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Abstract

The �fth International Timetabling Competition (ITC2021) aims to instigate further research on
automated sports timetabling. The competition's problem instances consist of constructing a com-
pact double round-robin tournament with 16 to 20 teams while respecting various hard constraints
and minimizing the penalties from violated soft constraints. This paper focuses on the organization
of the ITC2021 competition, with a particular focus on the generation of a set of arti�cial though
challenging, realistic, and diverse problem instances. For the latter, we present a set of features
describing the structure of the problem instances, and use these features to construct the so-called
instance space for sports timetabling. Several gaps in instance space hint that existing problem in-
stances from the literature are not very diverse. We therefore propose a novel integer programming
approach to determine the (high-dimensional) feature values that cover these gaps, and show how
to generate associated problem instances. Finally, we provide an overview of the participants and
their contributions, and announce the winners of the competition.

Keywords: Sports Scheduling, Combinatorial Optimization Competition, Instance Space
Analysis, Instance Generation

1. Introduction

In essence, sports timetabling is deciding on a suitable time slot for each of the games to
be played in the tournament such that all games are scheduled and no team plays more than
one game per time slot. Sports timetabling problems are often computationally challenging, even
for competitions with a small number of teams. Furthermore, they are characterized by a wide
diversity of constraints, and con�icting interests of many stakeholders (e.g. clubs, broadcasters,
sponsors, police). Besides the business involved, its relevance for society is considerable, ranging
from fans watching major events like the Olympics to parents organizing their personal schedules
around their children's sporting hobbies.

In the late 1970's, sports timetabling found its way to academic papers (e.g. Ball & Webster
(1977)), and - motivated by a large number of innovative applications in practice - gradually de-
veloped into a sizeable research �eld (Kendall et al., 2010). To this day, however, many sports
timetabling contributions in the literature read as a case study, describing a single instance for
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Table 1: A compact double round-robin timetable for a single league with 6 teams. Each game is represented by an
ordered pair in which the �rst element is the home team, and the second element is the away team.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

(1,2) (2,5) (2,4) (2,3) (6,2) (4,2) (5,2) (2,1) (3,2) (2,6)
(3,4) (4,1) (1,6) (5,1) (4,5) (6,1) (1,4) (4,3) (1,5) (5,4)
(5,6) (6,3) (5,3) (6,4) (1,3) (3,5) (3,6) (6,5) (4,6) (3,1)

which a tailored algorithm is developed and compared to a manual solution. The importance of
case studies to bridge the gap between theory and practice notwithstanding, con�dentiality agree-
ments make that they almost never result in publicly available real-life data. Furthermore, for those
limited studies that do provide data, a long standing obstacle for other researchers to benchmark
their own algorithms on this data, was the absence of a �le format to express the wide amount and
variety of constraints that are typically present1. Recently, however, Van Bulck et al. (2020b) have
presented the so-called RobinX xml data format making the description and communication of
benchmark instances much easier. In this context, we considered the moment had come to organize
an international timetabling competition, labelled ITC2021, on sports timetabling.

ITC2021 focuses on the construction of (single-league) compact double round-robin (2RR)
timetables, while respecting various hard constraints and minimizing the penalties arising from
soft constraints. In a double round-robin tournament, each team faces every other team twice:
once at its home venue, and once at the venue of the opponent (i.e., away). The literature dis-
tinguishes between compact timetables, which use the minimal number of time slots needed, and
relaxed timetables, which use more time slots than strictly needed. In the compact case, a time
slot is usually referred to as a round (i.e., a period during which a team can play at most one
game), typically corresponding to a weekend or a week. In addition to the focus on compact 2RR's,
ITC2021 assumes that the number of teams is even, and consequently, that each team plays exactly
one game per time slot. Although many other tournament formats are conceivable (e.g. relaxed
tournaments, multi-league timetabling, or knock-out formats), compact 2RR tournaments are well-
researched and very common in practice (see e.g. Goossens & Spieksma (2012)). An example of a
compact 2RR timetable is given in Table 1.

The ITC2021 competition started in October 2020, and closed by the end of April 2021.
Throughout the competition, problem instances were released in three waves (early, middle, and
late; see also Figure 4). While there was no fundamental di�erence between these groups of in-
stances, the available time to solve them di�ered from more than six months (early) to two weeks
(late), and the contribution on the ranking of the participants was larger for the late (middle) as
compared to the middle (early) instances. The only competition criterion was the validity and
quality of the solution in terms of the penalties arising from violated soft constraints. There were
no restrictions on the hardware or (commercial) solvers used, nor on the computation time (other
than that solutions had to be submitted before the end of the competition).

