
Map Matching and Lane Detection Based on
Markovian Behavior, GIS, and IMU Data

Jens Trogh, Dick Botteldooren, Bert De Coensel, Luc Martens, Wout Joseph, and David Plets
Department of Information Technology, Ghent University - IMEC, Belgium, jens.trogh@ugent.be

Abstract—This paper presents a fast, memory-efficient, and
worldwide map matching algorithm based on raw geographic
coordinates and enriched open map data with support for
trajectories on foot, by bike, and motorized vehicles. The pro-
posed algorithm combines the Markovian behavior and the
shortest path aspect while taking into account the type and
direction of all road segments, information about one-way traffic,
maximum allowed speed per road segment, and driving behavior.
Furthermore, a self-adapting lane detection algorithm based
solely on accelerometer readings is added on top of the map
matching algorithm. An experimental validation consisting of 30
trajectories on foot, by bike, and by car, showed the efficiency and
accuracy of the proposed algorithms, with an average F1-score
and median error of 99.5% and 1.89 m for the map matching
algorithm and an average F1-score of 86.7% for the lane detection
algorithm, which resulted in the correctly estimated lane 93.0% of
the time. Moreover, the proposed technique outperforms existing
state of the art techniques with accuracy improvements up to
45.2%.

Index Terms—Map Matching, Lane Detection, GPS, Ac-
celerometer, Sensor, Data Fusion

I. INTRODUCTION

Map matching is the problem of how to link recorded
geographic coordinates to a road network of the real world,
which is usually represented by a geographic information
system (GIS). A typical example of map matching is to
determine the trajectory of a moving object based on GPS data
due to the nearly ubiquitous availability of the GPS signal [1].
The moving object can be a vehicle, cyclist, or runner, and
the input GPS signals can be augmented with the data of an
inertial measurement unit (IMU) to improve the accuracy or to
lower the GPS update frequency and hence reduce the power
consumption [2]. Other applications of map matching are,
e.g., satellite navigation, freight tracking, activity recognition,
road usage patterns, intelligent transportation systems (ITS),
or urban traffic modeling. An example of the latter is the
detection of problematic traffic points to optimize traffic flow
in a city or to build statistical models of traffic delays that can
be used to give suggestions to avoid traffic jams by finding
the time-optimal driving route.

Map matching algorithms can be divided in real-time
(online) and non-time critical (offline) algorithms. Real-time
systems map the location to a road network during the
recording process, whereas offline techniques are used to map
geographic coordinates to a road network after all data has
been recorded, which generally results in a better accuracy at
the cost of a delay.

The most basic approach is to map each geographic input
coordinate to the nearest point on the road network (snap-to-
road), but due to measurement noise this can easily result in a
wrong reconstruction. The noise in GPS data is usually caused
by the urban canyon effect, tunnels, or terrestrial features
that affect the GPS signal, e.g., hills, forests, or valleys.
Figure 1 shows an example of the typical problem with a
basic nearest neighbor algorithm that maps the GPS point
to the closest grid point on a road network, resulting in an
unrealistic and physically impossible trajectory. Note that due
to the urban canyon effect, the error between the raw GPS
points and ground truth trajectory is up to 53 m in this real-
world example.

0 50 100 150 m

GPS data
Snapped to road
Ground truth
Road network

Figure 1: Map matching problem: nearest grid point

This basic approach is known as point-to-point mapping if
the road network is discretized in a grid [3]. Note that it is
called point-to-curve mapping if the road network is repre-
sented by a continuous set of lines. A disadvantage of these
techniques is that historical data is not taken into account.
Curve-to-curve map matching is a geographic approach that
uses a sequence of input coordinates to form a smoothed curve
that is matched to a road segment with a similar geometry [4]–
[6]. Disadvantages are its sensitivity to measurement noise
and the sampling rate, e.g., if only once every minute a GPS
sample is available to limit the power consumption in devices
with limited battery capacity, then the curve based on the
input coordinates can highly deviate from the real trajectory
unless a user is driving on a straight road segment. Another
problem is shown in Figure 2, the reconstruction is physically
possible but the ground truth trajectory is more likely from

1

a typical driver’s point of view. However, the reconstructed
trajectory can be the most likely in a map matching algorithm,
e.g., if the objective is to minimize the Euclidean distance
between the geographic input coordinates and the mapped
trajectory. Merely minimizing a distance-based metric can
result in unnecessary loops, U-turns, and overall weird driving
behavior.

0 50 100 150 m

GPS data
Reconstruction
Ground truth
Road network

Figure 2: Map matching problem: minimizing a distance-based
metric

The map matched geographic coordinates can be enriched
with driving lane information if additional data is available,
e.g., monocular or stereo vision [7], [8], LIDAR (light de-
tection and ranging) [9], or data from an IMU [10]. This is
useful for accurate road surface monitoring or to obtain lane-
specific statistical models about driving behavior. Note that
the IMU data also allows estimating human drivers’ behavior,
e.g., speeding, swerving, hard braking, or maneuvers, which
is useful for, e.g., insurance companies, mobility operators, or
to prevent potential car accidents [11], [12]. Furthermore, the
map matching is the first step in a lane detection algorithm,
since the type of road, number of available lanes, and passage
of highway ramps are necessary for techniques that are not
based on vision.

The remainder of this work is structured as follows, Sec-
tion II describes related work of map matching and lane
detection techniques. Section III discusses the grid, road seg-
ments, and proposed map matching algorithm and Section IV
introduces the proposed lane detection technique. Section V
describes the evaluation trajectories and performance metrics,
and discusses the results of the simulations and experimental
validation. Finally, in Section VI, conclusions are provided.

II. RELATED WORK

A. Map matching

Advanced map matching algorithms are often based on the
Hidden Markov Model (HMM) [1], [13], [14]. These systems
can model the road infrastructure and take into account mea-
surement noise and many different path hypotheses simulta-
neously. A prerequisite for HMMs is to model the observation
and transition probabilities, i.e., to select candidate roads for

the GPS observations. An HMM-based map matching solution
that uses a route choice model estimated from real-world
drive data to evaluate the paths generated by the HMM is
presented in [14]. The route choice model is based on the
concept of drivers’ route and is used to avoid unreasonable
paths generated by HMMs for highly noisy geographic data.
The path-related parameters for this model are estimated based
on a 1000 drives.

A conditional random field (CRF) is a type of undirected
graphical model that is used to encode known relationships
between observations, e.g., to segment and label sequential
data [15]. In [16], a CRF is used to map match GPS trajectories
at a low sample rate based on floating car data (FCD) with
GPS trajectories of 70 taxis from one day. The dataset is split
in training and test data (ratio 7:3) to select features, fine-tune
hyper parameters, and evaluate the approach. A disadvantage
of these data-driven techniques is that they depend on the
quantity and quality of available historical data to improve
the map mapping accuracy and hence will fail if parts of
the input trajectory are not present in the dataset. A multi-
track technique that simultaneously matches a collection of
trajectories to a map is presented in [17]. This multi-track map
matching is based on the observation that human drivers show
a high degree of temporal and spatial regularity [18]. They
exploit the regular structure in a large set of GPS traces by
enforcing a set of partially overlapping trajectories to coincide
their mapped paths in the intersection regions.

The basic assumption underlying HMM-based map match-
ing algorithms is that the true mobility is Markovian [19].
However, in [20], it is argued that mobility is non-Markovian
based on the Chapman-Kolmogorov equation [21] and a
dataset with thousands of real taxicab rides spanning several
weeks. The results show that there is a strong connection be-
tween the shortest path and the real trajectory traversed by the
moving objects. Their proposed technique relies exclusively on
shortest path computations and could achieve an improvement
of 20% in accuracy over HMM-based approaches but this is
largely due to the nature of the dataset, i.e., the moving objects
(taxicabs) have intent to reach a specific destination in a timely
manner, which is inherently suited for shortest path algorithms.

Furthermore, most map matching algorithms are evaluated
by calculating the overlap between the ground truth path
and the estimated path. This means that even if both paths
completely overlap, the exact time at which a vehicle is at each
road segment can be unknown or differ due to traffic delays,
different road speed limits, unpredictabilities, or randomness
in the driver behavior. This is disadvantageous for applications
that need the exact location on the road network at each
time instance, e.g., autonomous driving, precise registration
of telematics data [22], pothole identification [23], or lane
detection [10].

