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Summary

� The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct

the origins and diversification of neotropical lineages in one of the largest clades of ectomyc-

orrhizal fungi in the globally widespread family Russulaceae.
� We inferred a supertree of 3285 operational taxonomic units, representing worldwide inter-

nal transcribed spacer sequences. We reconstructed biogeographic history and diversification

and identified lineages in the Neotropics and adjacent Patagonia.
� The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropi-

cal South America, most with African sister groups, date to the mid-Eocene, possibly coincid-

ing with a boreotropical migration corridor. There were several transatlantic dispersal events

from Africa more recently. Andean and Central American lineages mostly have north-

temperate origins and are associated with North Andean uplift and the general north–south
biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Aus-

tralasian affinities. Diversification rates in tropical South America and other tropical areas are

lower than in temperate areas.
� Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involv-

ing dispersal and co-migration. Discontinuous distributions of host plants may explain low

diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical

fungal lineages need to be better documented.

Introduction

A fundamental challenge of evolutionary biology is to deter-
mine the drivers of the exceptional neotropical biodiversity
(Antonelli & Sanmart�ın, 2011; Hughes et al., 2013; Antonelli
et al., 2018; Palma-Silva et al., 2022). Phylogenetic biogeogra-
phy has shown how continental-scale events such as the rise
of the Andes (Antonelli et al., 2009; Hoorn et al., 2010;
P�erez-Escobar et al., 2022), biotic interchange between North
and South America (Cody et al., 2010; Bacon et al., 2015),

and transoceanic dispersal, including across the Atlantic from
Africa (Pennington & Dick, 2004; Renner, 2004), have shaped
extant diversity of neotropical plants and animals. Though
some historical biogeographic studies have included neotropi-
cal fungi (Matheny et al., 2009; Leavitt et al., 2012; Wilson
et al., 2012; Tedersoo et al., 2014b; Harrower et al., 2015;
Amalfi, 2016), more are needed given the ecological impor-
tance of fungi as saprotrophs, pathogens, or mutualistic sym-
bionts, which can influence the distribution of associated
plants and vice versa (Peay et al., 2016).
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Ectomycorrhizal (ECM) fungi are obligate mutualistic root
symbionts, mainly of trees (Smith & Read, 2010; Tedersoo et al.,
2020). They have global ecosystem importance by sustaining the
biomass of the majority of trees worldwide (Soudzilovskaia et al.,
2019; Steidinger et al., 2019). Unlike the majority of organisms,
most ECM fungal groups peak in diversity and abundance in
temperate latitudinal zones (Tedersoo & Nara, 2010; Tedersoo
et al., 2014a; Steidinger et al., 2019). This suggests that they may
have originated and have a longer history and/or have diversified
faster in the temperate zone. Nonetheless, ECM trees are domi-
nant in some tropical forests, where the symbiosis plays a key role
in nutrient cycling and competitive abilities (Henkel, 2003;
McGuire, 2007; Corrales et al., 2016, 2018; Carriconde et al.,
2019; Henkel & Mayor, 2019; Hall et al., 2020). The impor-
tance of ECM fungi in the Neotropics is exemplified by the
recent discoveries of high-diversity sites with many undescribed
species (e.g. Henkel et al., 2012; Roy et al., 2016; Vasco-Palacios
et al., 2018; Delgat et al., 2020; Corrales & Ovrebo, 2021).
ECM fungi thus form an important component of many
neotropical ecosystems.

The current geographic distribution of ECM fungi is the pro-
duct of environment and host plant presence (van der Linde
et al., 2018), as well as historical contingencies such as area of
origin and dispersal limitation (Peay et al., 2016). The Neotrop-
ics contain phylogenetically diverse ECM host plants distributed
across a variety of habitats and elevation zones, suggesting distinct
biogeographic ECM domains. For example, ECM host plants in
the neotropical lowlands are from predominantly tropical lin-
eages in the Fabaceae, Cistaceae, Dipterocarpaceae, Polygo-
naceae, and Nyctaginaceae, whereas mainly north-temperate
Betulaceae, Fagaceae, and Juglandaceae occur at higher elevations
in the Andes or Central America (Tedersoo, 2017; Tedersoo &
Brundrett, 2017; Corrales et al., 2018). Patagonia, in southern
South America, has yet another dominant host lineage, the
Nothofagaceae, whose associated macromycota is quite removed
from that of northern South America (Singer, 1953; Trierveiler-
Pereira et al., 2014), although Nothofagaceae were probably pre-
sent at tropical latitudes in South America in the Eocene
(Jaramillo et al., 2006).

Though many ECM fungal lineages have broad distributions
(Tedersoo et al., 2014a), the drivers of their biogeographic spread
have been difficult to identify. A major problem is distinguishing
between continental vicariance, overland migration, or overseas
dispersal. Moyersoen (2006) hypothesized that Africa–South
American (i.e. Gondwanan) vicariance, between 120 and 90 mil-
lion years ago (Ma) (M€uller et al., 2016), explained the presence
of Pakaraimaea, a phylogenetically distinct genus of ECM host
plants, in South America. Africa–South America vicariance has,
however, been refuted for most other groups of plants (Penning-
ton & Dick, 2004), including the pantropical ECM gymnosperm
Gnetum (Won & Renner, 2006). It was also rejected for the
ECM fungal genus Inocybe (Matheny et al., 2009). In turn,
vicariance is likely responsible for the Australian–Patagonian (i.e.
southern Gondwanan) disjunction of Nothofagaceae (Cook &
Crisp, 2005). An alternative explanation, boreotropical migration
across land routes when Palaeocene/Eocene tropical climates

extended into high latitudes (Wolfe, 1975), was suggested for dis-
junctions in the north-temperate host lineage Juglandaceae
(Zhang et al., 2022) and the ECM fungal groups Amanita sect.
Caesarea (S�anchez-Ram�ırez et al., 2014) and Sclerodermatinae
(Wilson et al., 2012). Over the past 20Myr, narrowing and clo-
sure of the Panama isthmus facilitated north–south dispersal
(Bacon et al., 2015; O’Dea et al., 2016), and the rapid rise of the
northern Andes 5–8Ma created high-altitude environments for
north-temperate arrivals (P�erez-Escobar et al., 2022). The south-
ward extensions of the north-temperate ECM host genera Alnus
and Quercus into the Andes are examples of this (Teder-
soo, 2017).

