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Abstract 

The plant kingdom represents the biggest source of feedstock, food and added-value compounds. 

Engineering plant metabolic pathways to increase the phytochemical production or improve the 

nutraceutical value of crops is challenging because of the intricate interaction networks that link 

multiple genes, enzymatic steps and metabolites, even when pathways are fully elucidated. The 

development of clustered regularly interspaced short palindromic repeats–CRISPR associated (CRISPR–

Cas) technologies has helped to overcome limitations in metabolic engineering, providing efficient and 

versatile tools for multigene editing. CRISPR approaches in plants were shown to have a remarkable 

efficiency in genome editing of different species to improve agronomic and metabolic traits. Here, we 

give an overview of the different achievements and perspectives of CRISPR technology in plant 

metabolic engineering. 
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Clustered regularly interspaced short palindromic repeats–Cas-mediated editing of coding 

sequences  

Clustered regularly interspaced short palindromic repeats–CRISPR associated (CRISPR–Cas) is 

revolutionizing the (biotech) world and new discoveries are constantly pushing the boundaries of its 

application. Nevertheless so far the most widely adopted technique to efficiently modify protein-

encoding genes has been the Cas9-targeted induction of loss-of-function mutations by exploiting the 

error-prone nonhomologous end-joining DNA repair pathway. Numerous are the successful examples 

of biofortified crops with an enhanced nutraceutical value or superior content of specialized 

metabolites [1-4], showing that targeted gene disruption allows to impart qualitative/quantitative 

changes in proteins, carbohydrates, fatty acids, volatiles and pigment composition. This could be 

achieved by streamlining metabolic fluxes [5,6], reducing competition for substrates [5,7] and relieving 

pathways from negative regulators [8,9].  

One of the most desirable applications is the induction of homology-directed repair (HDR) mechanisms 

to precisely excise parts of DNA and replace them with DNA from a donor template. Some technical 

aspects of genetic transformation (e.g. cotransfection of large nucleases and the abundance of DNA 

donor template) that previously hampered the large-scale exploitation of HDR in plants, have been 

overcome by the application of different Cas proteins and DNA delivery systems. For instance, the 

combination of Cas12a with highly replicating small-sized geminiviral replicon systems as DNA 

template carrier was reported to greatly enhance HDR in tomato [10]. Similarly, to circumvent the low 

efficiency of HDR to engineer protein-encoding sequences by point mutations, a catalytically inactive 

Cas9 protein, named “dead” Cas9 (dCas9) has been linked to a base deaminase, enabling dCas9 to still 

bind DNA without cutting it, while the deaminase induces C to T or A to G transitions [11,12]. Though 

no examples have been described so far for metabolic engineering, this strategy was used in tomato 

to create a salt-tolerant allele of the high‐affinity K+ transporter1 by single amino acid substitution [10] 

or to confer herbicide-resistance in potato by point mutation of the ACETOLACTATE SYNTHASE1 gene 

[13].  

Differently from HDR, which requires precise in-frame substitutions, CRISPR-based targeted knock-in 

[14] offers more flexibility for de novo insertion of complex traits or cassettes thanks to the possibility 
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to exploit intergenic regions, thus avoiding possible adverse effects linked to random T-DNA insertions 

[15]. By using biolistics, an optimized CRISPR–Cas9-based method was successfully applied to rapidly 

obtain a “new” golden rice by introducing a 5.2-kb carotenogenesis cassette into selected safe harbor 

regions that would ensure genome integrity, high transcription and thus the production of β-carotene 

in rice endosperm [16].  

CRISPR-mediated base editing can be particularly useful for those enzyme families for which the link 

between active sites and substrates/products have been already elucidated so that point mutations 

could increase enzyme kinetics or specificity towards specific substrates/products, or relieve intrinsic 

regulatory mechanisms such as feed-back and feed-forward inhibition of enzyme activity. For instance, 

the S728F mutation of the ß-amyrin synthase SAD1, an oxidosqualene cyclase that commits linear 

sterols to the production of pentacyclic triterpene in Avena strigosa, was demonstrated to be sufficient 

to modify its substrate affinity from oxidosqualene to dioxidosqualene, abolishing the production of 

pentacyclic (ß-amyrin type) triterpenes and leading to the accumulation of tetracyclic (dammarane 

type) products [7]. Similar results were also obtained in Arabidopsis thaliana (Arabidopsis) and other 

plant species where point mutations on key residues of oxidosqualene cyclases could expand or narrow 

down the product diversity [7,17-19]. The impact of point mutations clearly goes beyond enzymes and 

triterpenes. Studies on trait segregation in melon revealed that a single nucleotide polymorphism in a 

highly conserved residue  of the ORANGE (CmOr) gene is responsible for ß-carotene accumulation in 

the flesh of the fruit and it is linked with orange and white/green fruit phenotypes [20]. 