B. Lane detection

The problem of lane detection is usually tackled with vision-
based techniques. These vision-based lane detection algo-
rithms are categorized into feature-based and model-based.
A feature-based algorithm uses low-level features, e.g., the

2

solid or dashed painted lines on public roads, and image
segmentation [24], deep learning [24], [25], or sensor fu-
sion [26] to detect the lanes. A model-based approach uses
a few parameters to represent the lanes, e.g., straight lines
or parabolic curves, these parameters can be estimated by a
Hough transformation [27], [28] or a likelihood function [29],
[30]. A lane-detection method that extracts the lane marks
based on color information in traffic scenes with moving
vehicles is presented in [31]. Typical difficulties of vision-
based lane detection algorithms are the large diversity in color
and width of lane markings, image clarity, e.g., due to nearby
vehicles, headlight glare, low sun angles, strong reflections, or
faded lane markings, and the illumination problem at night or
in bad weather, e.g., due to haze, fog, or rain [32], [33].

A possible solution is to use inertial sensor data to facilitate
lane detection in all conditions. Note that these inertial sensors
are also useful to detect potholes or to derive driving behavior
statistics. A probabilistic lane estimation algorithm that uses an
unsupervised crowdsourcing approach to learn the position and
lane-span distribution of the different lane-level anchors based
on accelerometer, gyroscope, and magnetometer, is presented
in [34]. The lane anchors are based on empirical assumptions,
e.g., vehicle stops occur on the right most lane, U-turns occur
on the left lane, and potholes typically span only one lane. A
GNSS/INS integration system, i.e., global navigation satellite
system / inertial navigation system, that utilizes ray tracing
and a 3D building map to rectify ranging errors caused by
multipath or non line-of-sight (NLoS) scenarios is presented
in [35]. Experiments in an urban canyon demonstrated half-
lane width errors 60% of the time. A lane-level positioning
system based on crowdsourced location estimates of roadway
landmarks and vehicular sensors is presented in [36]. The po-
sition estimates of other cars at these landmarks are combined
with odometry and bearing information from the vehicular
sensors in a sequential Monte Carlo (SMC) method.

C. Contributions
In this work, a method is proposed that combines the

Markovian behavior and the shortest path aspect while taking
into account the road speed limits and driving behavior. The
proposed technique is a fast, memory-efficient, and worldwide
map matching algorithm based on geographic coordinates and
open map data, with support for lane detection that self-
adapts to the driving behavior. Usually map matching is aimed
solely at car rides [16] but this algorithm is compatible with
walks, bikes, and car rides, and is evaluated on real GPS
data for a varying levels of measurement noise and temporal
sparsity, based on precision, recall, and location accuracy on
a per point basis instead of merely the overlap between the
ground truth and estimated path. The total validation dataset
is 17.4 hours, covers 423 km, consists of 58k GPS points,
and 402k accelerometer samples. Furthermore, neither the map
matching technique nor the lane detection algorithm depend
on large training sets [16], [17] or crowdsourced measurement
campaigns [34], [36]. The proposed techniques are offline
algorithms, i.e., the geographic coordinates are mapped to a
road network and the driving lanes are assigned after all data
has been recorded.

III. MAP MATCHING

The goal of the proposed map matching algorithm is to
output a continuous trajectory, i.e., connected road segments,
based on timestamped geographic data as input.

A. Grid and road segments

The road segments are based on publicly available Open-
StreetMap data, consisting of line segments enriched with
metadata about the type of road, e.g., sidewalk, bike path, or
highway, information about one-way traffic, relative layering,
street name, number of driving lanes, and maximum allowed
speed. Note that a default value is used when the maximum
speed for a line segment is unknown or invalid, e.g., 120 km/h
for highways, 90 km/h for primary roads, 70 km/h for sec-
ondary roads, and 50 km/h for all other road types. In our
approach the number of driving lanes is assumed to be avail-
able through OpenStreetMap metadata but this information
can also be automatically extracted from crowdsourced GPS
data if it is distributed across multiple traffic lanes [37]–[39].
To take into account cars that are speeding causing location
estimations to lag behind, the allowed speed limit (for the
reconstructed trajectory) can be increased by, e.g., 20% for
each road segment. The straight line segments are further
divided into equal pieces, i.e., road segments, based on the
grid size. Note that line segments smaller than the grid size
also occur, e.g., at roundabouts, and are automatically included
without further separation. The begin and end points of all
road segments constitute the grid. For Belgium, this results in
13.4 million road segments and 12.2 million grid points for
a grid size of 10 m. Figure 3 shows a sample of these road
segments and grid points.

0 50 100 150 m

Figure 3: Grid and road segments based on OpenStreetMap
data and a grid size of 10 m.

Note that the outputted map matched locations are not
limited to the grid points but can lie anywhere on the road
segments because of the interpolation phase (discussed in
Section III-B). The grid and road segments are organized in
square area blocks of 10 km2 and calculated once based on
the Winkel tripel projection [40], which is also the standard
projection for world maps made by the National Geographic

3

determine next reachable positions

paths in memory (PIM)

initialization timestamped geographic data

mode of transportation

time elapsed since last update (∆t)

road infrastructure

calculate route deviation penalty

update costs based on
SGC, DC, and CC.

new endpoints

reconstruct entire trajectory
for all ts based on path

with lowest cost in memory

selected geographic coordinates (SGC)

timestamps (ts)

endpoints + associated costs

candidate positions +
visited road segments (RS)

direction changes (DC) + code changes (CC)

sort costs in ascending order

up
da

te
an

d
re

ta
in

m
os

t
lik

el
y

pa
th

s

Figure 4: Flow graph of the map matching algorithm. The
dashed lines are only executed at the end after all timestamped
geographic data are processed. SGC: selected geographic
coordinates, PIM: paths in memory, RS: road segments, DC:
direction changes, and CC: code changes.

Society [41], [42]. The OpenStreetMap data for the whole
world has a size of 40.6 GB (June, 2019) [43]. The map
matching starts with a scan of the geographic input data to
load only the necessary area blocks and reduce the required
memory. Furthermore, the proposed map matching algorithm
is online available through a web service [44].

B. Algorithm
1) General: The proposed map matching algorithm is

based on the Viterbi path, a technique related to hidden
Markov models [45], [46]. The algorithm’s input are raw
locations, e.g., unmatched GPS data, the time between two
location updates, the road network, and a variable maximum
speed per road segment. By processing all available data at
once, previous estimated locations can be corrected by future
measurements (similar to backward belief propagation [47]).
Naturally, this is only possible if the intended application
tolerates a certain delay. Figure 4 shows a flow graph of
the map matching algorithm, which ensures realistic and
physically possible paths.

2) Geographic data selection: The proposed map matching
algorithm starts with a selection of the geographic input coor-
dinates (initialization in Figure 4) based on a minimum update
distance and standing-still detection. This avoids the map
matching problem of Figure 2 as a result of the shortest path
effect between the selected points combined with a direction
and code change penalty. The geographic input coordinates,
that are not included in this selection, are map matched based
on interpolation (Section III-B3).

The minimum update distance is the required traveled dis-
tance, based on the raw input data, before the next geographic
coordinates are added to the selection. This is to establish a
smoothing effect in the map matching, e.g., in the extreme case
of only the begin and end point of a trajectory, the output is
the shortest path between these two points. Figure 5 shows an
example of the map matching based on all and a selection of
the geographic input coordinates with a grid size of 10 m.

GPS data
Seleced input coordinates
Output coordinates
Map matching
Road network

(a) All geographic coordinates used as input for the map matching

GPS data
Seleced input coordinates
Output coordinates
Map matching
Road network

(b) Selection of geographic input coordinates + interpolation

Figure 5: Geographic data selection.

The direction change penalty is the absolute sum of di-
rection changes along the visited road segments between the
estimations of two selected geographic coordinates, multiplied
by a weight (β). The code change penalty is the total amount
of road code changes along these visited road segments,
multiplied by a weight (γ). Note that the road code indicates
the type of road, e.g., highway, primary, secondary, or tertiary
roads, residential area, sidewalks, or bicycle path. This direc-
tion change penalty and code change penalty are introduced
to encourage the reconstructed trajectory to go straight on its
current road segment and to diminish the weird route effect
caused by noisy geographic data. For example, the unnecessary
detour in Figure 2 caused by solely minimizing a distance-
based metric can be avoided by adding a direction change
penalty and code change penalty. The first will penalize the
four additional turns that are used to get closer to the original
GPS data and the second will penalize the back and forth
switch between main road to footpath.