An important group of mushroom-forming ECM fungi is
found in the Russulaceae (Russulales, Agaricomycetes, Basid-
iomycota), a speciose family that is globally distributed over low
and high latitudes wherever ECM vegetation is found. Recent
systematic work has clarified Russulaceae relationships (Buyck
et al., 2008, 2018; Verbeken et al., 2014; Wisitrassameewong
et al., 2016; De Crop et al., 2017; Wang et al., 2018): the four
mushroom-forming genera – Lactarius, Lactifluus, Multifurca,
and Russula, along with several nested sequestrate genera – have
> 4500 species (He et al., 2019) and form a monophyletic ECM
lineage emerging from a small grade of saprotrophic genera
(Looney et al., 2018, 2022). For simplicity, we refer to this ECM
lineage (equivalent to ‘/russula-lactarius’ sensu Tedersoo et al.,
2010a) as ‘Russulaceae’ in the following. Russulaceae are rou-
tinely recovered in sporocarp and DNA-based surveys, including
in the Neotropics (Tedersoo et al., 2010b; Tedersoo &
Nara, 2010; Smith et al., 2011; Henkel et al., 2012; Roy et al.,
2016; Vasco-Palacios et al., 2018; Corrales & Ovrebo, 2021).
They associate with most known ECM plant lineages (Tedersoo
& Brundrett, 2017), as well as orchids (Dearnaley, 2007).

Most species of Russulaceae are temperate, including boreal, in
distribution. This includes the majority of the largest genus Rus-
sula, for which a temperate origin and a higher temperate diversi-
fication rate relative to the Tropics has been inferred (Looney
et al., 2016). However, a tropical African origin has long been
posited for Russulaceae based on endemism and morphological
distinctiveness (Pirozynski, 1983; Buyck et al., 1996). In the
wider Neotropics, Russulaceae occur in all highland and lowland
regions where ECM vegetation is found, and modern work has
revealed a plethora of new species (Buyck & Ovrebo, 2002;
Miller et al., 2002, 2012; Wartchow & Cavalcanti, 2010; Cheype
& Campo, 2012; S�a et al., 2013, 2019; S�a & Wartchow, 2013,
2016; Wartchow et al., 2013; Montoya et al., 2014; Trierveiler-
Pereira et al., 2014; Crous et al., 2017; Delgat et al., 2020;
Duque Barbosa et al., 2020; Silva-Filho et al., 2020; Manz et al.,
2021; Vera et al., 2021). Several lowland neotropical Russulaceae
have affinities with tropical African species (Buyck, 1990; Buyck
& Ovrebo, 2002; De Crop et al., 2017). Molecular divergence
time estimates vary, however. A recent phylogenomic study
(Looney et al., 2022) estimated a crown age of c. 60Myr (uncer-
tainty range 57–64Myr) for the ECM Russulaceae, which places
its diversification firmly after Gondwanan breakup. Prior esti-
mates of Looney et al.(2016) and Varga et al.(2019) (58 and
83Myr, respectively) also supported a post-Gondwanan scenario.
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A much older estimate of 188Myr (S�anchez-Garc�ıa et al., 2020)
appears to be an outlier (Fig. 1), pre-dating even the radiation of
the oldest ECM host plant lineage, Pinaceae, in the Late Jurassic
(Tedersoo, 2017). Here, we assume that the ECM Russulaceae
diversified when South America was already separated from
Africa, and we reconstruct their biogeographic history in the
Neotropics under this scenario.

To accomplish this, we generated a time-calibrated phy-
logeny by supplementing a backbone tree of globally represen-
tative sequences with new data from a large, collaborative
sampling effort focusing on the Neotropics. The resulting
supertree was used to estimate range evolution and diversifica-
tion. We tested the following hypotheses regarding neotropical
Russulaceae:
(1) Tropical South American lowlands host old lineages that are
related to tropical African taxa, whereas the Andes and the adja-
cent Patagonia have younger lineages unrelated to tropical low-
land taxa.
(2) Dispersal into the Neotropics coincided with Palaeocene and
Eocene boreotropical conditions and the closure of the Panama
isthmus.
(3) Tropical South America and with other tropical areas have a
lower diversification rate than temperate areas.

Materials and Methods

Sample collection and sequencing

We aimed to generate a phylogenetic tree of Russulaceae that is
globally representative and well sampled for the Neotropics. We
collected sporocarps and ECM root tips, and obtained samples
from dried fungarium specimens, from several neotropical and
neighbouring countries: Belize, Brazil, British Virgin Islands,
Chile, Colombia, Costa Rica, Ecuador, French Guiana, Guade-
loupe, Guyana, Martinique, Panama, and Puerto Rico. Tissue
samples were preserved in 29 cetyltrimethyl ammonium

bromide solution. DNA was extracted using a Wizard Genomic
DNA Purification kit (Promega). We were able to amplify the
internal transcribed spacer (ITS) region from 241 specimens,
using standard primers and protocols (Gardes & Bruns, 1993).
In addition, partial large ribosomal subunit (LSU; primers
CTB6 + TW14 (White et al., 1990), or LR0R + LR7 (Vilgalys &
Hester, 1990)) and partial RNA polymerase II gene, second
largest subunit (rpb2; primers fRPB2-5F + bRPB2-7cR (Liu
et al., 1999)), were amplified for 222 and 43 samples, respec-
tively. Amplicons were then Sanger-sequenced (GATC Biotech,
Konstanz, Germany, or Macrogen, Lille, France) and chro-
matograms edited in GENEIOUS v.6 (Biomatters, Auckland, New
Zealand).

Internal transcribed spacer dataset assembly

To produce a tree that would include as much diversity of Russu-
laceae as possible, including undescribed taxa and environmental
samples, we used an approach based on operational taxonomic
units (OTUs) similar to that of Looney et al.(2016).