During the organization of ITC2021, we were much indebted to the organizers of various other
timetabling competitions that had been organized before. All of these competition have been

1One notable exception is the travelling tournament problem, which minimizes the total team travel in a timetable.
For this problem, substantial algorithmic progress has been reported after Easton et al. (2001) made a set of arti�cial
benchmark instances publicly available, and for which best results can be submitted to a website maintained by
professor Michael Trick (see http://mat.tepper.cmu.edu/TOURN/).
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proven bene�cial to the research community both in terms of bringing together researchers from
di�erent areas, as well as stimulating the development of new solution approaches and comparing
them. The �rst ITC was organized in 2002 and focused on (a simpli�ed version of) the university
course timetabling problem (Paechter et al., 2003). The next ITC competition (2007) aimed to
further develop interest in the general area of educational timetabling and involved three problems:
curriculum-based timetabling, examination timetabling, and post-enrollment timetabling (McCol-
lum, 2007, McCollum et al., 2010). With high-school timetabling, the ITC highlighted yet another
educational timetabling problem in 2011 (Post et al., 2011, 2016). The fourth ITC was again de-
voted to university course timetabling: it introduced the combination of student sectioning together
with time and room assignment of events in courses (Müller et al., 2018, 2019). In between, there
were two international nurse rostering competitions in 2010 (Haspeslagh et al., 2014) and 2014
(Ceschia et al., 2019), as well as a cross-domain heuristic search challenge (CHeSC 2011), where the
challenge was to design a high-level search strategy that controls a set of problem-speci�c low-level
heuristics, which would be applicable to di�erent problem domains (Burke et al., 2011).

The remainder of this paper is as follows. Section 2 provides a description of the problem we
try to solve with ITC2021. One of the main objectives of ITC2021 is to promote the development
and proper benchmarking of more general solution methods by providing a set of challenging,
diverse, and realistic problem instances. Section 3 therefore explains in detail how we generated
the ITC2021 problem instances. In particular, we �rst devise features describing the structure of
problem instances, and use them to construct a so-called high-dimensional instance space. After
visualizing the high-dimensional instance space into a two-dimensional space, we determine the
region in which real-life instances are projected, and we identify a diverse set of coordinates that
cover this entire region. We propose a novel integer programming approach to determine the (high-
dimensional) feature values that match these coordinates, and show how to generate associated
problem instances. Next, Section 4 explains and motivates the most important competition rules,
and provides an overview of the participants and a brief description of their algorithmic approaches.
Conclusions follow in Section 5.

2. Problem description

Let us denote with T the set of n teams that participate in the 2RR, and with S the set of
time slots (i.e., rounds). Since we assume that n is even and that the set of time slots is compact,
we have that |S| = 2n− 2. In all problem instances, n is either 16, 18, or 20; we believe that this
number represents the type of problem instances that typically occurs in real-life (see e.g. Goossens
& Spieksma (2009)) and that cannot be solved to optimality by state-of-the-art techniques. The
season of a compact 2RR is often split into two halves, such that the �rst and the last n− 1 time
slots each represent a single round-robin tournament (note that the order or even the composition
of time slots between the two halves may di�er). We call a timetable that follows this format
`phased', and call it `regular' otherwise.

Apart from the basic constraints that require that all games of the 2RR are scheduled and
that each team plays at most one game per time slot, the ITC2021 problem instances feature nine
(somewhat simpli�ed) constraint types from the classi�cation framework developed by Van Bulck
et al. (2020b). We believe that the majority of the constraints that appear in real-life can be
modelled with this selection of constraint types. Constraints can be either hard or soft, where
hard constraints represent fundamental properties of the timetable that can never be violated and
soft constraints represent preferences that should be satis�ed whenever possible. The objective
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in the ITC2021 problem instances is to minimize the overall (weighted) sum of deviations from
violated soft constraints while respecting all hard constraints. In the remainder of this section, we
describe each of the constraint types and refer to Appendix A for a more detailed description of the
constraints, their representation in the competition �le format, and the calculation of the deviation
from soft constraints.

2.1. Capacity constraints

Capacity constraints force a team to play home or away and regulate the total number of games
played by a team or group of teams during a given period in time. We consider four di�erent
capacity constraints (CA1, CA2, CA3, CA4), each of which can be hard or soft. Constraints CA1
impose an upper limit on the number of home games (or away games) a given team plays during
a given set of time slots. We use CA1 to model `place constraints' that forbid a team to play at
home during a particular time slot (e.g., stadium availability), and to balance the home-away status
of games over teams and time (e.g., a minimal number of home games per team during the start
and end of the season). Constraints CA2 generalize CA1 in the sense that they impose an upper
limit on the number of home games (or away games) for a given team against a given set of other

teams during a given set of time slots. We could for instance use this constraint to state that a
bottom team plays at most one away game against a strong team during the last four time slots of
the season. Constraints CA3 impose a limit on the maximal sequence of consecutive home or away
games. When it is hard, it states that no team plays more than two home games (or away games)
in a row (there are thus at most two CA3 hard constraints). When it is soft, it states that a given
team should play no more than two home games (away games, or games) against a speci�c set of
teams (usually a certain strength group) during every four consecutive rounds. Constraints CA4
impose an upper limit on the number of home games (away games, or games) between teams from
a �rst set against teams from a second set during a given set of time slots. We for instance use this
constraint to limit the number of games between teams from the same strength group, or to limit
the total number of home games for a set of teams during a speci�c time slot (e.g., because teams
share a stadium or are located in the same geographical region).