The default minimum update distance is 50 m, and the
default weights for the distance-based penalty (α), direction
change penalty (β), and code change penalty (γ) are 1 per
meter, 10 per turn of 90◦, and 10 per code change, respectively,
which results in a unitless cost. The explanation behind these
default values and the effect of these four parameters on the
map matching accuracy are discussed in Section V-C4. Note
that the default minimum update distance has no effect if
the sample rate of the geographic coordinates is low and the
tracked object is on the move, e.g., a car driving at a rate
of 120 km/h and a sample interval of 5 s already results
in 167 m per sample, and hence all geographic coordinates
will be selected, i.e., are used as input in the map matching

4

algorithm (SGC in Figure 4).
The interpolation between two selected geographic coordi-

nates results in significant location errors if the tracked person
or object is barely moving for a certain period between these
two coordinates. Therefore, a standing-still technique detects
the start and end of intervals where there is no movement, e.g.,
a car waiting at a red traffic light. It is labeled as standing-
still if the moving average of the raw GPS data is below a
threshold, e.g., 5 m with a window length of 5 samples. The
begin and end of these intervals are included in the selection
to ensure a correct interpolation.

3) Mapping and interpolation: The pseudo-code of the map
matching method is shown in Algorithm 1 and the variables
and steps are discussed in the text below.

After a selection of geographic coordinates is made based on
the minimum update distance and standing-still detection, the
mode of transportation (MoT) is estimated based on the 95th
percentile value of the reported driving speeds by the GPS with
standing-still periods filtered out (to avoid picking an outlier).
It is labeled as walking if it is below 10 km/h, as cycling if it
is between 10 km/h and 40 km/h, and otherwise as driving
a motorized vehicle. For our dataset, which encompassed
30 trajectories, this always resulted in the correct mode of
transportation. If it is labeled as on foot or by bike, the
highway road segments are discarded from the grid and if it is
labeled as by car the sidewalks and bicycle road segments are
discarded from the grid. Note that an incorrect label does not
always deteriorate the performance, e.g., a runner with a 95th
percentile value of 12 km/h would be labeled as a biker but this
has no influence on the performance; on the contrary, if he or
she would be labeled as walking, the reconstructed path would
lag behind the real trajectory. However, the reconstructed
trajectory of a car labeled as walking would avoid highways
but changes are small that the 95th percentile value would be
smaller than 10km/h for a trajectory on the highway.

The map matching algorithm is initialized with the first
geographic coordinate (GC) as current position (GC0), e.g., a
GPS data point. Then, a predefined number of other locations
(MP) are selected around this first position and their cost
is initialized to zero, e.g., the 1000 closest grid points to the
current position. This ensures that the map matching algorithm
can recover from initially noisy GPS data, e.g., 1000 grid
points and a grid size of 10 m resulted in covered surfaces
between 18 and 75 hectares in the experimental validation
of Section V (the exact area depends on the density of the
road network). The initialization forms the starting point of
all possible paths that are kept in the memory of the location
tracking algorithm (pathsInMem).

Next, for the subsequent geographic coordinate (GC), all
reachable positions (RGP) starting from the path’s current
last grid point (PGP : parent grid point) are determined for
all paths in memory by making use of the surrounding road
network, the time elapsed since last location update (∆t), the
mode of transportation (MoT), and OpenStreetMap metadata,
i.e., maximum speed, type of road, and one-way information.
These reachable positions, which are also grid points, are the
candidate positions for the next location update. The transi-
tions between grid points are limited by the road infrastructure.

Algorithm 1: Map matching technique.
Data: timestamped geographic data (TGD)
Result: map matched trajectory (MMT)

1 SGC ← selected geographic coordinates based on
update distance and standing-still detection

2 MoT ← (estimated) mode of transportation
3 GC0 ← first geographic coordinates
4 tprev ← first timestamp
5 MP ← 1000 // maximum paths in memory
6 pathsInMem← list with MP grid points closest to

GC0 initialized with cost 0
// iterate over all geographic

coordinates in SGC
7 for GC ∈ SGC do
8 t← current timestamp
9 ∆t← t− tprev

10 pathsTemp← empty list
11 for path ∈ pathsInMem do
12 cost← current cost of path
13 PGP ← current endpoint of path (parent grid

point)
14 RGP ← reachable grid points along roads with

MoT within time span ∆t starting from PGP
// calculate new path cost for

each candidate position (CP)
based on distance, direction,
and code change penalty

15 for CP ∈ RGP do
16 RS ← road segments between PGP and

CP
17 ED ← eucl dist(CP,GC)

// Euclidean distance
18 DC ← penalty due to direction changes

along RS
19 CC ← penalty due to code changes along

RS
20 pathnew ← path+RS + CP
21 costnew ← cost+α ·ED+β ·DC+γ ·CC
22 add (pathnew, costnew) to pathsTemp

23 pathsInMem← retain MP paths from
pathsTemp based on lowest cost

24 tprev ← t

25 MMT ← reconstruct trajectory along path with lowest
cost in pathsInMem for all timestamps t in TGD
based on interpolation

5

Each candidate position (CP) retains a link to the parent grid
point (PGP), a list with visited road segments RS, and a
cost that represents this new branch along the road network.
This new path (branch) and updated cost are added to the
temporary list (pathsTemp) as a tuple ((pathnew, costnew)).
The updated cost is a weighted sum of a distance (ED),
direction change (DC), and code change (CC) penalty. The
distance penalty is the Euclidean distance between CP and
GC, and the DC and CC penalty is calculated based on the
directions and codes of the visited road segments RS, i.e., a
physically possible path between CP and PGP .

Lastly, the MP paths with lowest cost are retained to
serve as input for the next iteration. After all timestamped
geographic data is processed, the entire trajectory of the path
with lowest cost in memory is reconstructed for all timestamps
in the geographic input data. The interpolation between the
selected geographic coordinates is based on the visited road
segments and a fixed or variable speed depending on the mode
of transportation, i.e., for walks and bike rides this is fixed
and for car rides this is the maximum road speed. The latter
increases the accuracy if the road speed limit changes between
two selected geographic coordinates, e.g., if once every minute
a GPS sample is available and the car drives 30 s on a 90 km/h
road and 30 s on a 30 km/h road, using regular interpolation
would map too many locations to the first road. Note that this
does not affect the precision, recall, or F1 score (Section V-B)
but solely the estimation accuracy in meter (Section V-C1).

IV. LANE DETECTION

The map matched GPS coordinates can be enriched with
information about the current driving lane, which is useful
to map potholes to their exact location or to derive driving
statistics per lane on a highway. The number of driving lanes
per road segment are included in the open map data and
are added as metadata to the road segment (Section III-A).
Figure 6 shows a detail of the number of available lanes per
road segment for an area surrounding a driveway exit.

0 250 500 750 m

#lanes
1
2
3
4

Figure 6: Available driving lanes per road segment based on
open map data.

A. Lane changes

The lane change detection algorithm is based on pattern
recognition with accelerometer data. Note that the sensor
coordinate system of the accelerometer must be transformed
to the car coordinate system if they are not aligned, e.g.,
based on inertial measurements or knowledge of the sensor
placement. In the experimental validation (Section V), the
sensor placement was known and the coordinate systems of
the accelerometer and car are equal (Figure 7), i.e., the x-axis
is aligned with the driving direction (longitudinal axis), the
y-axis is directed towards the left lane (lateral axis), and the
z-axis is aligned along the direction of gravity (vertical axis).

x

y

z

Figure 7: Alignment of sensor and car coordinate systems.

First, accelerometer values are low-pass filtered to reduce
the influence of random noise with a one-second time window,
which was found to be a good compromise between suppress-
ing noise and distinguishable patterns.

acc
lp,{x,y,z}
t =

1

W

W
2∑

i=−W
2

acc
{x,y,z}
t+i (1)

acc
{x,y,z}
t and acc

lp,{x,y,z}
t are the raw and low-pass filtered

accelerometer values for the x-, y-, and z-axis of sample t, and
W is the window size, e.g., for a sample rate of 100 Hz and
a one second time window W is equal to 100.

1) Peak detection: Figure 8 shows a sample of the raw
and low-pass filtered sensor values for the lateral axis with
indication of the begin (green square) and end (red circle) of
left and right lane changes for two trajectories with a different
car and driver (Section V-A).