We downloaded all 35 944 ITS sequence records annotated as
Russulaceae (as of August 2021) on the International Nucleotide
Sequence Database Collaboration or the fungal sequence
database UNITE (K~oljalg et al., 2013) using the PLUTOF web
platform (https://plutof.ut.ee). Sequences annotated as ‘chimeric’
were excluded, and we added our 241 new ITS sequences. The
ITS1–5.8S–ITS2 region was extracted from this set using ITSX
v.1.1.3 (Bengtsson-Palme et al., 2013), keeping only matches at
least 50 bp long. Nineteen sequences associated with backbone
tips (see later) that did not pass this filtering step were added back
in. The resulting set of 29 479 sequences was then clustered into
OTUs using VSEARCH v.2.9.1 (Rognes et al., 2016) with the clus-
ter representative being the longest sequence (‑‑cluster_fast
option). We used a 97% identity threshold, which is probably
conservative (i.e. lumping species) but appropriate for the
macroevolutionary scale of our study. Sequences clustered into
3543 OTUs, and their representative sequences were used for
subsequent analyses.

Phylogenetics

A ‘supertree’ approach was used, estimating first a backbone phy-
logeny using conserved markers and then inserting backbone-
constrained, genus-level phylogenies estimated from the ITS
sequences. For the backbone, we first assembled a set of nuclear
LSU (nrLSU) (28S), rpb1 (RNA polymerase II gene, largest sub-
unit), and rpb2 sequences from 437 accessions of Russulaceae
and seven outgroup Russulales, based on previous studies (Buyck
et al., 2008, 2018, 2020; Verbeken et al., 2014; Looney et al.,
2016; De Crop et al., 2017; Wang et al., 2018). We added 28 of
the newly sequenced Russulaceae for which nrLSU and/or rbp2
were amplified successfully. In the backbone accessions, 324
matched accessions in the ITS dataset and were used to constrain
the genus phylogenies (see later). Sequences for each locus were
aligned with MAFFT/E-INS-I v.7.407 (Katoh & Standley, 2013),
end columns with > 90% missing data were trimmed, and

Fig. 1 Overview of published crown age estimates for the ectomycorrhizal
Russulaceae (Lactarius, Lactifluus,Multifurca, and Russula). The Looney
et al. (2022) estimate (in bold) was used for calibration in this study. Dots
are median values/point estimates, error bars represent 95% posterior
density intervals (Looney et al., 2016, 2022) and the range in 10 calibrated
trees (Varga et al., 2019).
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alignments then concatenated. A maximum likelihood phylogeny
was estimated using RAXML v.8 (Stamatakis, 2014), a GTR+Γ
substitution model for each of the LSU, rpb1, and rpb2 parti-
tions, and 1000 rapid bootstrap searches. Transfer bootstrap
expectation (TBE) was calculated in addition to traditional
Felsenstein bootstrap support, which is sensitive to ‘rogue taxa’ in
large datasets (Lemoine et al., 2018).

We then estimated phylogenies from the ITS dataset of repre-
sentative OTU sequences. To improve alignment and tree estima-
tion, we divided them into three genus datasets (combining the
small Multifurca with its sister Lactarius). The ITS sequences were
searched via BLASTN (Altschul et al., 1990) against the ITS
sequences associated with backbone tips to assign them to a genus
dataset. Sequences with < 70% similarity to a backbone ITS
sequence and only a single OTU member were discarded as likely
chimeric or mislabelled as Russulaceae. Rapid alignments and trees
were made with MAFFT (automatic option) and FASTTREE v.2.1.10
(Price et al., 2010) for visual inspection. We removed a further
three sequences that appeared as conspicuously long branches. The
final set of ITS sequences per genus was then aligned (with suitable
outgroup sequences from the other genera) using MAFFT/E-INS-I.
Alignments were trimmed and RAXML trees inferred as described
for the backbone, specifying ITS1, 5.8S, and ITS2 partitions; splits
that had a TBE support of 0.7 or higher in the backbone tree were
constrained in the tree search.

To generate a single Russulaceae supertree, we first time-
calibrated the backbone tree, with outgroups removed, using
penalized likelihood in TREEPL v.1.0 (Smith & O’Meara, 2012).
The smoothing parameter value was selected through random-
subsample-and-replicate cross-validation for orders of magnitude
between 10�1 and 103. In the absence of known Russulaceae fos-
sils, we fixed the crown age to 1. Subclade trees were time-
calibrated in the same manner (with a further 83 long-branch tips
removed) and then inserted into the backbone tree using the
‘bind.tree’ function in R, scaling branch lengths relative to the
backbone crown age of the clade replaced. To provide an absolute
timescale, we report ages obtained when multiplying branch
lengths with the age estimate of Looney et al. (2022); that is,
60Myr with a range of 57–64Myr (Fig. 1). The final supertree
contained 3285 tips, corresponding to OTUs identified in the
ITS dataset and representing 29 167 ITS sequences.

For phylogenetic tree manipulation and plotting, we used the
packages APE v.5.3 (Paradis & Schliep, 2019), GEIGER v.2.0.6.1
(Harmon et al., 2008), PHYTOOLS v.0.6.60 (Revell, 2011), and
PLOTRIX v.3.7.5 (Lemon, 2006) in R v.3.6.1.

Biogeographic areas

We compared the biogeographic histories of Russulaceae among
parts of the Neotropics and adjacent regions that feature different
ECM host plant assemblages (Tedersoo, 2017; Nouhra et al.,
2019; Delgat et al., 2020) (Fig. 1a): (1) Central America/
Caribbean, with both tropical-origin ECM host plant lineages
such as Coccoloba or Nyctaginaceae tribe Pisonieae and
temperate-origin Fagaceae, Juglandaceae, and Pinaceae. (2) The
Andes, with the temperate-derived Alnus acuminata, widespread

in the central part of the range, and Quercus humboldtii, restricted
to northern Colombia, and some lowland Nyctaginaceae that
reach the montane Yungas (Geml et al., 2014). (3) Lowland trop-
ical South America, with several distinct, tropical host plant
groups in the Cistaceae, Fabaceae, Polygonaceae, Nyctaginaceae,
Dipterocarpaceae (e.g. Dicymbe, Aldina, Coccoloba, Guapira,
Neea, Pakaraimaea, Pseudomonotes). (4) Patagonia, with
Nothofagaceae (Tedersoo, 2017). We defined these areas by
merging the corresponding ecoregions of Morrone (2014, 2015),
using the shapefiles of L€owenberg-Neto (2014, 2015). The rest
of the global range of Russulaceae was divided into the five broad
regions Afrotropics, Australasia with Oceania, Indomalaya,
Nearctic, and Palaearctic (Fig. 1a; Dinerstein et al., 2017).