2.2. Game constraints

We only consider GA1 hard and soft constraints from the framework of RobinX, which enforce
or forbid speci�c assignments of games to time slots. Examples include the police that forbid to
play high risk games during time slots in which other major events are planned, or games that
should take place during a `derby time slot'.

2.3. Break constraints

If a team plays a game with the same home-away status as its previous game, we say it has
a break. As an example, team 2 in Table 1 has a break in time slot s3, s4, s6, and s7. Among
others, the timing and frequency of breaks may be important as breaks have an adverse impact on
game attendance (see Forrest & Simmons (2006)). Constraints BR1 impose an upper limit on the
total number of breaks for a given team and set of time slots (e.g., no breaks near the beginning
or end of the season), and constraints BR2 limit the total number of breaks in the timetable. Both
constraints can be hard or soft, but there is at most one BR2 constraint.
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2.4. Fairness and separation constraints

To increase the fairness and attractiveness of the competition, we consider the FA2 and SE1
soft constraints (there is at most one constraint of each type). Soft constraint FA2 expresses the
preference that the timetable is 2-ranking-balanced, meaning that the di�erence in played home
games between any two teams is at most two at any point in time. Soft constraint SE1, on the
other hand, states that there should be at least 10 time slots between each pair of games involving
the same teams.

3. Generating a diverse set of problem instances

Over recent years, Smith-Miles and co-authors have developed a framework known as instance-
space analysis that, among others, can be used to visualize how similar or dissimilar problem
instances are with regard to each other (see e.g. Kletzander et al. (2021), Smith-Miles et al. (2014),
Smith-Miles & Bowly (2015), Smith-Miles & Lopes (2012)). To be suitable for an optimization
competition, we believe that problem instances should (i) challenge existing algorithms such that
progression towards new solutions methods is made, (ii) be feasible and allow to �nd (subopti-
mal) solutions with reasonable e�ort (at least for the majority of the instances so as to encourage
participants to enter the competition), (iii) be as dissimilar as possible from each other such that
algorithms generalize well outside the competition, and (iv) be as similar as possible to real-life
problem instances so as to bridge the gap between theory and practice.

In the remainder of this section, we explain how to use instance space analysis to generate the
ITC2021 competition instances that have the above properties. Section 3.1 proposes a set of features
to describe sports timetabling problem instances in a high-dimensional instance space, which is
then transformed into a two-dimensional instance space where the diversity of problem instances
can be visually inspected. Based on problem instances previously presented in the literature, we
also determine the part of the two-dimensional space were real-life problem instances are likely
projected. Section 3.2 determines a set of target coordinates and uses a novel integer programming
(IP) approach to derive a set of (high-dimensional) feature vectors projected at these coordinates,
such that the associated problem instances are diverse and real-world-like. Finally, Section 3.3
proposes an instance generator which transforms a feature vector into a feasible problem instance
that challenges existing solvers. At the time the competition was announced, none of the information
from this section was available to the participants.

3.1. Visualizing the instance space

Let us de�ne with F the set of problem instance features, where each feature describes a mea-
surable property or characteristic of a problem instance (e.g. the total number of teams). Features
are useful to express how similar problem instances are. For a general advise of how to devise
features, we refer to Smith-Miles & Lopes (2012). For the ITC2021 competition, we use as features
the number of teams and the three-�eld notation α |β | γ of RobinX. A problem instance in this
notation is of type α1, α2, α3 |β | γ, where α1 gives the tournament format, α2 the compactness of
the tournament, α3 the symmetry structure, β the constraints that are present (distinguishing hard
and soft constraints), and γ the objective function (see Van Bulck et al. (2020b)). However, as we
only consider compact double round-robin tournaments where the objective is to minimize the sum
of soft constraint penalties while respecting all hard constraints, we ignore the α1, α2, and γ �elds.
Moreover, instead of simply denoting whether or not a speci�c type of hard or soft constraint is
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Name Description

f|T | Number of teams (16, 18, or 20)

fP Boolean which is one if the tournament is phased and 0 otherwise

fH
CA1 Number of CA1 hard constraints (others: fH

CA2, f
H
CA3, f

H
CA4, f

H
GA1, f

H
BR1, f

H
BR2)

fS
CA1 Number of CA1 soft constraints (others: fS

CA2, f
S
CA3, f

S
CA4, f

S
GA1, f

S
BR1, f

S
BR2, f

S
FA2, f

S
SE1)

Table 2: Overview of the 18 features in F considered for the instance generation of the ITC2021 competition.

