Local TGF-beta sequestration by fibrillin-1 regulates vascular wall homeostasis in the thoracic aorta

<u>Deleeuw, Violette, MSc¹</u>, Van Impe, Matthias, MSc², Logghe, Gerlinde, MSc², Vanhomwegen, Marine, BSc¹, Olbinado, Margie, PhD³, Stampanoni, Marco, PhD³, Segers, Patrick, PhD², Sakai, Lynn, PhD⁴, Sips, Patrick, PhD¹, and De Backer, Julie, MD, PhD^{1,5}

1: Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium

2: Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), IBiTech, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium

3: Paul Scherrer Institute, Villigen, Switzerland

- 4: Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- 5: Department of Cardiology, Ghent University Hospital, Ghent, Belgium

Background: Aortic dissection and rupture is the main cause of early cardiovascular mortality in patients with Marfan syndrome (MFS). MFS is caused by a fibrillin-1 deficiency, which binds transforming growth factor beta (TGF-beta) via interaction with latent TGF-beta binding proteins (LTBPs). The role of TGF-beta in MFS has been controversial, with earlier studies suggesting that excess release of TGF-beta due to decreased interaction with dysfunctional fibrillin-1 leads to aortic dilation and vascular damage, while other studies have shown an important protective effect for TGF-beta. To further elucidate the role of TGF-beta, we studied the *in vivo* effects of disrupted sequestration of TGF-beta to fibrillin-1 in mouse models of MFS.

Methods: Mice lacking the fibrillin-1 binding site for LTBPs (*Fbn1^{H1D/+}*), mice with a truncated fibrillin-1 (*Fbn1^{GT-8/+}*), and mice with a combination of both alleles (*Fbn1^{GT-8/H1D}*) were subjected to *in vivo* cardiac ultrasound analysis. *Ex vivo* phase-contrast synchrotron X-ray imaging of the entire excised thoracic aorta was performed at the Paul Scherrer Institute.

Results: While $Fbn1^{GT-8/+}$ and $Fbn1^{H1D/+}$ mice had a normal life span, $Fbn1^{GT-8/H1D}$ mice showed increased mortality due to aortic rupture starting at 4-5 months of age. The Sinuses of Valsalva was dilated both in $Fbn1^{GT-8/+}$ and $Fbn1^{GT-8/H1D}$ mice at 6 months of age, but not in $Fbn1^{H1D/+}$ mice. Significant elastic lamellae fragmentation was observed in the thoracic aortic wall of $Fbn1^{GT-8/+}$ mice, and to a larger extent in $Fbn1^{GT-8/+}$ mice. Surprisingly, localized elastin fragmentation was also found in the ascending thoracic aorta of $Fbn1^{H1D/+}$ mice despite a lack of aneurysm development.

Conclusions: Our data indicate that loss of LTBP binding to fibrillin-1 leads to the development of localized microdissections in the absence of aortic aneurysm, and exacerbates the aortic wall morphology in mice with truncated fibrillin-1. We therefore hypothesize that local TGF-beta sequestration is required to maintain aortic homeostasis.