Operational taxonomic units were assigned to one or more of
these areas first by the country recorded for each ITS sequence
clustering with the OTU, if this was unambiguous. We then
used, in the following order, sampling coordinates, area descrip-
tions geocoded with the ‘geocode_OSM’ R function, and infor-
mation from the original literature associated to the record (for
some of the remaining unassigned tips) to assign remaining
sequences, using the R packages SF (Pebesma, 2018) and TMAP-

TOOLS (Tennekes, 2020). A total of 25 937 sequences (88.9% of
those represented in the supertree) and 3153 OTUs (96%) could
be assigned in this way (Table 1). We plotted the tip areas against
the tree for visual inspection. In five instances, the placement
(isolated tropical South American or Patagonian tip inside a
north-temperate clade) and the host and sampling metadata sug-
gested introduced occurrences; these areas were ignored.

We summarized the overlap in OTUs between areas to assess
recent dispersal and compared it with estimates of more ancient
dispersal (see later).

Biogeographic modelling

We estimated ancestral areas using a simple Markov model of
trait evolution. The frequently used dispersal–extinction–

Table 1 Overview of internal transcribed spacer (ITS) sequences and
operational taxonomic units (OTUs) by geographic area.

Area ITS sequences OTUs

Focal
Andes 46 0.2% 22 0.7%
Central America/Caribbean 514 1.8% 213 6.5%
Patagonia 16 0.1% 9 0.3%
Tropical S. America 303 1% 109 3.3%
Nonfocal
Afrotropic 1055 3.6% 417 12.7%
Australasia and Oceania 445 1.5% 226 6.9%
Indomalayan 1585 5.4% 659 20.1%
Nearctic 4550 15.6% 737 22.4%
Palearctic 17 423 59.7% 1293 39.4%
Unassigned 3230 11.1% 132 4%
Total 29 167 3285

The numbers shown are for sequences represented in the final Russulaceae
supertree, after various filtering steps. Note that OTU numbers and
percentages do not sum to 100% as one OTU can occur in several areas.
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cladogenesis model (Ree et al., 2005) proved too computationally
expensive for our phylogeny and also has various issues (Ree &
Sanmart�ın, 2018). We fitted a one-parameter trait evolution
model to the supertree and the tip areas assigned in the CORHMM

R package v.2.7 (Beaulieu et al., 2021), which can handle poly-
morphic tips and missing values.

With the estimated ancestral areas, we summarized lineages
that have a relative likelihood of > 0.5 to occur in one of the four
focal areas. We recovered their stem ages (divergence from groups
outside the focal areas) and, if applicable, crown ages (first diver-
gence within the focal areas). We then assessed, under the two
ages scenarios, whether these ages coincide with the following
biogeographic events: the split between South America and
Antarctica, 50Ma (van de Lagemaat et al., 2021); boreotropical
conditions during the Palaeocene and Eocene (Wolfe, 1975);
rapid north Andean uplift, 8–5Ma (P�erez-Escobar et al., 2022);
and the Panama isthmus biotic interchange, beginning 20Ma
(O’Dea et al., 2016).

To count the number of dispersal events (i.e. area state
changes) and infer dispersal rates post hoc, we stochastically
mapped area evolution histories on the supertree 100 times using
the ‘makeSimmap’ function in CORHMM. From these stochastic
maps, we obtained median values and 95% quantile ranges of
dispersal counts between areas. We also summarized dispersal
counts to and from each area over time. For this, we used 10
equal-sized time windows since the origin of Russulaceae (repre-
senting 6Myr windows under our calibration), which proved a
reasonable compromise between detecting patterns in time vs
uncertainty (i.e. the smaller the windows, the more uncertainty
there is around the event counts).

Diversification analysis

Diversification rates were estimated for the full tree using BAMM

v.2.5 (Rabosky, 2014). Critique, especially of earlier versions of
BAMM (Moore et al., 2016), has been addressed (Rabosky et al.,
2017); BAMM was best suited to our purpose as we needed specific
per-branch rates for comparing diversification rates per area (see
later). We ran BAMM for 200 million Markov chain Monte Carlo
generations and sampling every 10 000th generation. Effective
sample sizes were ensured to be > 200 using the R package CODA

(Plummer et al., 2006), and the first 20% of posterior samples
were discarded as burn-in. Note that the conservative ITS cluster-
ing cut-off likely underestimated the number of species, and thus
the most recent diversification rates.

In the absence of a feasible method to jointly model diversifica-
tion and range evolution (Goldberg et al., 2011) for such a large
phylogeny and multiple areas, we partitioned per-branch diversi-
fication rates by area in an approach similar to Chazot
et al.(2021). We randomly paired the BAMM posterior samples
with the area evolution stochastic maps. For each pair, the tree
branches were divided into segments with the same range and
diversification regime and no longer than 2% of the root height.
We then calculated the mean and 95% credible interval of
diversification rate per area, both overall and for each of 20

equal-sized time windows. The R code for this is available in the
online repository.

Results

Internal transcribed spacer sequences and occurrence in
biogeographic areas

We compiled a dataset of 29 167 global ITS sequences of the ecto-
mycorrhizal Russulaceae clade. These were obtained through a
series of filtering steps applied to 35 944 sequences retrieved from
public databases, combined with 241 new sequences generated for
neotropical taxa. These sequences clustered into 3285 OTUs at a
97% similarity threshold, represented as tips in the Russulaceae
supertree (Table 1), with 2234 belonging to Russula, 565 to Lac-
tarius, 472 to Lactifluus, and 14 to Multifurca. Of these, 879
sequences and 353 OTUs could be assigned to one of four focal
areas of the Neotropics and adjacent regions, with Central Amer-
ica/Caribbean having the highest numbers. Most sequences and
OTUs in the dataset were assigned to the Palaearctic and Nearctic
areas, respectively. The Palaearctic was overrepresented among
sequences compared with OTUs (59.7% vs 39.4%), indicating a
higher sampling depth in this area than in the others.