Name Contributor No. Teams Description

BEL Goossens & Spieksma (2009) 3 18 2RR, C, P | BR1h, BR2h, CA1h,s, CA2s, CA3h,s, CA4h,s, GA1s,
SE1s| SC

PRIN Lewis & Thompson (2011) 10 12-18 2RR, C, ∅ | CA1h, CA2h,s, CA3h,s, CA4h, SE1s| SC
ECUA Recalde et al. (2013) 1 12 2RR, C, P | BR1h,s, CA2h, CA3h,s, CA4h, SE1s| SC
FIN Kyngäs & Nurmi (2009) 1 14 2RR, C, P | BR1s, BR2s, CA1h,s, CA3s, CA4s, FA2s, GA1h, SE1s|

SC
GER Bartsch et al. (2006) 3 18 2RR, C, P | BR1h, BR2h, CA1h,s, CA4h, GA1h, SE1s| SC
ART Nurmi et al. (2010) 16 10-16 2RR, C, {P,∅} | BR1h, BR2s, CA1h,s, CA3s, CA4h,s, GA1s, SE1s|

SC
SOUTHA Durán et al. (2017) 1 10 2RR, C, P | BR1s, CA1h, CA3h, SE1s| SC
ITA Cocchi et al. (2018) 1 14 2RR, C, P | BR1h, BR2s, CA1h,s, CA2h,s, CA3h, CA4h, FA2s,

GA1s, SE1s| SC
RRT Horbach et al. (2012) 33 10-22 2RR, C, P | BR1h, CA1s, CA4h, GA1s, SE1s| SC
NOR Hausken et al. (2012) 8 14-16 2RR, C, P | BR1h, BR2s, CA1s, CA3s, CA4h,s, GA1h,s, SE1s| SC

Table 3: Overview of the three-�eld notations for the real-life problem instances.

present, we count for each constraint the number of times it appears in the problem instance. For
instance, if a problem instance contains 20 hard constraints of type CA1, then fCA1H = 20. For an
overview of the features, we refer to Table 2.

Next, we collect a representative set of real-life problem instances to determine whether the
arti�cially problem instances to be generated are real-world-like. To this purpose, we select all
compact 2RR problem instances from the RobinX archive by Van Bulck et al. (2020a) that have an
even number of teams between 10 and 22 and that have a soft constraint minimization objective
(other objectives have hard constraints only). This way, a total of 77 problem instances were
obtained which, depending on the contributors, can be divided into ten di�erent groups of instances.
For each problem instance i, we then extract its |F |-dimensional feature vector fi. We thereby
ignore all constraints that do not appear in the ITC2021 competition, and replace any symmetry
structure by the phased structure plus an SE1 hard constraint. Table 3 gives an overview of the
real-life problem instances. For each group of instances, the table provides the name of the instance
group, a reference to the contributors, the number of problem instances in the group (often related
to di�erent seasons of the same competition), the range of the number of teams in the instances,
and a description in terms of the three-�eld notation of RobinX.

In order to assess instance diversity, it helps to visualize the feature vectors in the high-
dimensional instance space: if the feature vectors of two problem instances are similar, then the
rectilinear or Euclidean distance between the problem instances in the high-dimensional instance
space is small. Hence, clusters of feature vectors likely denote problem instances that are related to
one another (e.g., the same sport or di�erent seasons of the same competition; see e.g. the cluster
of blue circles in Figure 1). An intriguing question is what part of the instance space is spanned by
all problem instances that can be expressed with the syntax of ITC2021. We refer to this region
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Figure 1: Visualization of type 1 (circles), type 2 (triangles), and type 3 (crosses) problem instances via their feature
vector in the high-dimensional space (i.e., a 3-dimensional space if there are 3 features). The inner box in red
represents the valid instance space, whereas the outer box in green represents the target instance space.

decile f|T | fP fH
CA1

fS
CA1

fH
CA2

fS
CA2

fH
CA3

fS
CA3

fH
CA4

fS
CA4

fH
GA1

fS
GA1

fH
BR1

fS
BR1

fH
BR2

fS
BR2

fS
FA2

fS
SE1

10% 16 0 5 15 6 12 1 12 18 18 4 1 12 10 1 1 1 1
90% 20 1 42 32 72 620 2 112 85 340 34 126 44 24 1 1 1 1

Table 4: Overview of the 10% and 90% feature deciles

as the valid instance space. Smith-Miles & Bowly (2015) determine the boundaries of the valid
instance space by deriving upper and lower bounds on the value of each feature. The bounds can
then be represented as inequalities in the high dimensional instance space, which together de�ne
a bounding box in which all problem instances are situated (see the green outer box in Figure 1).
We use a similar idea to de�ne what we call the target instance space, which corresponds to the
part of the instance space spanned by the 10% and 90% feature deciles of the real-life problem
instances (see the red inner box in Figure 1, and Table 4). As it is hard to di�erentiate the set of
real-life problem instances from arti�cially generated problem instances that are projected in the
target instance space (they have similar feature values; see also Lopes & Smith-Miles (2013)), we
consider all problem instances in the target instance space as real-world-like.