Characterization of BoOR, the cauliflower ortholog, demonstrated its involvement in controlling the 

stability and turnover of phytoene synthase, a rate-limiting enzyme of carotenoid biosynthesis [21]. 

Overall, these examples demonstrate that protein characterization combined with targeted editing 

empowers our capacities to diversify the nature of precursors and products of biosynthetic pathways 

to produce novel and diverse compounds and, eventually superior plant traits. 

 

Clustered regularly interspaced short palindromic repeats-based editing of cis-regulatory elements 

The main goal of engineering the regulation of metabolic pathways is to fine-tune the expression of 

different enzymes to optimize metabolic fluxes or the accumulation of toxic intermediates [22]. In 

plants, mutations in cis-regulatory elements or 5’ untranslated regions (UTRs) can severely affect gene 

expression patterns, hence possibly generating new variations of phenotypic and metabolic traits 

[23,24]. CRISPR–Cas-based approaches were successfully employed in tomato to edit promoters of 

genes related with fruit size and ascorbic acid biosynthesis, obtaining improved tomatoes with bigger 

fruits, higher ascorbic acid levels and thus antioxidant properties [25].A remarkable accumulation of 
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vitamin C in lettuce was achieved through editing of the 5’UTR of the GDP-L-GALACTOSE 

PHOSPHORYLASE (LsGGP2) gene [26], increasing its tolerance to oxidative stress. In rice, editing of the 

promoter and 5’UTR of the WAXY (Wx) gene, encoding an enzyme controlling the biosynthesis of 

amylose in endosperm, enabled producing new rice variants with a reduced starch content and 

improved grain quality [27].  

The control of gene expression can also be reached without altering DNA sequences. For instance, 

modified dCas proteins can be used to positively or negatively modulate the expression levels of target 

genes depending on the effector domain fused to the dCas protein, with either an activating (CRISPRa) 

or inhibiting (CRISPRi) activity, respectively [28]. Accordingly, a new generation of CRISPR/dCas9 tools 

was developed through optimization of domain recruitment (Figure 1A). Studies in several plant 

species, such as in Arabidopsis, Nicotiana benthamiana, rice and wheat, revealed that these new 

strategies improved the activation rates without compromising target specificity [29-32]. More 

recently, the CRISPR-Act3.0 system [33] was presented as the latest, highly efficient, Cas9-based 

targeted transcriptional activator that maximizes the recruitment of activation domains without the 

need to recognize the protospacer adjacent motif (PAM) (Figure 1A), hence combining enhanced 

transcription with increased flexibility of  target site selection. 

These new CRISPR-based transcriptional regulators represent a versatile toolkit for metabolic 

engineering. Their potential was already tested in Arabidopsis to increase the expression of 

PRODUCTION OF ANTHOCYANIN PIGMENT1, a transcription factor controlling anthocyanin production 

[29], and in rice to simultaneously activate multiple genes involved in proanthocyanin and β-carotene 

biosynthesis [33]. Concomitant targeted activation of multiple genes was also attained in N. 

benthamiana, employing a second-generation, optimized CRISPRa system named dCasEV2.1 [34]. In 

this study, the metabolic flux through the flavonoid pathway was efficiently tailored by selectively 

activating four different combinations of multiple enzymes, leading to custom-made accumulation of 

flavonol or flavanone compounds. This work, together with others focusing on alkaloid or 

phenylpropanoid biosynthesis [35,36], demonstrates how complex biosynthetic pathways can be 

modulated to tailor metabolic fluxes and as such the abundance of desired metabolites. Differently 

from classical approaches that involve overexpression of transcription factors [37], CRISPR systems 

allow precise and selective transcriptional regulation of multiple targets (Figure 1B). Lastly, another 

method allowing the fine control of recombinant metabolic pathways relies on the assembly of specific 

synthetic promoters containing prefixed DNA sequences that are recognized by the CRISPR-based 

transcriptional machinery [38,39]. This strategy can be used to balance the production of each enzyme 

of a particular pathway, avoiding possible toxic intermediates, and maximizing its productivity (Figure 
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2). Currently, a collection of synthetic promoters inducible by CRISPR has been made available [38,39], 

offering a chance to optimize expression of recombinant pathways in plants. 