It is clear from this real example that left and right lane
changes show unique and similar patterns on the lateral
acceleration and that the low-pass filtering is necessary to
distinguish these patterns. A lane change to the left starts with
a positive peak followed by a slightly lower negative peak
along the lateral axis, for a right lane change this is the other
way around. Figure 8a shows a sample of 100 s on the highway
with five lane changes to the left and three to the right. The
three peaks around the 210 s time mark in Figure 8b are due
to driving on a roundabout and taking the first exit. The small
negative and positive peaks before the 210 s time mark in
Figure 8b are caused by speed ramps and road bumps on a
tertiary road with one lane. Peaks are detected with following
formulas:

tpeakpos
=

{
t

∣∣∣∣ acclp,yt > acclp,yt+i , |acclp,yt | > δacc, |i| ≤ N
2 , i ̸= 0

}
(2)

6

320 340 360 380 400 420
time [s]

−0.2

−0.1

0.0

0.1

0.2

a
c
c
e

le
ro

m
e

te
r

[g
]

acc y raw acc lp y left right begin end

(a) Trajectory 1

180 200 220 240 260 280
time [s]

−0.2

−0.1

0.0

0.1

0.2

a
c
c
e

le
ro

m
e

te
r

[g
]

acc y raw acc lp y left right begin end

(b) Trajectory 2

Figure 8: Sample of raw and low-pass filtered sensor values
for the lateral axis of the accelerometer with indication of left
and right lane changes for both trajectories.

tpeakneg
=

{
t

∣∣∣∣ acclp,yt < acclp,yt+i , |acclp,yt | > δacc, |i| ≤ N
2 , i ̸= 0

}
(3)

tpeakpos
and tpeakneg

are the timestamps of all positive
and negative peaks, acclp,yt is the low-pass filtered lateral
accelerometer value of sample t (Equation 1), δacc is the noise
floor for peak detection and is set at 0.02 g, and N is the peak
detection window and is set at a value that matches an interval
of 2 s, e.g., 200 if the sample rate is 100 Hz. In the remainder
of this section, tpeakpos and tpeakneg are referred to as (positive
and negative) peaks.

Figure 9 shows a sample of the actual driving lane at each
road segment for both trajectories (the parts on the highway
are traveled in both ways).

Table I summarizes the mean (µ), standard deviation (σ),
75th percentile value, minimum, and maximum values of the
positive peaks (peakpos), negative peaks (peakneg), peak-to-
peak values, and time between two peaks associated with a
lane change (∆t), for both trajectories.

Note that the absolute values of the negative peaks are used
to simplify the comparison. Obviously, the driving style has
an influence on the lateral acceleration patterns. Higher peak-
to-peak values indicate fiercer lane changes, which can also
be deducted from the shorter lane change times ∆t for the
first trajectory. The lane changes in the second trajectory are
milder and slower, i.e., an average peak-to-peak and ∆t value

Driving lane
1
2
3
4
5
Road network

0 500 1000 1500 m

(a) Trajectory 1

Driving lane
1
2
3
4
Road network

0 500 1000 1500 m

(b) Trajectory 2

Figure 9: Sample of the actual driving lane at each road
segment for both trajectories.

Trajectory LC Type µ σ 75th Min Max

1 86

peakpos [g] 0.10 0.03 0.12 0.03 0.20
peakneg [g] 0.10 0.03 0.12 0.02 0.15
peak-to-peak [g] 0.20 0.04 0.21 0.11 0.35
∆t [s] 2.14 0.43 2.37 1.27 3.30

2 67

peakpos 0.06 0.02 0.07 0.02 0.10
peakneg 0.07 0.02 0.08 0.03 0.12
peak-to-peak 0.12 0.03 0.15 0.08 0.22
∆t [s] 2.93 0.87 3.21 1.48 4.87

Table I: Lane change peak statistics based on lateral ac-
celerometer data. LC: amount of lane changes.

of 0.12 g and 2.93 s vs. 0.20 g and 2.14 s for the first trajectory,
making them harder to detect because the patterns are less
distinct (Section V-D1). To cope with different driving styles,
a lane change detection algorithm based on a variable and
bounded threshold, is proposed.

2) Lane change detection: First, the peaks are filtered based
on the map matched data, i.e., all peaks that are detected
while only one lane is available are discarded, as these peaks
cannot be caused by a lane change but are due to, e.g., bad
road conditions or driving maneuvers. These peaks are filtered

7

again based on a lower (peakmin) and upper bound (peakmax)
threshold, i.e., all peaks outside these boundaries are discarded
as well because these are most likely due to turns, noise, or
small deviations within the driving lane. The remaining peaks
are visited chronologically and two peaks (a positive and a
negative peak for a left lane change and vice versa for a right
lane change), are paired and marked as a left or right lane
change if two conditions are met: their peak-to-peak value is
above a threshold (p2pmin) and the time between both peaks
(∆t) is below tmax. This tmax value is fixed at 5 s, which is
larger than the maximum duration of any lane change in the
experimental validation over a total of 153 lane changes (LC
in Table I).

The other threshold values (peakmin, peakmax, and
p2pmin) are estimated per trajectory based on the low-pass
filtered lateral accelerometer values on the road segments with
at least two lanes. To estimate these three threshold values
only straight road segments where the car was driving at least
50 km/h are taken into account to remove the influence of
left or right turns and traffic jams. The reason for this is
that the accelerometer values during turns and traffic jams
substantially deviate from normal driving behavior, which
would otherwise skew the threshold values. Note that these
selected road segments are used to estimate the threshold
values but afterwards all lateral accelerometer values on road
segments with at least two lanes, are processed. The negative
peaks that have a neighboring positive peak within tmax are
taken into account (and vice versa for the positive peaks). The
minimum and maximum absolute value of these selected peaks
are used as peakmin and peakmax, and the minimum peak-
to-peak value of these negative and positive peaks is taken as
p2pmin.

B. Driving lane allocation

After the detection of lane changes based on the lateral
accelerometer data, the driving lane can easily be updated by
adding one to the current driving lane if it is a lane change to
the left and subtracting one if it is to the right. Lane one is
used for the slow lane. The far left lane, i.e., fast lane, depends
on the number of available lanes and could be anywhere from
2 to 8. Note that in left-driving countries the fast lane is the far
right lane. Therefore, in the remainder of this section a right-
driving country is assumed to avoid confusion. Only the initial
driving lane is unknown and although it seems plausible to
start at lane one, this is not always the case because, e.g., after
a highway ramp a driver can go immediately to the second or
third lane without being noticed by the lane change detection
algorithm. Another source of errors are the addition of lanes on
the right, e.g., when two highways merge, the current driving
lane changes while the car was going straight.

The first problem is solved by accounting for a penalty for
each possible starting lane when a driver goes from a road
segment with one lane to a road segment with multiple lanes,
e.g., when passing a highway ramp or when going from a small
local road to a secondary road with two lanes. The penalties
are calculated based on all future lane changes until the next
road segment with only one lane. Each time an impossible

lane change occurs, i.e., a left lane change when driving on
the outside lane or a right lane change when driving on the first
lane, this penalty is increased by one. The starting lane with
the lowest penalty is taken as most likely initial lane. Note
that the detection of two lane changes at once, when a driver
is already on the highway, is possible by taking into account
the time between two peaks, e.g., flag as two lane changes if
it is between 4 and 6 seconds. However, in the experimental
data only one such case is present.

The second problem is solved by monitoring the number of
available lanes when the road segment changes, e.g., if this
number increases and a road is merged from the right side,
the current driving lane is increased by one otherwise it is left
unaltered. Note that for left-driving countries this is the other
way around.

V. EXPERIMENTAL VALIDATION

A. Trajectories

1) Map matching: The experimental validation encom-
passes 30 trajectories on foot, by bike, and by car. Table II
summarizes the total distance, total duration, average speed,
and number of GPS data points for all trajectories per mode
of transportation and environment.

MoT Environment #routes Distance [km] Duration [min] Speed [km/h] #GPS points

Walk Urban 8 30.95 5.57 5.56 17040
Rural 2 11.27 2.27 4.96 7325

Bike Urban 6 60.53 3.33 18.19 11654
Rural 4 25.47 1.20 21.19 4212

Car
Urban 4 107.22 2.43 44.16 8616
Rural 2 43.27 0.85 50.94 3049

Highway 4 144.24 1.75 82.26 6292
Total 30 422.95 17.40 82.95 58188

Table II: GPS dataset details per mode of transportation (MoT)
and environment.

The trajectories are recorded at a sample rate of 1 Hz with
a GPS logging application on a smartphone. The smartphone
was put in the dashboard holder for the car rides, which
were done by four different drivers, and carried in the pocket
for the trajectories on foot and by bike. The total dataset
is 17.4 hours, covers 423 km, consists of 58188 geographic
coordinates (GPS points). The total distance on foot, by bike,
and by car are 42 km, 86 km, and 295 km, respectively. The
total distance in urban and rural areas, and on the highway
are 199 km, 80 km, 144 km, respectively. The trajectories
pass through rural and urban areas, on primary and secondary
roads, sidewalks, bicycle paths, and highways. Note that the
environment has a strong influence on the performance of a
map matching algorithm, e.g., in rural areas the road network
is usually sparser, which reduces the chance to select a wrong
road segment and there are less tall buildings that can cause
additional noise on the GPS signals.