In order to visualize the embeddings of the feature vectors when the number of features is higher
than three, we need a dimension reduction technique to transform points in the high-dimensional
instance space to a two-dimensional (2D) instance space. To assess instance dissimilarity and
to discover clusters of problem instances, ideally we have that the topology of the original high-
dimensional space is preserved as much as possible in the low dimensional space such that instances
that are close in the low-dimensional space are also close in the high-dimensional space (see Smith-
Miles et al. (2014)). Moreover, in order to derive insights, the low-dimensional instance space must
be intuitive to analyse (e.g. by considering a projection that results in linear trends of feature
values over the two-dimensional space, see Muñoz et al. (2018)). Smith-Miles et al. (2014) and
Smith-Miles & Bowly (2015) propose to reduce the dimensions with Principal Component Analysis

7



(PCA) which essentially constructs a linear transformation from the high-dimensional space to
a lower dimensional space, maximally preserving the original variance. Before we apply PCA,
however, we �rst apply min-max normalization (fi,j − minj)/(maxj − minj) and mean centering
(fi,j − µj) such that each feature j ∈ F has range 1 (or zero if maxj = minj) and mean zero. The
min-max normalization ensures that each feature has an equal share in determining the direction
of maximal variation, whereas the mean centering makes that a feature vector in which all feature
values attain their average is projected at the origin of the two-dimensional space.

Figure 2 (left) shows the PCA embedding of the problem instances from Table 3 in the 2D
instance space. It is interesting to see that the problem instances provided by the same contributors
(often di�erent seasons of the same competition) indeed form clusters of problem instances in the
2D instance space. The target instance space is denoted by the red convex hull; as noted by Smith-
Miles & Bowly (2015), this hull can be computed by taking the convex hull of the projections of
the inequalities that de�ne the bounding box in the high-dimensional instance space. The �rst two
principal components combined explain 55% of the variance in the data. The projection weights
created by the PCA model are given by Equation (1).

W ᵀF =



−0.239 0.119
−0.666 −0.383
0.063 0.132
−0.197 −0.171
0.006 0.096
−0.077 0.187
−0.015 0.489
0.224 0.418
−0.122 0.167
−0.045 0.122
0.033 −0.143
0.003 −0.000
−0.034 −0.006
0.019 −0.008
−0.152 0.190
0.565 −0.482
0.033 −0.300
−0.193 0.043



ᵀ 

f|T |
fP
fH
CA1

fS
CA1

fH
CA2

fS
CA2

fH
CA3

fS
CA3

fH
CA4

fS
CA4

fH
GA1

fS
GA1

fH
BR1

fS
BR1

fH
BR2

fS
BR2

fS
FA2

fS
SE1



(1)

3.2. Deriving target three-�eld notations

Given the two-dimensional instance space, we now derive the (high-dimensional) feature vector
of the problem instances to be generated. To this purpose, we �rst determine a set of target
coordinates in the 2D-space where we would like that the problem instances are projected. We do
this by determining the smallest r× r lattice such that the lattice covers the entire target instance
space and that the number of lattice points within the target instance space is at least the desired
number of problem instances to be generated (45 in the ITC2021 case; see Figure 2, right).

Although the lattice ensures that the problem instances are diverse, a simple inverse transfor-
mation from the 2D-space to the high-dimensional instance space does not su�ce to derive a set of
high dimensional feature vectors projected at these coordinates. Indeed, such a simple transforma-
tion would ignore the relation between di�erent features (e.g., in the ITC2021 competition, there
is either one BR2 hard constraint, one BR2 soft constraint, or no BR2 constraint at all). In fact, it
does not even ensure that the feature vector is within the high dimensional target space. Moreover,
as the projection is linear, this likely results in a feature vector where most features have value zero
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Figure 2: Left: Projection of the problem instances in the 2D-space. The target instance space is represented by the
red convex hull. Right: target coordinates in the lattice.

and all other features have very high or low values. Instead, we want to make sure that the number
of non-zero features is within reasonable values and that extremely low or high feature values are
not allowed.

This motivates the use of an IP model where for each target coordinates z = (z1, z2) in the
convex hull of the 2D-space, we look for a feature vector in the high-dimensional instance space of
which the projection is as close as possible to z. Our main decision variables are variables fi that
model the value of feature i ∈ F , and gi that model the min-max normalized and mean-centred
feature value of i. Dummy variables sd and ed respectively model the slack and excess on the
projections from the target zd along dimension d ∈ {1, 2}, and variable yc with c ∈ Chard ∪ Csoft

is one if fc > 0 and 0 otherwise. Parameters wi,d are fully determined by the PCA model (i.e.,
Equation (1)) and give the projection weight of feature i ∈ F along dimension d ∈ {0, 1}. Finally,
non-negative parameters mini, maxi, µi, δ1,i, and δ9,i give the minimum, maximum, mean value,
10%, and 90% decile of feature i over the real-life problem instances.

minimize
∑

d∈{1,2}

(sd + ed)∑
i∈F

giwi,d + sd − ed = zd ∀d ∈ {1, 2} (2)

gi =
fi −mini

maxi −mini
− µi ∀i ∈ F (3)

fBR2H + fBR2S 6 1 (4)

ycδ1,c ≤ fc ≤ ycδ9,c ∀c ∈ Chard ∪ Csoft (5)∑
c∈Chard

yc > 3,
∑

c∈Csoft

yc > 3 (6)