Russulaceae phylogeny and divergence times

We inferred a 3285-OTU Russulaceae supertree (Fig. 2b) based
on ITS phylogenies constrained with a backbone phylogeny.
The 444-tip backbone phylogeny we inferred from LSU, rpb1,
and rpb2 data represents all named subgenera of the four Russu-
laceae genera (Supporting Information Fig. S1). Relationships
among Russula subgenera were difficult to resolve in previous
studies (Looney et al., 2016; Bazzicalupo et al., 2017; Buyck
et al., 2018, 2020). We recovered low Felsenstein bootstrap, but
high TBE, support among Russula subgenera and subg.
Heterophyllidia as sister to the other subgenera. The backbone
tree also suggests – based on a single LSU sequence – that the
tropical South American Russula campinensis is sister to the rest
of the genus and does not fall in any of the subgenera described.
In Lactarius, the poorly defined subgenus Russularia is para-
phyletic, and several unclassified lineages diverged earlier than
the named subgenera, as found previously (Verbeken et al.,
2014; Wisitrassameewong et al., 2016). The backbone notably
supported an undescribed tropical South American species
from Guyana (OTU KC155399) as sister to the remainder of
Lactarius. Within Lactifluus, our backbone differed from
relationships found previously (De Crop et al., 2017; Delgat
et al., 2020) in finding TBE support for sister relationships
between both subg. Lactariopsis/subg. Pseudogymnocarpi and
subg. Lactifluus/subg. Gymnocarpi.

Under the age scenario of Looney et al.(2022), the estimated
crown age of the largest genus Russula was c. 56Myr (uncertainty
range 53–59Myr), followed by Lactifluus at 50Myr (47–53Myr),
Lactarius at 42Myr (40–45Myr), and Multifurca at 34Myr (32–
36Myr) (Fig. 2; see also the calibrated backbone in Fig. S1).
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Biogeographic origins and neotropical lineages

The Afrotropics were supported as the most likely ancestral area
of Russulaceae in our biogeographic analysis (Fig. 2; see also all
tips/OTUs detailed in Fig. S3). This was also the case for each of
the three largest genera, Lactarius, Lactifluus, and Russula, with
relative likelihoods of > 0.95 for the Afrotropics at these nodes.
The earliest diverging clades at subgenus level in these three gen-
era were also each estimated as Afrotropic in origin, except Rus-
sula subgenera Russula and Crassotunicata (Fig. S1a).

We found 110 distinct Russulaceae lineages occurring in the
wider Neotropics, of which 76 are single-OTU lineages and 34
clades with more than one OTU (Fig. 2b,c; Table 2; see also lin-
eages numbered in Fig. S3). The oldest lineages are found in
tropical South America, with the oldest stem age at c. 42Myr
(40–45Myr), indicating arrival in the mid-Eocene at the earliest.
Some of these clades have spread to other areas: some Central
American/Caribbean clades included tropical South America
OTUs, and vice versa (e.g. nos. 53, 60, 66 and 73 in Russula, and
nos. 106, 107 and 110 in Lactifluus; Fig. S3), whereas one tropi-
cal South American clade of Lactifluus (no. 106) included Aus-
tralasian taxa. Estimated ages of these lineages allow us to assess
whether they overlap with major biogeographic events that have
shaped the regional biota (Fig. 2c).

The seven Andean lineages in Russula, Lactarius, and Lactifluus
all appeared to have immigrated relatively recently, with no diver-
sification in situ. The stem ages of all but one lineage (which
appears as an old outlier) coincide with or are younger than the
rapid north Andean uplift 5–8Ma. These Andean lineages
mainly emerge from Nearctic and/or Palaearctic clades, consis-
tent with north-to-south migration. Only two Nyctaginaceae-
associated OTUs from the Yungas emerge from lowland tropical
South American clades (Lactifluus UDB004277¦L6094 and Rus-
sula UDB004278¦L6090c; Fig. S3). There were also 12 Andean
OTUs shared with other areas, mainly Central America/
Caribbean and the Nearctic (Fig. 3a), suggesting very recent
immigration into the Andes.

The four Patagonian lineages (Russula: nos. 7, 8 and 61; Lactar-
ius: no. 94; Fig. S3c,r,ae) diverged at different times since c. 18Ma
and much more recently than the South America–Antarctica split.
All four emerge from within or are sister to Australasian clades.
Note that ITS sequences appear to be the only record of Lactarius
associated with Nothofagus – based on sequence metadata – in the
Patagonian region, as the genus was not listed in a previous
overview (Barroetave~na et al., 2019). These and their closest rela-
tives from Australasia represent a yet undescribed clade of Lactar-
ius.

(a) (b) (c)

Fig. 2 Ancestral range estimation and neotropical lineages of ectomycorrhizal Russulaceae (Lactarius, Lactifluus,Multifurca and Russula). (a) Defined
areas, including the four focal areas (enlarged inset): Afr, Afrotropics; And, Andes; Aus, Australasia; CAm, Central America/Caribbean; Ind, Indomalaya;
Nea, Nearctic; Pal, Palaearctic. (b) Dated supertree of the ectomycorrhizal Russulaceae with inferred ancestral ranges. The 3285 tips represent 29 167
internal transcribed spacer sequences clustered into operational taxonomic units. Ages are based on the previous estimate of 60Myr (uncertainty range
47–64Myr; Looney et al., 2022) for the crown age of the ectomycorrhizal Russulaceae. Ancestral ranges were estimated under a one-parameter trait evo-
lution model integrating over multiple-state tips. Branches are coloured by the area with the highest relative likelihood as part of the inferred ancestral
range at the child node. Relative likelihoods for ancestral areas are given as pie charts for genera, subgenera, and the Russulaceae crown node. Coloured
dots indicate the stem branches of 110 lineages with an estimated origin in one of the focal areas (grey indicates that none of two or more focal areas has a
relative likelihood of > 0.5). (c) Stem ages and crown ages (where applicable) of 110 lineages with an estimated origin in one of the focal areas. Grey poly-
gons and horizontal lines indicate major biogeographic events in the region.
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The 80 lineages from Central America/Caribbean occurred
in Russula, Lactarius, and Lactifluus. Whereas Multifurca
occurs in Central American oak forests (Montoya et al., 2003;
Wang et al., 2018), no ITS sequence assignable to that area
was available. None of the lineages is old enough to have
diverged under Palaeocene boreotropical conditions. All but
three ages are coincident with the increased biotic interchange
across the Panama isthmus. The large majority of Central
American/Caribbean lineages emerged from north-temperate
clades, whereas some occurred in clades with South American
relatives.