 

Clustered regularly interspaced short palindromic repeats–deadCas9 for epigenetics 

Large-scale transcriptome and epigenome studies have opened new perspectives for the 

implementation of CRISPR technologies to modulate gene expression by tweaking epigenetic 

regulation [40]. Epigenetic regulation results from DNA and histone modifications, such as DNA 

methylation and acetylation of lysine residues in histones, which influence gene expression by 

modulating chromatin compactness and thus DNA accessibility by the transcriptional machinery. In 

this context, CRISPR–dCas9 fused to the catalytic domain of chromatin-remodeling enzymes can alter 

DNA and histone modifications at specific locations guided by the gRNA [41]. 

CRISPR–dCas9 epigenetics has been applied to alter flowering time [31] and to improve drought stress 

tolerance [42] of Arabidopsis. Although no examples have yet been reported for plant metabolic 

engineering, this strategy has great potential, because metabolic pathways, such as those of 

anthocyanins in apple [43], indole compounds in tea [44] or chalcone in tomato [45], are frequently 

under epigenetic control. Epigenetic marks can specify cell, tissue or organ identity by switching on/off 

specific sets of genes. This applies also to metabolic regulons that are frequently expressed by specific 

plant cell types or tissues, because the pleiotropic, constitutive production of bioactive metabolites 

might cause toxic or detrimental effects to the plant’s fitness [46]. CRISPR–dCas9 technologies could 

be used for targeted modification of the epigenetic landscape, offering great benefits to increase 

metabolite production as compared with conventional strategies such as hormonal elicitation or 

overexpression of genes encoding  enzymes or transcriptional regulators. For example, saponins in 

quinoa are ubiquitously produced in all parts of the plant as defense compounds [47]. Especially seeds, 

which are consumed as food and feed, contain high levels of these toxic compounds. To extract or 

eliminate these compounds, several labor-intensive industrial processes need to be used [47]. CRISPR–

dCas9 epigenetics could be used to alter saponin production in a tissue-specific manner, for instance 

by silencing it in seeds, streamlining processing for food production, while retaining saponin 

accumulation in aerial parts to safeguard adequate defense responses. Moreover, these technologies 

can be used to restrain the increasing DNA methylation levels typical of in vitro-maintained plant cell 

cultures, allowing stable and sustainable production of valuable natural compounds over multiple 

generations [48].  

It is important to note that the need to cope with a potential substantial level of off-targeting and 

native epigenetic regulation constitutes hurdles when using these technologies [31]. Many 
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developmental processes are under epigenetic control and altering the epigenetic landscape, even 

though specifically, may cause pleiotropic effects. Moreover, the endogenous epigenetic machinery 

might reverse targeted modifications. This should all be well-considered when designing CRISPR–dCas9 

constructs for epigenetic regulation. 

 

Future perspectives 

In this review, we presented how CRISPR–Cas tools have amazing applications and potential for plant 

metabolic engineering. In addition to what has been achieved so far, many tools are still being 

developed and tested in plants to enhance the precision and complexity of CRISPR outputs.  

To reach maximum performance of plants as production platform for natural compounds, complex 

regulatory systems need to be modified to increase the metabolite flux, while minimizing growth 

defects and maintaining the response to dynamic environments [49]. To cope with this, conditional 

dCas9–gRNA constructs in combination with genetic circuits [50], anti-CRISPR molecules [51] or the 

use of miRNA-regulated gRNAs [52] represent the tools at the forefront to reach fine-tuned, 

controllable outputs. Recently, biosensor-based technologies, such as copper- or light-inducible 

CRISPR systems [53,54], were shown to have the potential to combine inducibility, optogenetics and 

CRISPR to redirect the metabolic flux from primary to specialized metabolism. Examples from 

microbiology can be inspiring to aim at conditional CRISPR systems, in which metabolite-sensing 

responsive elements are exploited to trigger heterologous biosynthetic pathways only when cells reach 

a specific nutritional status. Moreover, new technologies and insights into the protein–metabolite 

interactome [55] will likely allow the identification of new metabolite-interacting domains that could 

be exploited for the production of chimeric metabolite-sensing Cas variants that would become active 

only upon sensing of a specific metabolite. 

Another frontier of plant engineering is the development of T-DNA-free delivery methods, not only to 

minimize off-target effects but also to circumvent the tight regulatory framework for transgenic 

organisms. Viral delivery systems with a high cargo capacity [56], as well as ribonucleoprotein 

complexes of nucleases delivered via particle bombardment or other means [57-59], are valuable tools 

here. Likewise, protoplast transfection for CRISPR–Cas9 vector delivery has been implemented to 

engineer bitterness metabolite levels in transgene-free Cichorium intybus [59]. 