∑
c∈Chard

fc > 20,
∑

c∈Csoft

fc > 30 (7)

gi, sd, ed ≥ 0 ∀i ∈ F, d ∈ {1, 2} (8)

fi ∈ N+ ∀i ∈ F (9)
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Figure 3: Projections of the ITC problem instances in the two-dimensional instance space. Early instances are
coloured in red, middle instances in green, and late instances in blue.

yc ∈ {0, 1} ∀c ∈ Chard ∪ Csoft (10)

f|T | = 16 (11)

The objective function minimizes the rectilinear distance from the projection of the feature
vector to the target coordinates. Constraints (2) model the slack and excess of the projection along
the two dimensions, and Constraints (3) model the relation between fi and gi. Constraints (4)
express that there is at most one BR2 hard or soft constraint. Next, Constraints (5) regulate the
value of the yc variables, and express that the total number of constraints of type c is at least the
�rst decile and at most the ninth decile as given in Table 4. Next, Constraints (6) and (7) express
that at least 3 hard and 3 soft constraint types must be active, and that there are at least 20
hard constraints and 30 soft constraints (regardless of the type). Constraints (8) to (10) are the
non-negativity and integrality constraints, and Constraints (11) regulate the number of teams.

We repeat the generation of the three-�eld notations once with the restriction that f|T | equals
16, 18, and 20. Next, we manually choose 15 feature vectors for each group of early, middle, and late
problem instances such that each group contains three feature vectors with 16 teams, six with 18
teams, and six with 20 teams. Table 5 gives the resulting feature vectors for the early, middle, and
late competition problem instances; the projection of these feature vectors in the two-dimensional
instance space is given in Figure 3. As we can see, each instance group is well spread over the
instance space.

3.3. Problem instance generator

Once the feature vectors are generated, a compatible and feasible problem instance needs to
be generated for each of them. This section proposes an instance generator that creates a fea-
sible problem instance for each high-dimensional feature vector in Table 5. We do this by �rst
constructing a number of so-called candidate home-away patterns (HAPs), where the HAP of a
team speci�es for each time slot whether a team plays at home or away, and then combine these
HAPs into a set of HAPs by assigning exactly one HAP to each team (see Section 3.3.1). Given
a HAP set, we then check its feasibility by creating a compatible timetable or proving that none
exists (see Section 3.3.2). Next, we construct a problem instance around the HAP set and its
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CA1 CA2 CA3 CA4 GA1 BR1 BR2 FA2 SE1
Id Sym. Teams H S H S H S H S H S H S H S S S

1 1 16 8 29 16 0 0 0 0 21 31 5 13 20 0 0 0 0
2 1 16 38 30 0 0 2 82 0 0 0 1 12 0 1 0 1 0
3 1 16 24 0 72 21 0 112 0 0 34 51 18 0 0 1 1 0
4 1 18 0 32 0 235 0 0 85 0 34 0 44 0 1 0 0 1
5 1 18 41 27 36 331 2 111 81 117 23 0 23 0 1 0 0 1

E
A
R
LY

6 1 18 38 31 71 591 2 54 81 115 0 3 0 0 0 1 1 1
7 0 18 42 31 30 620 1 112 84 340 5 55 12 0 1 0 0 1
8 0 18 19 0 8 57 0 112 0 339 4 73 39 0 0 0 1 0
9 0 18 39 0 14 0 0 88 0 0 14 2 23 10 0 1 1 0
10 1 20 42 32 72 620 2 23 85 339 0 0 44 0 1 0 0 1
11 0 20 42 32 72 620 2 112 85 340 0 3 44 0 1 0 0 1
12 1 20 37 0 72 0 2 20 31 0 17 1 20 13 0 1 0 0
13 0 20 41 31 27 257 1 110 0 0 10 24 20 10 1 0 0 0
14 0 20 5 30 0 0 0 0 0 0 34 0 17 24 0 1 1 0
15 0 20 42 0 72 620 2 112 71 340 0 126 0 24 0 1 1 0

1 1 16 0 32 14 620 0 0 85 340 0 0 44 0 1 0 0 1
2 1 16 42 32 72 620 2 112 85 340 0 126 44 0 1 0 0 1
3 0 16 42 0 72 617 2 107 85 338 0 126 36 21 0 1 1 1
4 1 18 31 18 17 0 1 0 0 41 25 85 23 24 0 0 0 0
5 1 18 41 24 40 33 0 12 0 0 26 126 44 0 0 1 1 0