Of the 19 lowland tropical South American lineages, several
branched deeply at subgenus level. In Russula, a clade composed
of R. campinensis (an unusual pleurotoid species from lowland
tropical South America; Henkel et al., 2000) and three related
OTUs branched at c. 33Ma (no. 82, Fig. S3x). Together with
OTUs from several other areas, this group is sister to the remain-
der of Russula. From Guyana, KC155399 with two sequences
(no. 95) represents an undescribed lineage of Lactarius sister to
the rest of the genus (Fig. S3a). Another well-supported ancient
lowland tropical South American clade of Lactarius resides in
subg. Plinthogalus (no. 93, Fig. S3a,e). In Lactifluus, our tree
places a lowland tropical South American clade with Lactifluus
ceraceus and related OTUs (no. 105, Fig. S3a) sister to subg. Lact-
ifluus and not in subg. Pseudogymnocarpi (Crous et al., 2017).

All lowland tropical South American lineages diverged well
after the Africa–South America split. However, several of these

old lineages were sister to clades with an estimated African origin
(e.g. nos. 42, 62 and 82 in Russula; no. 95 in Lactarius; nos. 105,
106 and 101 in Lactifluus). Boreotropical migration can poten-
tially account for these relationships in seven lineages that
diverged in the Eocene. The other 12 lineages were too young for
boreotropical migration. The youngest of these is a South Ameri-
can lineage clearly emerging from within an African clade (no.
63, Russula puiggarii and relatives) at c. 9 Ma, strongly suggesting
direct dispersal across the Atlantic.

Dispersal to and from the Neotropics

We summarized overlap in OTUs between areas, representing
recent dispersal, and also estimated past dispersal events
between them (Fig. 3). Two higher latitude areas, Nearctic and
Palaearctic, have the highest OTU overlap (Fig. 3a) and the
highest estimated dispersal count (Fig. 3b), followed by the
Palaearctic and Indomalaya. Patagonia shared no OTU with
any of the focal areas of the Neotropics. It, however, had pos-
sible ancient dispersal links with several other areas, which
may reflect the uncertainty in simulating dispersal routes along
branches, as plotting of ancestral areas strongly suggested the
Patagonian lineages are related to Australasian lineages, as
already noted herein. The Andes were most strongly linked
with the Nearctic and Central America/Caribbean. Central
America/Caribbean was most strongly linked with the Nearctic
and Palaearctic. Lowland tropical South America only shared

Table 2 Overview of Russulaceae lineages in the Neotropics and adjacent regions.

Area No. of lineages Of which clades Oldest crown ages (Myr) Oldest stem age (Myr)

Andes 7 0 — 16.3 (15.4–17.3)
Central America/Caribbean 80 16 13.1 (12.5–14) 26.3 (25–28.1)
Patagonia 4 3 11.8 (11.2–12.5) 17.8 (16.9–18.9)
Tropical South America 19 15 29.9 (28.4–31.9) 42.4 (40.3–45.2)

These represent lineages that have an ancestral relative likelihood of > 0.5 to occur in the area but may also occur in other areas. Ages are based on the
previous estimate of 60Myr (uncertainty range 47–64Myr; Looney et al., 2022) for the crown age of the ectomycorrhizal Russulaceae. Values in
parentheses are age uncertainty ranges based on the 95% highest posterior density interval (57–64Myr) of Looney et al. (2022).

Fig. 3 Connectivity between biogeographic
areas in the ectomycorrhizal Russulaceae
(Lactarius, Lactifluus,Multifurca, and
Russula). (a) Overlap in operational
taxonomic units (OTUs) between areas. Edge
thickness is proportional to the number of
shared OTUs. (b) Inferred numbers of
dispersal events between areas. Edge
thickness is proportional to the number of
dispersals. Edges were only drawn for rates
whose 95% quantile range excludes zero.
The counts are mean numbers of dispersals
inferred from stochastic mapping under the
estimated dispersal/area transition rate.
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OTUs with Central America/Caribbean but had most dispersal
links with the Afrotropics.

We also summarized Russulaceae immigration and emigration
for the neotropical focal areas (Fig. 4). All areas showed an

increase towards the present, reflecting their increasing number
of extant lineages over time. In most areas, immigration and emi-
gration were roughly equal across time periods, but a markedly
stronger recent increase in immigration compared with emigra-
tion was seen in Central America/Caribbean. Dispersals to low-
land tropical South America were mostly unidirectional from the
Afrotropics, albeit with large uncertainty intervals (Fig. 4e).

Diversification rates

The estimated per-branch net diversification rates ranged from c.
0.06 to 0.9Myr�1 (Fig. 5a). There were rate increases in some
clades, such as at the base and within Lactarius subg. Lactarius, in
the crown clade of Lactifluus subg. Lactifluus, and within Russula
subg. Heterophyllidia. Russula subg. Russula exhibited a rapid,
mainly temperate crown diversification. Partitioning diversifica-
tion rates by area showed that the Nearctic and Palaearctic had
diversification rates on average c. 1.3–1.4 times higher than those
of tropical South America, the Afrotropics, and Patagonia, with
the Andes and Central America/Caribbean exhibiting intermedi-
ate values (Fig. 5b).

Diversification rates plotted over time for the different areas
are shown in Fig. 6. The putative area of origin for Russulaceae,
the Afrotropics, showed a steady decline in diversification from
initially high values at the crown diversification (Fig. 6e). By con-
trast, in the Nearctic and Palaearctic there were much more
recent peaks at c. 9–12Ma followed by a slowdown. Diversifica-
tion also declined in tropical South America after the possible
first emergence of lineages there at c. 35–40Ma. In the Andes
and Central America/Caribbean, there were slight recent upticks
in diversification (Fig. 6a,b).