2) Lane detection: Accelerometer data (Analog Devices
ADXL345 [48]) is available for two car rides on the highway
with a lot of forced lane changes to have a sufficient amount
of data to validate the lane detection, i.e., around four and
two lane changes per minute. Note that these are the two
trajectories from Section IV-A (Figures 8 and 9). The driving
lane ground truth is manually annotated based on video

8

recordings from a dashcam. A script was written to facilitate
this process, i.e., a video can be watched at an adjustable speed
and is annotated by pushing the left or right button when the
car makes a left or right lane change. The driving lane details,
i.e., the number of lane changes (LC), the average lane changes
per minute where lane changes are possible (LCPM), total
duration, time spent in each driving lane, and accelerometer
samples, are summarized in Table III for the two car rides.

Trajectory LC LCPM Duration [min] Time per lane [min] #samples1-av 1 2 3 4

1 86 4.0 24.6 3.3 5.9 8.1 6.7 0.6 143229
2 67 2.1 43.4 11.3 18.5 10.3 3.0 0.2 258606

Table III: Driving lane details per trajectory based on dashcam
video recordings. LC: amount of lane changes, LCPM: average
number of lane changes per minute, 1-av: only one lane
available, and number of accelerometer samples.

B. Performance metrics

The quality of the map matching and lane detection algo-
rithm are each validated with two performance metrics. The
map matching algorithm is evaluated with the F1 score (also F-
score or F-measure) and the average error (Euclidean distance)
between the ground truth and estimated location. The F1 score
is the harmonic average of the precision and recall, where an
F1 score reaches its best value at 1 (perfect precision and
recall) and worst at 0. Broadly speaking, the precision, also
called positive predictive value, is the fraction of relevant
instances among the retrieved instances and the recall, also
known as sensitivity, is the fraction of relevant instances that
have been retrieved over the total amount of relevant instances.
Precision can be seen as a measure of exactness or quality,
whereas recall is a measure of completeness or quantity.

precision =
tp

tp+ fp
(4)

recall =
tp

tp+ fn
(5)

tp are the true positives or hits, fp are the false positives or
false alarm (Type I error: asserting something that is absent),
fn are the false negatives or misses (Type II error: failing to
assert what is present), and tn are the true negatives or correct
rejections but these are abundant to calculate the precision or
recall.

In the context of map matching, this results in following
formulas:

Fmm
1 = 2 · precisionmm · recallmm

precisionmm + recallmm
(6)

precisionmm =
Lcorr

Lmm
(7)

recallmm =
Lcorr

Lgt
(8)

The mm in Fmm
1 , precisionmm, and recallmm refers to map

matching so that it can be distinguished from the recall and

precision definition for the lane detection. Lgt is the length
of the ground truth trajectory, Lmm is the length of the map
matched trajectory, and Lcorr is the length of the (correct)
overlapping segments between the map matched and ground
truth trajectory. Most map matching algorithms use this metric
to evaluate the approach because it suffices for a broad range
of applications, e.g., road usage patterns or urban traffic
modeling.

The ground truth trajectories, i.e., continuous sequence of
road segments and individual locations on these segments,
are constructed based on the shortest path between manually
indicated points where the route did pass at certain timestamps.
Note that the trajectories were known beforehand and indica-
tion points are added as long as the constructed paths were
not completely correct. Figure 10 shows the raw GPS input
data with a sample rate of 1 Hz and the constructed ground
truth segments and locations.

0 25 50 75 m

GPS data
GPS error
Ground truth
Road network

Figure 10: Raw GPS input data with ground truth construction.

The individual timestamped locations are used to calculate
the average error of the map matched trajectories. This metric
is generally ignored but is important for applications that map
events or other sensor measurements to an exact location.

The performance of the lane detection is evaluated with the
F1 score based on the precision and recall in the classification
context.

F ld
1 = 2 · precisionld · recallld

precisionld + recallld
(9)

precisionld =
tpld

tpld + fpld
(10)

recallld =
tpld

tpld + fnld
(11)

The ld subscript refers to lane detection so that it can be
distinguished from the F1 score, recall and precision definition
for the map matching. tpld are the true positives, i.e., a left
or right lane change is correctly identified. fpld are the false
positives, e.g., a driver stays in his lane but the algorithm
detects a lane change due to a bump or maneuver. fnld are

9

the false negatives, i.e., failing to identify a left or right lane
change.

The second performance metric for the lane detection is
the amount of time the correct lane is estimated based on the
detected lane changes. Incorrectly predicted driving lanes are
further divided into 1-off and 2-off when the predicted lane is
one or two lanes off, i.e., the absolute difference between the
ground truth and detected lane (three lanes off did not occur
in our experimental validation).

C. Map matching accuracy

The accuracy of the map matching is evaluated as a function
of the sample interval, GPS noise, and three algorithm pa-
rameters: update distance, direction change, and code change
penalty.

1) GPS sample interval: Lowering the GPS sample rate
saves battery power and reduces the communication cost by
limiting the bandwidth usage but increases the computational
cost per location update as a larger area needs to be considered.
Note that since GPS devices need a lock on the available
satellites it is not possible to turn the device completely off
between samples because the startup time with a cold or
warm start is too high [49]. However, a rapid acquisition of
satellite signals is enabled in standby (hot) mode because the
receiver already has valid time, position, almanac (approxi-
mate information on all the other satellites), and ephemeris
data (detailed orbital information). The influence of the GPS
sample interval is mimicked by downsampling the input data,
i.e., discarding GPS samples to acquire the intended sample
rate, and each simulation was repeated ten times for averaging.
Figure 11 shows the Fmm

1 score and the median error between
the estimated and ground truth locations, averaged over all
simulations and trajectories per mode of transportation, as a
function of the sample interval.

1 2 5 10 20 30 60 120 180 300
sample interval [s]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(a) Fmm
1 score

1 2 5 10 20 30 60 120 180 300
sample interval [s]

0

2

4

6

8

10

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(b) Median error

Figure 11: Fmm
1 score and median error as a function of the

sample interval per mode of transportation.

As expected, the highest accuracy is obtained with the
highest sample rate, i.e., an Fmm

1 score and median error
of 99.6% and 1.82 m, 98.9% and 1.85 m, and 99.9% and
1.99 m, for the trajectories on foot, by bike, and by car,
respectively. Note that these are averaged over 30 trajectories
(10 trajectories per mode of transportation). This results in an
average Fmm

1 score and median error of 99.5% and 1.89 m.
Contrarily, increasing the sample interval results in lower
Fmm
1 scores and a larger median error. For the car rides,

the Fmm
1 score and median error are still 90.7% and 5.31 m

even if only once every 5 min a GPS sample is available.
Increasing the sample rate to once every minute, which can
still be considered as a power saving mode, improves the
average Fmm

1 scores and median errors: 93.7% and 5.46 m,
83.6% and 5.29 m, and 99.2% and 5.04 m, for the trajectories
on foot, by bike, and by car, respectively.

Although the median errors are similar for the three con-
sidered modes of transportation, the Fmm

1 score is higher for
the car rides because these have more restrictions on the road
segments than a walk and bike ride, e.g., the reconstruction
of a person on foot has access to all type of roads (except
highways) in both ways because one-way streets are usually
not applicable to pedestrians and a separate sidewalk is not
always included in the open street map data. A typical error
for the walks and bike rides is to select a parallel road that is
very close to the correct road, which has a small impact on
the location error but decreases the Fmm

1 score because the
trajectories do not overlap. Note that the median error is based
on the (downsampled) geographic input coordinates, e.g.,
once every 5 minute, which does not reveal much about the
exact location accuracy of the points along the reconstructed
trajectory (based on the timestamps). Figure 12 shows the
same plot but with interpolation, e.g., for a sample interval
of 5 min and interpolation at 1 Hz, the algorithm outputs all
road segments and 300 estimated locations with every update,
i.e., once every second instead of only one estimated location
and the road segments to get there.

1 2 5 10 20 30 60 120 180 300
sample interval [s]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(a) Fmm
1 score

1 2 5 10 20 30 60 120 180 300
sample interval [s]

0

25

50

75

100

125

150

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(b) Median error

Figure 12: Fmm
1 score and median error as a function of the

sample interval per mode of transportation with interpolation
at 1 Hz.

Naturally, the Fmm
1 score is exactly equal and the median

error is larger, e.g., with a sample interval of 1 min, the median
errors of all estimated locations during this minute are 4.94 m,
12.3 m, and 19.32 m, for the trajectories on foot, by bike, and
by car, respectively. Note that a car driving at 120 km/h travels
a distance of 2 km during a one minute interval. The location
error along the interpolated points starts to increase rather fast
for the bike and car rides if the sample rate is further decreased
because the traveling speed can be variable due to traffic lights,
road speed limits, or oncoming traffic. This is detrimental for
the interpolation, e.g., with a sample interval of 5 min there
is no way of knowing if a car is standing-still for a minute
or just driving slowly. The reason for the lower location error
of the trajectories on foot is because a walking speed is more
constant than a biking or driving speed due to accelerations
and slowing down.