M
ID

D
L
E

6 1 18 39 0 41 0 2 111 30 27 6 1 44 13 0 1 0 1
7 0 18 0 30 0 355 1 0 78 51 34 17 28 21 0 1 0 1
8 0 18 16 0 0 27 2 108 0 34 12 41 32 14 0 0 0 0
9 0 18 42 0 0 37 1 100 19 39 4 0 28 23 0 1 1 0
10 1 20 41 15 71 363 0 0 46 262 0 74 39 0 1 0 0 0
11 1 20 7 0 71 612 2 88 84 340 0 7 12 0 0 0 1 0
12 1 20 0 32 28 168 1 13 0 0 5 4 29 21 0 1 1 1
13 0 20 42 29 72 242 1 0 85 76 7 2 12 0 0 0 0 1
14 0 20 5 18 11 319 2 112 0 338 6 19 38 10 1 0 1 0
15 0 20 12 0 23 0 0 77 0 0 23 44 37 10 0 1 0 1

1 0 16 42 32 72 198 1 13 82 283 0 15 38 0 0 0 1 0
2 0 16 42 0 72 620 2 112 85 340 0 5 44 0 1 0 0 0
3 0 16 42 0 72 326 1 43 0 60 0 7 12 0 0 1 1 1
4 1 18 0 32 0 0 0 0 18 0 34 1 44 0 0 0 0 1
5 1 18 0 19 69 614 2 0 81 109 23 4 0 0 1 0 1 0

L
A
T
E

6 1 18 0 32 0 125 0 0 85 0 34 0 44 0 0 1 0 1
7 0 18 42 32 40 601 1 61 0 0 5 43 37 0 1 0 0 1
8 1 18 37 15 0 14 0 111 0 0 32 29 41 24 0 1 0 1
9 0 18 40 0 20 250 2 112 0 0 0 18 40 20 0 1 1 0
10 1 20 0 31 67 447 2 0 85 205 34 10 44 0 1 0 0 1
11 1 20 6 0 16 274 0 88 0 0 17 3 12 0 1 0 1 0
12 0 20 40 32 72 620 2 16 85 340 0 0 44 0 1 0 0 1
13 0 20 14 32 72 15 2 0 81 71 0 13 0 0 0 1 1 1
14 0 20 42 0 72 390 2 112 0 340 0 126 0 24 0 0 1 0
15 0 20 5 0 0 0 0 15 0 0 34 0 12 24 0 1 1 0

Table 5: Overview of the early, middle, and late high-dimensional feature vectors generated with IP for the di�erent
target coordinates in Figure 2 (right).
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compatible timetable by adding constraints as described by the feature vector (see Section 3.3.3).
Finally, we check that the generated problem instances are neither too easy nor too challenging (see
Section 3.3.4).

3.3.1. Home-away pattern set

In order to generate a HAP set, we start by enumerating 2,000 home-away patterns using the
Constraint Programming (CP) formulation below. In this formulation, variable hs is one if the
pattern contains a home game on time slot s ∈ S, and 0 otherwise. Moreover, bs is 1 if the pattern
has a break on time slot s ∈ S \ {1} and is 0 otherwise.

distribute([n− 1, n− 1], [0, 1], [h1, . . . , h2(n−1)]) (12)

(hs = hs−1)⇒ (bs = 1) ∀s ∈ S \ {1} (13)∑
s∈S\{1}

bs 6 6 (14)

The global distribute constraint has syntax distribute(cards, values, vars), where cards and
values are vectors with the same index set I and vars is a vector of decision variables. The
constraint is satis�ed if for each i ∈ I exactly cards[i] variables in vars have value values[i]. In our
case, the constraint states that a pattern contains exactly (n − 1) home games and (n − 1) away
games. Constraints (13) model the value of the bs variables. Finally, Constraints (14) state that
each pattern contains at most 6 breaks; if the feature vector contains a BR2 hard constraint, we
limit the total number of breaks per pattern to 5.

In case the feature vector contains at least one hard constraint of type CA3, we replace Con-
straints (12) by (15).

sequence(1, 2, 3, [n− 1, n− 1], [0, 1], [h1, . . . , h2(n−1)]) (15)

The global sequence constraint has syntax sequence(min,max,width, cards, values, vars) and
is satis�ed if for each i ∈ I exactly cards[i] variables in vars have value values[i] and for each
subsequence of length width at least min and at most max variables have value values[i]. In
our case, this constraint thus regulates the required number of home and away games and forbids
consecutive breaks.

We use cplex cp optimizer version 12.10 in combination with a multi-point search strategy
and random variable and value selection to generate a set of 2,000 home-away patterns. In order
to further increase instance diversity, we then use the uniform probability distribution function to
select a subset of 500 patterns. We denote this subset with Q, and describe each pattern i ∈ Q with
parameters h′i,s which is 1 if pattern i contains a home game on time slot s ∈ S and zero otherwise.
Assuming that the number of teams given by the feature vector is n, we generate a HAP set by
solving the following IP formulation, where variable pi is 1 if pattern i is selected and 0 otherwise.∑
i∈Q

pi = n (16)

∑
i∈Q:h′i,s=1

pi = n/2 ∀s ∈ S (17)
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Constraint (16) selects exactly n patterns, and Constraints (17) state that during each time
slot exactly half of the selected patterns has a home game (a necessary condition for a compatible
timetable to exist). We solve model (16)-(17) with Ilog Cplex version 12.10.