Discussion

A tropical African origin of ectomycorrhizal Russulaceae
but fastest diversification in the temperate zone

We estimated that the speciose, globally distributed ECM
clade in Russulaceae, as well its three largest genera, likely orig-
inated in tropical Africa (Fig. 1). An Afrotropical origin for
Russulaceae had long been postulated (Pirozynski, 1983; Buyck
et al., 1996) but a biogeographic analysis of the largest genus,
Russula (Looney et al., 2016), suggested a temperate origin for
that genus. This discrepancy for Russula may be explained by
increased collection and sequencing having led to tropical taxa
now being better represented in phylogenetic analyses (Buyck
et al., 2018). Early diverging tropical lineages in Russula were
revealed in our study, possibly resulting from our larger sam-
pling of ITS sequences – 18 778 ITS sequences compared with
3348 in Looney et al.(2016). Unstable relationships among the
major lineages of Russula were found in previous studies
(Looney et al., 2016; Bazzicalupo et al., 2017; Buyck et al.,
2018, 2020). The fact that we inferred African origins for
most subgenera within Russula, however, supports an overall
Africa origin of Russula even if the true relationships were dif-
ferent. Thus, results for both the largest genus, Russula, and

(a)

(b)

(c)

(d)

(e)

Fig. 4 Dispersal to and from the Neotropics through time in the
ectomycorrhizal Russulaceae (Lactarius, Lactifluus,Multifurca and
Russula). The counts are median numbers of dispersals inferred from
stochastic mapping for 10 equally spaced time periods between the root of
Russulaceae and the present. Values are given for (a–d) the four focal
areas and (e) specifically for dispersal between the Afrotropics and tropical
South America. Shaded areas are 95% quantile ranges. Ages are based on
the previous estimate of 60Myr (uncertainty range 47–64Myr; Looney
et al., 2022) for the crown age of the ectomycorrhizal Russulaceae. Crown
ages of the four genera are indicated for reference (Ru, Russula; Lf,
Lactifluus; La, Lactarius; Mu,Multifurca). Ma, million years ago.
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the earliest diverging genus, Lactifluus, further support the
overall African origin of Russulaceae.

Tropical origins have been inferred for several ECM fungal lin-
eages (Matheny et al., 2009; Dentinger et al., 2010; Kennedy et al.,
2012; S�anchez-Ram�ırez et al., 2014; Han et al., 2018). In many of
these groups, including Russulaceae, the greater species diversity in
higher latitude regions therefore likely results from more recent,
faster diversification relative to the Tropics. This is supported by our
results of highest rates in the Nearctic and Palaearctic and the lowest
in the Afrotropics and tropical South America (Fig. 5b), where it
declined over time (Fig. 6). Most likely, the vast temperate and
boreal forests dominated by ECM host lineages, such as Fagaceae
and Pinaceae, offered opportunities for rapid diversification of lin-
eages, as suggested previously (Bruns et al., 1998; Ryberg &
Matheny, 2012; Looney et al., 2016). By contrast, the discontinuous,

clustered host distribution in the Tropics would have offered less
niche space. Our dispersal analyses corroborated this scenario, with
both a high number of shared OTUs and dispersals between the
north-temperate regions (Fig. 3). The rapid increases of diversifica-
tion rates we observed for Russulaceae in the Nearctic and Palaearctic
indeed coincide with the spread of temperate vegetation after the
Eocene thermal optimum (Zachos et al., 2001). Some of these
north-temperate lineages then migrated southward again into tropi-
cal latitudes, including Central America and the Andes (see later).

We suggest that ECM fungal diversity in tropical areas accumu-
lated over a longer time period and more gradually than at higher
latitudes. There are, however, also young clades of Russulaceae both
in the Neotropics and Palaeotropics, and a simplistic terminology of
‘cradles’ vs ‘museums’ of biodiversity should probably be avoided
(Vasconcelos et al., 2022). Further discoveries of fossil fungi, as well

(a)

(b)

Fig. 5 Net diversification across clades and
areas in the ectomycorrhizal (ECM)
Russulaceae (Lactarius, Lactifluus,
Multifurca, and Russula). Diversification
rates were inferred with BAMM v.2.5
(Rabosky, 2014). (a) Per-branch net
diversification rates averaged across posterior
samples. The full 3385-tip supertree is shown
with the distribution of tips. Ages and rates
are based on the previous estimate of 60Myr
(uncertainty range 47–64Myr; Looney et al.,
2022) for the crown age of the ECM
Russulaceae. Subgenera containing clades
with increased diversification rates are
labelled. Ma, million years ago. (b) Net
diversification rates per area. Violin plots are
coloured by area; the white dots represent
median values, and thick and thin vertical
lines show 19 and 1.59 interquartile ranges,
respectively. Diversification rates were
averaged for branch segments in random
pairs of BAMM posterior samples with
stochastic ancestral area maps.
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as ECM host plants, will hopefully refine the timeline of ECM fun-
gal biogeography, especially in the Tropics.

Lowland neotropical Russulaceae: ancient lineages,
potential boreotropical migration, and evidence for
transatlantic dispersal

Lowland tropical South America harbours several deep-
branching lineages within Russula, Lactifluus, and Lactarius, and
most have affinities with tropical African lineages (Fig. 3b).
Gondwanan vicariance is ruled out under the age scenario we
considered. Splits between African and neotropical lineages are
moreover asynchronous in time, making vicariance unlikely even
if the very old age estimate of S�anchez-Garc�ıa et al.(2020) were
accepted. Migration across an Eocene boreotropical vegetation
corridor, supposedly together with host plants, could explain
some of the oldest Africa–South America divergences in

Russulaceae. The ECM dipterocarp genus Pseudomonotes from
northern South America diverged from its tropical African sister
genus in the Eocene, so it could have co-migrated during that
time (Bansal et al., 2022). The monotypic Pakaraimaea is proba-
bly older, but its precise affinities and age are yet to be confirmed
(Ashton et al., 2021). Both these ECM hosts are dominated by
Russulaceae mycobionts in northern South America (Smith et al.,
2013; Vasco-Palacios et al., 2018).