10

2) OSRM comparison: The well-known Open Source Rout-
ing Machine (OSRM [50]) method is used to validate our
proposed map matching technique. Since OSRM does not
output continuous road segments but only separate coordi-
nates, only the average error (Euclidean distance between
the ground truth and estimated location) can be compared.
Table IV summarizes the median and 75th percentile value of
the average error per mode of transportation.

walk bike car
Algorithm 50th [m] 75th [m] 50th [m] 75th [m] 50th [m] 75th [m]

OSRM 2.36 6.37 1.95 5.48 2.36 4.53
Proposed 1.82 3.49 1.85 3.55 1.9 3.51

Improvement [%] 22.9 45.2 5.1 35.2 19.5 22.5

Table IV: Accuracy comparison of proposed technique with
OSRM per mode of transportation.

The proposed technique performs better than OSRM tech-
nique, with improvements up to 45.2% (averaged over the
10 walks). In absolute values, mainly the maximal errors are
reduced. An additional advantage of our approach is the ability
to interpolate along the road network, e.g., when only one
sample per minute is available, and that it outputs a realistic
trajectory, which is more robust against noisy input data
compared to the nearest road approach of OSRM (discussed
in Section V-C3).

3) GPS noise: The noise in GPS measurements can be
modeled as zero-mean Gaussian [51]. To assess the influence
of noise on the proposed map matching algorithm, geographic
input data is simulated by taking the ground truth locations
from Section V-A and adding Gaussian noise with a varying
standard deviation. In the remainder of this section, the stan-
dard deviation of the added Gaussian noise is referred to as
noise level. Figure 13 shows the Fmm

1 score and the median
error between the estimated and ground truth locations, as a
function of the added noise, for two sample intervals T (1 s
and 1 min).

Obviously, increasing the noise level results in lower Fmm
1

scores and a larger median error. The Fmm
1 scores and median

errors, for a sample interval of 1 s and noise levels of 2 m
and 20 m, start at 99.3% and 2.26 m, 98.2% and 2.22 m, and
100.0% and 2.33 m, and drop to 94.6% and 10.0 m, 91.0%
and 11.57 m, and 99.0% and 10.34 m, for the walks, bike
rides, and car routes, respectively.

Increasing the sample interval from once every second to
once every minute degrades the performance but has a limited
effect on the median error for low noise levels (Figure 13f).
The Fmm

1 score is shifted by an average value of 3.5% for
all noise levels. The average Fmm

1 scores and median errors
for a noise level of 10 m start at 95.9% and 10.56 m for a
sample interval of 1 s, and drop to 93.5% and 15.34 m for
a sample interval of 1 min, although the amount of available
data is reduced by a factor of 60.

For completeness, the accuracy of the OSRM technique
(Section V-C2) is added in the median error plots (Figures 13b,
Figures 13b and 13f). The proposed technique always outper-
forms OSRM, especially for higher noise levels with similar
relative improvements for both sample intervals, e.g., a median

0 1 2 5 10 20 50 100 200
GPS noise [m]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(a) Fmm
1 score, T: 1 s

0 1 2 5 10 20 50 100 200
GPS noise [m]

0

50

100

150

200

250

300

350

400

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

walk (osrm)

bike

bike (osrm)

car

car (osrm)

(b) Median error, T: 1 s

0 1 2 5 10 20 50 100 200
GPS noise [m]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(c) Fmm
1 score, T: 1 min

0 1 2 5 10 20 50 100 200
GPS noise [m]

0

250

500

750

1,000

1,250

1,500

1,750

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

walk (osrm)

bike

bike (osrm)

car

car (osrm)

(d) Median error, T: 1 min

0 1 2 5 10 20 50 100 200
GPS noise [m]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

1 s

1 min

(e) Fmm
1 score per sample interval

0 1 2 5 10 20 50 100 200
GPS noise [m]

0

100

200

300

400

500

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

1 s

1 s (osrm)

1 min

1 min (osrm)

(f) Median error per sample interval

Figure 13: Fmm
1 score and median error as a function of the

GPS noise per mode of transportation for a sample interval T
of 1 s (a–b) and 1 min (c–d). Overall Fmm

1 score and median
error as a function of the GPS noise per sample interval T
(e–f)

accuracy improvement of 58.7% and 65.4% for noise level of
200 m and a sample interval of 1 s and 1 min.

4) Sensitivity analysis: This section discusses the influence
of four parameters of the proposed map matching technique
(Algorithm 1): update distance, weight of the distance metric
(α), weight of the direction change penalty (β), and weight of
the code change penalty (γ). The update distance is used to
establish a smoothing effect in the map matching by making a
selection of geographic input coordinates (Section III-B). The
α parameter is used to assign more weight to the geographic
input coordinates and the β and γ parameters are used to dis-
courage deviations from the current road or driving direction.
Figure 14 shows the Fmm

1 score and the median error between
the estimated and ground truth locations, as a function of these
four parameters.

An update distance of 0 m, i.e., every geographic coordinate
is used as input, results in an average Fmm

1 score and the
median error of 95.2% and 3.10 m. Increasing the update
distance to 50 m results in an average Fmm

1 score and the
median error of 99.5% and 1.86 m.

A distance weight of 0 gives poor results because the
geographic data is not taken into account. Best performance is
obtained with a distance weight of 1 and increasing this weight

11

0 1 2 5 10 20 50 100 200 500
update distance [m]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(a) Fmm
1 score

0 1 2 5 10 20 50 100 200 500
update distance [m]

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(b) Median error

0 1 2 5 10 20 50 100 200 500

distance weight (α) [1/m]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(c) Fmm
1 score

0 1 2 5 10 20 50 100 200 500

distance weight (α) [1/m]

0.0

1.0

2.0

3.0

4.0

5.0

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(d) Median error

0 1 2 5 10 20 50 100 200 500

direction change weight (β) [1/90°]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(e) Fmm
1 score

0 1 2 5 10 20 50 100 200 500

direction change weight (β) [1/90°]

0.0

1.0

2.0

3.0

4.0

5.0

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(f) Median error

0 1 2 5 10 20 50 100 200 500

code change weight (γ) [1 / code change]

0.5

0.6

0.7

0.8

0.9

1.0

F
-s

c
o

re
[-

]

walk

bike

car

(g) Fmm
1 score

0 1 2 5 10 20 50 100 200 500

code change weight (γ) [1 / code change]

0.0

1.0

2.0

3.0

4.0

5.0

m
e

d
ia

n
a

c
c
u

ra
c
y

[m
]

walk

bike

car

(h) Median error

Figure 14: Fmm
1 score and median error as a function of

the update distance (a–b), distance weight α (c–d), direction
change weight β (e–f), and code change weight γ (g–h).

slowly deteriorates the Fmm
1 score (Figure 14c). Including

the direction change penalty slightly improves the accuracy
for weights up to 10 per 90◦, i.e., the Fmm

1 score improves
from 95.8% to 98.5% (Figure 14e). Including the code change
penalty slightly improves the accuracy as well for weights up
to 20, i.e., the Fmm

1 score improves from 95.8% to 99.0%
(Figure 14g). The best global accuracy, averaged over all 30
trajectories on foot, by bike, or by car, is obtained with an
update distance of 50 m, α of 1 per meter, β of 10 per 90◦,
and γ of 10 per code change. Note that γ is set to zero to
evaluate the influence of the direction change penalty and β
is set to zero to evaluate the influence of the code change
penalty. Furthermore, the considered parameter values were
on a logarithmic scale to avoid overfitting on the dataset of
this experimental validation.

5) Execution time: The experiments are run on a laptop
with an Intel Core i7 2.70 GHz processor, 16.00 GB DDR3-
SDRAM and 64 bit operating system. The execution time,

averaged over all trajectories per mode of transportation and
calculated as the total duration divided by the number of input
GPS points, is 1.03 ms, 5.75 ms, and 8.56 ms, for the walks,
bike rides, and car routes, respectively. These differences per
mode of transportation stem from the difference in maximum
speed, i.e., more candidate routes and positions have to be
calculated given a certain time interval. For comparison, the
execution times reported in recent literature vary between
39 ms and 5.62 s, depending on the algorithm’s settings and
the input sample interval [52]–[54].

D. Lane detection accuracy

The lane detection is evaluated by the accuracy of the lane
change detection algorithm, the driving lane estimation, and
the influence of the sample rate of the accelerometer.

1) Lane changes: The precision, recall, and F ld
1 score of

the lane change detection algorithm is summarized in Table V
for both trajectories.

