature
selection method for varying feature set dimensions and varying amounts of in-
formative features. As can be seen, the shapicant method is the slowest wrapper
method while powershap is, without doubt, the fastest wrapper method. The
filter methods are substantially faster than any of the wrapper methods, as they
do not train models. Furthermore, powershap finds all informative features with
a limited amount of outputted noise features up to the case with 250 total fea-
tures with 50% (125) informative features, outperforming every other method.
This can be explained by the model underfitting the data. Even with higher di-
mensional feature sets, powershap finds more informative features than the other
methods. Interestingly, most methods do not output many noise features, except
for shapicant in the experiment with 20 total and 10% informative features.

5.2 Benchmark Datasets

Table 2 shows the duration of the feature selection methods and the size of the
selected feature sets for each method on the different open-source datasets. Chi²
does not apply to regression problems and is therefore not included in the results
of the CT location and Appliances datasets. The table shows that powershap is
again the fastest wrapper method, while the number of selected features is in
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Table 2: Benchmarks results for duration and selected features. ”default” indi-
cates no feature selection or all features.

duration (s)

Dataset powershap borutashap shapicant forward chi² f test default

Madelon 132s 186s 632s 10483s < 1s < 1s N/A
Gina priori 184s 299s 812s 68845s < 1s < 1s N/A

Scene 115s 220s 749s 12496s < 1s < 1s N/A
CT location 459s 543s 1553s 56879s N/A < 1s N/A
Appliances 34s 48s 134s 1913s N/A < 1s N/A

selected features

Madelon 22 10 30 8 43 18 500
Gina priori 105 37 106 26 328 405 784

Scene 36 14 56 15 93 220 294
CT location 123 162 74 75 N/A 350 384
Appliances 24 24 10 13 N/A 20 30

line with the other methods. The filter methods tend to output more features,
while forward feature selection outputs a more conservative set of features.

The performance of the selected feature sets for each classification benchmark
dataset is shown in Figure 3a and in Figure 3b for the regression benchmarks.
These figures show that powershap provides a steady performance on all datasets,
consistently achieving the best or equal performance on both the cross-validation
and test sets. However, even in cases with equal performance, powershap achieves
these performances considerably quicker, especially compared to shapicant and
forward feature selection. The CT location dataset performances show that for-
ward feature selection tends to overfit on the cross-validation dataset while pow-
ershap is more robust.

6 Discussion

For the above test results, we used the default automatic powershap implemen-
tation. However, similar to many other feature selection methods, powershap
can be further optimized or tuned. One of these optimizations is the use of a
convergence mode to extract as many informative features as possible. In this
mode, powershap continues recursively in automatic mode where in every recur-
sive iteration, powershap re-executes but with any previously found and selected
features excluded from the considered feature set. This process continues, until
no more informative features can be found. The convergence mode is especially
useful in use-cases with high dimensional feature sets or datasets with a large risk
of underfitting as it reduces the feature set dimension each recursive iteration to
facilitate finding new informative features. As a basic experiment on the simu-
lation benchmark, using the convergence mode for 500 features and 90% (450)
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informative features, the percentage of found features increases from around 38%
(170) to 73% (330) without adding noise features. However, the duration also
increases to the same duration as shapicant.
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(a) Classification benchmark dataset performances.
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(b) Regression benchmark dataset performances.

Fig. 3: Benchmark performances. The error bars represent the standard devia-
tion.

Other possible optimizations are also applicable to other feature selection
methods, such as applying backward feature selection after powershap to elim-
inate any noise features, redundant, or duplicate features. Another possibility
is optimizing the used machine learning model to better match the dataset and
rerun powershap, e.g. by using more CatBoost estimators for datasets with large
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sample sizes and high dimensional feature sets.
In the benchmarking results, there are datasets where including all features per-
form equally well or even better, such as in the case of the Gina prior test set.
In these cases, the filter methods perform well but output large feature sets,
while the forward feature selection performs the worst. Alternatively, powershap
can be used here as a fast wrapper-based dimensionality reduction method to
retain approximately the same performance with a much smaller feature set. As
such, there will still be a trade-off for each use-case between filter and wrapper
methods based on time and performance.
We are aware that the current design of the benchmarks has some limitations. For
the simulation benchmark, the make classification function uses by default a
hypercube to create its classification problem, resulting in a linear classification
problem, which is inherently easier to classify [15]. The compared filter methods
were chosen by their most common usage and availability, however, these are
fast and simple methods and are of a much lower complexity than powershap.
The same argument could be made for our choice of the forward feature selection
method (as wrapper method) compared to other methods such as genetic algo-
rithm based solutions. Furthermore, wrapper methods, and thus also powershap,
are highly dependent on the used model, as the feature selection quality suffers
from modeling issues such as for example overfitting and underfitting. Therefore,
the true potential achievable performances on the benchmark datasets may differ
since every use-case and dataset requires its own tuned model to achieve optimal
performance. Additionally, the cut-off values and hyperparameters of none of the
methods were optimized and are either set to the same value as in powershap
or used with their default values. This might impact the performance and could
have skewed the benchmark results in both directions. However, choosing the
same model and the same values for hyperparameters (if possible) in all exper-
iments, reduces potential performance differences and facilitates a fair enough
comparison.

7 Conclusion

We proposed powershap, a wrapper feature selection method using Shapley val-
ues and statistical tests to determine the significance of features. powershap uses
power calculations to optimize the number of required iterations in an auto-
matic mode to realize fast, strong, and reliable feature selection. Benchmarks
indicate that powershap’s performance is significantly faster and more reliable
than comparable state-of-the-art shap-based wrapper methods. Powershap is
implemented as an open-source plug-and-play sklearn component, increasing its
accessibility and ease of use, making it a power-full Shapley feature selection
method, ready for your next feature set.
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Code. The code, documentation, and more benchmarks can be found using the
following link: https://github.com/predict-idlab/PowerSHAP
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