Several of the lowland South American lineages with African
ancestors must have dispersed across the Atlantic, as they diverged
after boreotropical conditions. The peak of dispersal from Africa to
South America occurred after c. 30Ma (Fig. 4). Tropical transat-
lantic dispersals are well evidenced in some tropical plant lineages
(Pennington & Dick, 2004; Hughes et al., 2013). The successful
dispersal of ECM fungi across oceans seems unlikely, as spores must
survive the long journey and encounter a suitable habitat with a
compatible host tree (Kropp & Albee-Scott, 2010; Horton et al.,

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

Fig. 6 Diversification rates within areas
through time in the ectomycorrhizal (ECM)
Russulaceae (Lactarius, Lactifluus,
Multifurca and Russula). Diversification rates
were averaged for branch segments in
random pairs of BAMM posterior samples with
stochastic ancestral area maps, for 20 equally
spaced time periods between the root of
Russulaceae and the present. (a–i) Rates for
the nine biogeographic areas defined, with
the focal areas at the top (a–d). Shaded areas
are 95% quantile ranges. Ages and rates are
based on the previous estimate of 60Myr
(uncertainty range 47–64Myr; Looney et al.,
2022) for the crown age of the ECM
Russulaceae. Crown ages of the four genera
are indicated for reference (Ru, Russula; Lf,
Lactifluus; La, Lactarius; Mu,Multifurca).
Afr, Afrotropics; And, Andes; Aus,
Australasia; CAm, Central America/
Caribbean; Ind, Indomalaya; Nea, Nearctic;
Pal, Palaearctic; Ma, million years ago.
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2013). Various mechanisms of dispersal are debated, including by
wind or birds (Caiafa et al., 2021), but also co-dispersal of fungi
and host plants (Golan & Pringle, 2017). Spore attachment to float-
ing fruits has been suggested as a means of fungal co-dispersal with
propagules of ECM Pisonia (Kropp & Albee-Scott, 2010) and Coc-
coloba (S�ene et al., 2018). Rafting of entire trees with roots and soil
could theoretically vector plants and their fungal symbionts (Golan
& Pringle, 2017). Possible ECM host candidates for co-dispersal
from Africa to the Neotropics are Aldina and Dicymbe, which
diverged from African ancestors in the Oligocene to Miocene, and
thus after boreotropical conditions (Tedersoo, 2017). Extant species
of these genera are major ECM host plants throughout the Guiana
Shield and host a plethora of ECM fungi, including Russulaceae
(Singer et al., 1983; Moyersoen, 1993; Smith et al., 2011; Vasco-
Palacios et al., 2018).

North-to-south migration into the Neotropics

Most Russulaceae in the Andes have biogeographic affinities with
north-temperate lineages, distinct from those of lowland tropical
South America (with the exception of Nyctaginaceae-associated
species in the lower Yungas). We also found more OTUs shared
between the Andes and northern regions than OTUs unique to
the Andes, indicating recent range expansion. This suggests co-
migration with Alnus and Quercus as they moved southward in
the Pleistocene (Tedersoo, 2017). Alnus acuminata is a
widespread pioneer species in middle elevation zones from Mex-
ico to the Andes (Wicaksono et al., 2017), and southward co-
migration of the ECM host species and its mycobionts has been
suggested previously (Kennedy et al., 2011).

In Central America and the Caribbean, immigration from the
north, at a time of generally increased biotic exchange, appears to
be the dominant dispersal direction. This is coherent with the
importance of north-temperate hosts such as Quercus and Pinus
in the region (Halling & Mueller, 2005; Tedersoo, 2017). Our
data indeed show a strong recent increase in Russulaceae immi-
gration vs emigration (Fig. 4b). However, South American Rus-
sulaceae lineages have also migrated northwards into the region.
Delgat et al. (2020) previously showed that most Lactifluus species
on Caribbean islands have South American affinities as opposed
to north-temperate-derived Central American species (Delgat
et al., 2020). The neotropical host lineages Coccoloba or Pisonieae
probably moved northwards with their mycobionts before the
Panama isthmus closure (Tedersoo, 2017). Clearly, the Central
American/Caribbean region, which we defined very broadly here,
has been a zone of exchange between north-temperate and
neotropical lineages, which must have involved dispersal path-
ways across the Caribbean islands.

A distinct Patagonian ectomycorrhizal macromycota

The Patagonian macromycota has long been recognized as distinct
(Singer, 1953; Trierveiler-Pereira et al., 2014). Our results demon-
strated that Patagonian Russulaceae have no affinity with either
Andean or tropical lowland South American Russulaceae, despite
the fact that the sole extant Patagonian host plant group

Nothofagaceae extended considerably northward in Eocene South
America (Jaramillo et al., 2006). Divergence times of Patagonian
Russulaceae do not indicate a vicariant association with the South
America–Antarctica split, unlike in the Nothofagus-specific fungal
parasite Cyttaria (Peterson et al., 2010). Even during the increasing
glaciation of Antarctica, Nothofagus likely persisted in coastal areas
until the Pleistocene (Poole & Cantrill, 2006) and provided geo-
graphic ‘stepping stones’ for bird-vectored ECM fungal dispersal
between South America and Australasia (Caiafa et al., 2021).

Conclusions

Most biogeographic studies of the Neotropics have focused on
plants or animals. Here, we explored the neotropical biogeogra-
phy of one of the largest families of ECM fungi, the Russulaceae,
drawing the following conclusions:
(1) Tropical South American lowlands host several old lineages
related to tropical African taxa, whereas the Andes and the adja-
cent Patagonia have younger, unrelated lineages.
(2) Some lineages may have dispersed into lowland tropical South
America during Palaeocene/Eocene boreotropical conditions. Sev-
eral, however, immigrated more recently via transatlantic dispersal
from tropical Africa. Most origins of Central American/Caribbean
taxa coincide with general increased biotic interchange across the
closing Panama isthmus.
(3) Tropical South America and the Afrotropics have lower
diversification rates than temperate areas, probably due to the dis-
continuous distribution of ECM hosts.

Our analysis demonstrates the need for more taxonomic and eco-
logical work on neotropical ECM fungi. In the Russulaceae, several
deep-branching neotropical lineages remain to be described. Our
coarse-scale analysis needs to be followed by detailed regional work
on host and environmental drivers of neotropical ECM fungal bio-
geography. Russulaceae have adapted to environments as contrast-
ing as wet Amazonia (Singer & Araujo, 1979; Singer &
Aguiar, 1986; Vasco-Palacios et al., 2018) and the semi-arid
Caatinga (S�a et al., 2019), which we here all lumped under one geo-
graphic unit. Neotropical ECM fungi are phylogenetically diverse
and may well perform unique and potentially irreplaceable ecologi-
cal functions that need to be documented. This is particularly
urgent in a time when neotropical forests are being destroyed at
unprecedented levels (Gomes et al., 2019).
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