Trajectory Precision [%] Recall [%] F ld
1 score [%] tp [-] fp [-] fn [-]

1 100.0 96.5 98.2 83 0 3
2 85.0 67.2 75.1 45 8 22

Table V: Precision, recall, and F ld
1 score for the lane change

detection. tp: true positives, fp: false positives, fn: false nega-
tives.

For the first trajectory, the proposed algorithm correctly
labels 83 lane changes, detects no false positives (precision
100.0%) and fails to detect only three lane changes (recall
96.5%). This results in an F ld

1 score of 98.2%. For the second
trajectory, the proposed algorithm correctly labels 45 lane
changes, detects 8 false positives (precision 85.0%) and fails
to detect 22 lane changes (recall 67.2%). This results in an
F ld
1 score of 75.1%. The difference in performance is due to

different driving styles and making the detection harder by
shifting lanes while turning, carrying out small maneuvers, or
changing lanes in a slow manner.

2) Driving lane: The amount of time the lane detection al-
gorithm estimates the correct and wrong lane are summarized
in Table VI for both trajectories. These amounts of time are
expressed as a percentage with respect to the total duration of
a trajectory.

Trajectory Correct lane [%] Wrong lane [%]
1-av match total 1-off 2-off total

1 14.8 84.4 99.2 0.7 0.1 0.8
2 21.6 65.2 86.8 12.3 0.9 13.2

Table VI: Accuracy of the lane detection algorithm as a
percentage of the complete trajectory. 1-av indicates that there
is only one lane available, and 1-off or 2-off that the estimated
lane is one or two lanes next to the correct lane.

The driving lane is estimated correctly 99.2% and 86.8% of
the time for the first and second trajectory, which is a logical
consequence of the lane change detection performance. Note
that undetected or erroneous lane changes do not automatically
lead to a wrongly estimated driving lane because of the limited

12

number of available lanes per road segment and the most likely
starting lane technique (Section IV-B). Furthermore, there was
only one lane available during 14.8% and 21.6% of the time,
which automatically results in the correct lane because the
lane change detection and driving lane allocation are disabled
when the map matching algorithm estimates a road segment
with only one lane. A wrongly estimated lane is nearly always
only one lane off, two lanes off occurs only in 0.1% and 0.9%
of the time, and three lanes off does not occur. This is better
than the IMU-based lane detection technique that is proposed
in [34], where an average accuracy of 80% is achieved.

3) Accelerometer sample rate: The sample rate of the
accelerometer is simulated by discarding samples in the input
data. Similarly to the GPS sample interval (Section V-C1),
lowering the sample rate of the accelerometer saves battery
power and reduces the communication cost by limiting the
bandwidth usage, e.g., if the data is collected or processed
centrally. Unlike with the GPS data, the computational cost
decreases because less samples need to be examined during
the peak detection. However, this can affect the accuracy of
the lane change detection algorithm and hence driving lane
estimation. Figure 15 shows the precision, recall, and F ld

1

score as a function of the accelerometer sample rate averaged
over both trajectories.

100 50 20 10 5 2 1 0.5 0.2
sample rate [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u

ra
c
y

[-
]

F-score

precision

recall

Figure 15: Precision, recall, and F ld
1 score as a function of the

accelerometer sample rate over both trajectories.

Lowering the sample rate results in a negligible performance
loss up to 5 Hz, i.e., a reduction by a factor of 20. Increasing
the sample interval to 5 s results in a recall near zero because
all lane changes happen within 5 s. The lane changes that are
still detected are because the lateral accelerometer values at the
selected time instances are still above or below the thresholds
values from Section IV-A.

VI. CONCLUSION

In this work, a fast, memory-efficient, and worldwide map
matching algorithm with support for trajectories on foot, by
bike, and motorized vehicles, is presented. The input for the
map matching algorithm are raw geographic coordinates and
enriched open map data. The proposed algorithm combines
the Markovian behavior and the shortest path aspect while
taking into account the type and direction of all road seg-
ments, information about one-way traffic, maximum allowed
speed per road segment, and driving behavior. Furthermore,

a lane detection algorithm based on accelerometer readings
and traffic lane information from the open map data, that self-
adapts to the driving behavior, is added on top of the map
matching algorithm. An experimental validation consisting
of 30 trajectories on foot, by bike, and by car, showed the
efficiency and accuracy of the proposed algorithms. The total
dataset is 17.4 hours, covers 423 km, consists of 58k GPS
points, and 402k accelerometer samples. The average F1-
scores and median errors of the map matching algorithm, if
all GPS samples are used, were an Fmm

1 score and median
error of 99.6% and 1.82 m, 98.9% and 1.85 m, and 99.9% and
1.99 m, for the walks, bike rides, and car routes, respectively.
The performance remained adequate if the input data was
downsampled to only one sample every minute, i.e., the
average F1-scores were 93.7%, 83.6%, 99.2%, for the walks,
bike rides, and car routes, respectively. Moreover, the proposed
technique outperforms the well-known OSRM method with
accuracy improvements up to 45.2%. Two trajectories with
accelerometer data were used to evaluate the lane detection
algorithm with F1-scores of 98.2% and 75.1% for the lane
change detection, which resulted in the correctly estimated
lane 99.2% and 86.8% of the time.

ACKNOWLEDGMENT

This work was executed within MobiSense, a research
project bringing together academic researchers and industry
partners. The MobiSense project was co-financed by imec
(iMinds) and received project support from Flanders Innova-
tion & Entrepreneurship.

REFERENCES

[1] B. Hummel, “Map matching for vehicle guidance,” in Dynamic and
Mobile GIS. CRC Press, 2006, pp. 196–207.

[2] H.-J. Chu, G.-J. Tsai, K.-W. Chiang, and T.-T. Duong, “Gps/mems ins
data fusion and map matching in urban areas,” Sensors, vol. 13, no. 9,
pp. 11 280–11 288, 2013.

[3] D. Bernstein, A. Kornhauser et al., “An introduction to map matching
for personal navigation assistants,” 1996.

[4] C. E. White, D. Bernstein, and A. L. Kornhauser, “Some map matching
algorithms for personal navigation assistants,” Transportation research
part c: emerging technologies, vol. 8, no. 1-6, pp. 91–108, 2000.

[5] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in Proceedings of the 31st international confer-
ence on Very large data bases. VLDB Endowment, 2005, pp. 853–864.

[6] A. Dewandaru, A. M. Said, and A. N. Matori, “A novel map-matching
algorithm to improve vehicle tracking system accuracy,” in 2007 Inter-
national Conference on Intelligent and Advanced Systems. IEEE, 2007,
pp. 177–181.

[7] D. C. Andrade, F. Bueno, F. R. Franco, R. A. Silva, J. H. Z. Neme,
E. Margraf, W. T. Omoto, F. A. Farinelli, A. M. Tusset, S. Okida
et al., “A novel strategy for road lane detection and tracking based on a
vehicle’s forward monocular camera,” IEEE Transactions on Intelligent
Transportation Systems, no. 99, pp. 1–11, 2018.

[8] W. Song, Y. Yang, M. Fu, Y. Li, and M. Wang, “Lane detection and
classification for forward collision warning system based on stereo
vision,” IEEE Sensors Journal, vol. 18, no. 12, pp. 5151–5163, 2018.

[9] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, “Fast lidar-
based road detection using fully convolutional neural networks,” in 2017
ieee intelligent vehicles symposium (iv). IEEE, 2017, pp. 1019–1024.

[10] M. M. Atia, A. R. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W. B.
Miners, and O. A. Basir, “A low-cost lane-determination system us-
ing gnss/imu fusion and hmm-based multistage map matching,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 11, pp.
3027–3037, 2017.

13

[11] J. Yu, Z. Chen, Y. Zhu, Y. J. Chen, L. Kong, and M. Li, “Fine-
grained abnormal driving behaviors detection and identification with
smartphones,” IEEE transactions on mobile computing, vol. 16, no. 8,
pp. 2198–2212, 2016.

[12] H. Eren, S. Makinist, E. Akin, and A. Yilmaz, “Estimating driving be-
havior by a smartphone,” in 2012 IEEE Intelligent Vehicles Symposium.
IEEE, 2012, pp. 234–239.

[13] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in Proceedings of the 17th ACM SIGSPATIAL inter-
national conference on advances in geographic information systems.
ACM, 2009, pp. 336–343.

[14] G. R. Jagadeesh and T. Srikanthan, “Online map-matching of noisy and
sparse location data with hidden markov and route choice models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp.
2423–2434, 2017.

[15] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[16] J. Yang and L. Meng, “Feature selection in conditional random fields
for map matching of gps trajectories,” in Progress in Location-Based
Services 2014. Springer, 2015, pp. 121–135.