Biofortified crops are emerging as a means to counter global malnutrition, especially in those areas 

where people have limited access to a nutritious and diverse diet [60]. CRISPR–Cas9 technology was 

used to insert or boost carotenoid pathways in agronomically relevant crops to combat vitamin A 
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deficiency [16,61] and to prevent enzymatic browning linked to phenolic oxidation [57] of fruits and 

vegetables, thus extending shelf life [62] and reducing food waste. In essence, CRISPR–Cas has made 

plant genome editing affordable to virtually any molecular biology lab and it could empower scientists 

and institutions to adapt local plant varieties to the needs of specific agricultural and economical 

settings [63]. 

In conclusion, the CRISPR toolkit is continuously expanding together with our knowledge about the 

molecular mechanisms, actors and networks steering plant metabolism. This, together with powerful 

deep learning systems, such as AlphaFold [64], may give scientists a chance to predict a priori the 

metabolic outcome(s) of specific mutations. New CRISPR tools and metabolic knowledge may lead to 

a new green revolution, in which not only yield is safeguarded but also sustainability, resilience and 

nutritional quality of agricultural products. 
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Figure 1. CRISPR-based strategies for pathway regulation applied for plant metabolic engineering. 

A) Schematization of CRISPR-based regulatory complexes. I) Cas9-mediated knockout (KO). RNA 

guided Cas9 nuclease is used to target double-strand breaks (DSBs) that frequently result in gene 

disruption. II) CRISPRi with the direct fusion of a repressive domain to the C-terminus of dCas12a. This 
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strategy exploits the use of a catalytically inactive Cas protein that is driven to the target location by a 

gRNA and instead of inducing DSBs cause repression of transcription of the target gene. III) dCas9-TV 

for transcriptional activation (CRISPRa), here consisting of six copies of the TAL activation domain fused 

in tandem to eight copies of the VP16 (Viral Protein 16) activation domain [32]. This system allows 

strong transcriptional activation of single/multiple target genes in both plants and mammalian 

systems. IV) dCas9-Suntag for transcriptional activation or epigenetic regulation [65]. This strategy 

consists of adding a multiepitope tail to the C-terminus of dCas9, which is recognized by a single-chain 

antibody fused to a transcriptional activation or an epigenetic regulation domain causing upregulation 

or DNA methylation at target sites, respectively. V) dCasEV2.1 for transcriptional activation [34]. This 

system employs a modified gRNA scaffold (gRNA2.1) that includes two RNA aptamers at the 3’ end of 

the scaffold, which are recognized by the coat protein of the phage MS2 (MCP) fused to the VPR (VP65, 

P65 and Rta) activation domain. This strategy also includes a direct fusion of the plant activator domain 

EDLL at the C-terminus. VI) CRISPR-Act3.0 for gene activation [33]. This strategy employs a modified 

gRNA scaffold that includes two RNA aptamers inside the scaffold loops which are recognized by MCP. 

The MCP is fused to the multi-epitope tail, which is recognized by a single-chain antibody fused to 

VP64, the latter being a transcriptional activator composed of four copies of VP16. B) Schematic 

representation of a hypothetic metabolic pathway to depict how the different CRISPR-based strategies 

can steer the metabolic flux and impact the final accumulation of pigment (depicted as a colored leaf). 

Circles represent different genes (GX) controlling different metabolic steps of the pathway; the green 

or red colors indicate whether they are activated or repressed, respectively. The metabolites that 

accumulate predominantly are highlighted in bold. I) Wild-type (WT) state of the pathway, the 

products are metabolites 2 and 3. II) Upregulation of genes G3, G4 and G5 by transcription factors, 

leading to the accumulation of metabolites 4, 5 and 6. III) Targeted CRISPR knockout/CRISPRi of 

gene G2, causing accumulation of metabolite 2. IV) Targeted activation/CRISPRa of genes G3 and G5 

that would steer the metabolic flux towards the production of metabolites 4 and 6. V) CRISPRa 

combined with CRISPRi for simultaneous activation of genes G3 and G5 and repression of gene G2, 

causing accumulation of metabolite 4. 
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Figure 2. Two possible synthetic metabolic pathways. A) Conventional overexpression strategy for 

the enhanced production of a target metabolite, employing strong promoters with equal 

transcriptional activity driving the expression of each enzyme involved in the pathway. B) CRISPR-

based approach to balance the recombinant production in a synthetic pathway, employing a collection 

of CRISPR-inducible artificial promoters with different transcriptional strengths that optimally regulate 

the expression of the different enzymes involved in the pathway, thus minimizing inefficient 

accumulation of precursors and maximizing product accumulation. Metabolites are depicted as circles 

of different colors, while the size of arrows represents the strength of expression for each of the  

different enzymes. 

 