[17] Y. Li, Q. Huang, M. Kerber, L. Zhang, and L. Guibas, “Large-scale
joint map matching of gps traces,” in Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2013, pp. 214–223.

[18] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” nature, vol. 453, no. 7196, p. 779,
2008.

[19] C. A. V. Campos, D. C. Otero, and L. F. M. de Moraes, “Realistic
individual mobility markovian models for mobile ad hoc networks,” in
2004 IEEE Wireless Communications and Networking Conference (IEEE
Cat. No. 04TH8733), vol. 4. IEEE, 2004, pp. 1980–1985.

[20] M. Srivatsa, R. Ganti, J. Wang, and V. Kolar, “Map matching: Facts
and myths,” in Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM,
2013, pp. 484–487.

[21] R. Metzler, “Generalized chapman-kolmogorov equation: A unifying
approach to the description of anomalous transport in external fields,”
Physical Review E, vol. 62, no. 5, p. 6233, 2000.

[22] J. Wahlström, I. Skog, and P. Händel, “Smartphone-based vehicle
telematics: A ten-year anniversary,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 10, pp. 2802–2825, 2017.

[23] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, “Real
time pothole detection using android smartphones with accelerometers,”
in 2011 International conference on distributed computing in sensor
systems and workshops (DCOSS). IEEE, 2011, pp. 1–6.

[24] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: an instance segmen-
tation approach,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 286–291.

[25] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network
for structural prediction and lane detection in traffic scene,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 3,
pp. 690–703, 2016.

[26] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nüchter, “A sensor-fusion
drivable-region and lane-detection system for autonomous vehicle nav-
igation in challenging road scenarios,” IEEE Transactions on Vehicular
Technology, vol. 63, no. 2, pp. 540–555, 2013.

[27] K. Ghazali, R. Xiao, and J. Ma, “Road lane detection using h-maxima
and improved hough transform,” in 2012 Fourth International Confer-
ence on Computational Intelligence, Modelling and Simulation. IEEE,
2012, pp. 205–208.

[28] X. Wei, Z. Zhang, Z. Chai, and W. Feng, “Research on lane detection and
tracking algorithm based on improved hough transform,” in 2018 IEEE
International Conference of Intelligent Robotic and Control Engineering
(IRCE). IEEE, 2018, pp. 275–279.

[29] W. Liu, H. Zhang, B. Duan, H. Yuan, and H. Zhao, “Vision-based real-
time lane marking detection and tracking,” in 2008 11th International
IEEE Conference on Intelligent Transportation Systems. IEEE, 2008,
pp. 49–54.

[30] M. Nieto, A. Cortés, O. Otaegui, J. Arróspide, and L. Salgado, “Real-
time lane tracking using rao-blackwellized particle filter,” Journal of
Real-Time Image Processing, vol. 11, no. 1, pp. 179–191, 2016.

[31] H.-Y. Cheng, B.-S. Jeng, P.-T. Tseng, and K.-C. Fan, “Lane detection
with moving vehicles in the traffic scenes,” IEEE Transactions on
intelligent transportation systems, vol. 7, no. 4, pp. 571–582, 2006.

[32] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Machine vision and applications, vol. 25,
no. 3, pp. 727–745, 2014.

[33] J. Son, H. Yoo, S. Kim, and K. Sohn, “Real-time illumination invariant
lane detection for lane departure warning system,” Expert Systems with
Applications, vol. 42, no. 4, pp. 1816–1824, 2015.

[34] H. Aly, A. Basalamah, and M. Youssef, “Lanequest: An accurate and
energy-efficient lane detection system,” in 2015 IEEE International
Conference on Pervasive Computing and Communications (PerCom).
IEEE, 2015, pp. 163–171.

[35] Y. Gu, L.-T. Hsu, and S. Kamijo, “Gnss/onboard inertial sensor inte-
gration with the aid of 3-d building map for lane-level vehicle self-
localization in urban canyon,” IEEE Transactions on Vehicular Technol-
ogy, vol. 65, no. 6, pp. 4274–4287, 2015.

[36] Y. Jiang, H. Qiu, M. McCartney, G. Sukhatme, M. Gruteser, F. Bai,
D. Grimm, and R. Govindan, “Carloc: Precise positioning of auto-
mobiles,” in Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2015, pp. 253–265.

[37] Y. Chen and J. Krumm, “Probabilistic modeling of traffic lanes from gps
traces,” in Proceedings of the 18th SIGSPATIAL international conference
on advances in geographic information systems, 2010, pp. 81–88.

[38] E. Uduwaragoda, A. Perera, and S. Dias, “Generating lane level road
data from vehicle trajectories using kernel density estimation,” in 16th
International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013). IEEE, 2013, pp. 384–391.

[39] L. Tang, X. Yang, Z. Dong, and Q. Li, “Clric: collecting lane-based
road information via crowdsourcing,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 9, pp. 2552–2562, 2016.

[40] “Winkel tripel projections,” http://www.winkel.org/other/Winkel%
20Tripel%20Projections.htm, accessed: 2018-09-01.

[41] J. P. Snyder, Flattening the earth: two thousand years of map projections.
University of Chicago Press, 1997.

[42] B. Vsavric, B. Jenny, D. White, and D. R. Strebe, “User preferences
for world map projections,” Cartography and Geographic Information
Science, vol. 42, no. 5, pp. 398–409, 2015.

[43] “Openstreetmap data extracts,” http://download.geofabrik.de/, accessed:
2019-06-01.

[44] “Map matching tool,” https://www.waves.intec.ugent.be/exposure-tool/
map-matching-tool, accessed: 2018-10-22.

[45] J. Trogh, D. Plets, L. Martens, and W. Joseph, “Advanced real-time
indoor tracking based on the viterbi algorithm and semantic data,”
International Journal of Distributed Sensor Networks, vol. 501, p.
271818, 2015.

[46] J. Trogh, D. Plets, A. Thielens, L. Martens, and W. Joseph, “Enhanced
indoor location tracking through body shadowing compensation,” IEEE
Sensors Journal, vol. 16, no. 7, pp. 2105–2114, 2016.

[47] J. Ziniel, L. C. Potter, and P. Schniter, “Tracking and smoothing of
time-varying sparse signals via approximate belief propagation,” in 2010
Conference Record of the Forty Fourth Asilomar Conference on Signals,
Systems and Computers. IEEE, 2010, pp. 808–812.

[48] “Analog devices adxl345,” https://www.analog.com/media/en/
technical-documentation/data-sheets/ADXL345.pdf.

[49] G. M. Djuknic and R. E. Richton, “Geolocation and assisted gps,”
Computer, vol. 34, no. 2, pp. 123–125, 2001.

[50] “Open source routing machine (osrm),” http://project-osrm.org//, ac-
cessed: 2020-03-09.

[51] F. V. Diggelen, “System design & test-gnss accuracy-lies, damn lies,
and statistics-this update to a seminal article first published here in 1998
explains how statistical methods can create many different,” GPS world,
vol. 18, no. 1, pp. 26–33, 2007.

[52] Y.-J. Gong, E. Chen, X. Zhang, L. M. Ni, and J. Zhang, “Antmapper: An
ant colony-based map matching approach for trajectory-based applica-
tions,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 2, pp. 390–401, 2017.

[53] L. Luo, X. Hou, W. Cai, and B. Guo, “Incremental route inference
from low-sampling gps data: An opportunistic approach to online map
matching,” Information Sciences, vol. 512, pp. 1407–1423, 2020.

[54] S. Singh, J. Singh, and S. S. Sehra, “Genetic-inspired map matching
algorithm for real-time gps trajectories,” Arabian Journal for Science
and Engineering, vol. 45, no. 4, pp. 2587–2603, 2020.

14

http://www.winkel.org/other/Winkel%20Tripel%20Projections.htm
http://www.winkel.org/other/Winkel%20Tripel%20Projections.htm
http://download.geofabrik.de/
https://www.waves.intec.ugent.be/exposure-tool/map-matching-tool
https://www.waves.intec.ugent.be/exposure-tool/map-matching-tool
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://project-osrm.org//

	Introduction
	Related work
	Map matching
	Lane detection
	Contributions

	Map matching
	Grid and road segments
	Algorithm
	General
	Geographic data selection
	Mapping and interpolation

	Lane detection
	Lane changes
	Peak detection
	Lane change detection

	Driving lane allocation

	Experimental validation
	Trajectories
	Map matching
	Lane detection

	Performance metrics
	Map matching accuracy
	GPS sample interval
	OSRM comparison
	GPS noise
	Sensitivity analysis
	Execution time

	Lane detection accuracy
	Lane changes
	Driving lane
	Accelerometer sample rate

	Conclusion
	References