3.3.2. Auxiliary timetable

Once a HAP set is found, we need to check whether it is feasible (a problem known as the HAP
set feasibility problem, see e.g. Van Bulck & Goossens (2020)). We do this by solving the following
IP model with Ilog Cplex which constructs a compatible timetable (described by variables xi,j,s
which are 1 if team i ∈ T plays a home game against team j ∈ T \ {i} on time slot s ∈ S, and 0
otherwise) or proves that no such timetable exists. Without loss of generality, we thereby assume
that the pattern with the lowest index is assigned to team 1, and so on.

xi,j,s = 0 ∀i, j ∈ T : i 6= j, s ∈ S : h′i,s = 0 ∨ h′j,s = 1 (18)∑
j∈T\{i}

(xi,j,s + xj,i,s) = 1 ∀i ∈ T, ∀s ∈ S (19)

∑
s∈S

xi,j,s = 1 ∀i, j ∈ T : i 6= j (20)

n−1∑
s=1

(xi,j,s + xj,i,s) = 1 ∀i, j ∈ T : i 6= j (21)

xi,j,s ∈ {0, 1} (22)

Constraints (18) reduce the number of variables in the system by stating that game (i, j) can
only take place during time slots on which team i plays home and team j plays away. Next,
Constraints (19) and (20) state that each team plays exactly one game per time slot and that each
game of the double round-robin tournament is scheduled exactly once. In case that the tournament
needs to be phased, we additionally add Constraints (21). Finally, Constraints (22) are the binary
constraints on the xi,j,s variables.

If no feasible timetable exists, we backtrack to the pattern set generation phase and generate a
di�erent candidate HAP set by adding the following cut where parameter p′i is 1 if pattern i ∈ Q is
in the infeasible HAP set and 0 otherwise. ∑

i∈Q:
p′i=1

pi 6 n− 1 (23)

We repeat this process until either a feasible HAP set is found, or all candidate HAP sets have
been enumerated in which case we select another set of 500 randomly chosen patterns and repeat
the procedure. For all considered feature vectors, this process took only a few seconds.

3.3.3. Constraint generation

We now construct a feasible problem instance around the auxiliary timetable obtained in the
previous section by adding the constraints of the feature vector in such a way that the auxiliary
timetable respects all hard constraints. In other words, the auxiliary timetable is a feasible (but
not necessarily optimal) solution to the problem instance which we create.
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As an example, recall that a CA1 hard constraint imposes an upper limit on the number of
home games a given team plays during a given set of time slots. In order to generate a CA1
hard constraint, we sample a random team i ∈ T and a subset of time slots S′ ⊆ S. Setting the
upper bound to

∑
s∈S′ h

′
i,s then results in a CA1 hard constraint which is satis�ed by the auxiliary

timetable. We refer to Appendix B for more details on how to generate the other constraints.

3.3.4. Empirical problem hardness

In order to check that the problem instances are not too easy nor too di�cult to solve, we
developed a straightforward Integer Programming formulation (IP), a Constraint Programming
formulation (CP), and a �x-and-optimize matheuristic.

The main decision variable in the IP formulation is a binary variable xi,j,s which is one if team
i ∈ T plays against team j ∈ T \ {i} on time slot s ∈ S (see Appendix C). The CP formulation has
two main decision variables: oi,s = j if team i ∈ T plays against team j ∈ T \{i} on time slot s ∈ S,
and hi,s = 1 if team i ∈ T plays at home on slot s ∈ S, and 0 if i plays away (see Appendix D).
Constraint programming approaches search for a feasible solution by instantiating the variables one
by one. The order in which to choose the variables is de�ned by the variable selection strategy. If
we select the opponent variables �rst (`Oppon.') we mimic the well-known �rst-schedule-then-break
strategy, whereas we mimic the �rst-break-then-schedule strategy if we select the pattern variables
�rst (`Pattern').

We do not claim that these IP and CP formulations are the most e�cient ones (for more
advanced formulations, see e.g. Briskorn & Drexl (2009), Ribeiro (2012), and Trick (2005)). Rather,
as the competition does not impose any run time limits, we want to make sure that a trivial IP or CP
formulation does not solve the problem instances to optimality. On the other hand, the participants
could be discouraged from working on the competition if even �nding a feasible solution turns out
to be extremely challenging. Inspired by the work by Van Bulck & Goossens (2021), we therefore
also developed a relatively simple �x-and-optimize (F&O) improvement matheuristic. We believe
that the F&O heuristic represents what would be possible to implement by the participants at the
initial stage of the competition.

In order to construct a feasible solution, the F&O heuristic considers four di�erent strategies.
The �rst three strategies ignore all soft constraints, and then use the opponent CP, pattern CP,
or IP formulation to construct a feasible solution. The fourth strategy starts from the canonical
schedule, ignores all soft constraints, and relaxes all hard constraints violated by the canonical
schedule into a new set of soft constraints. It then tries to solve this modi�ed problem instance by
using the improvement operators explained below, and returns to the original problem instance as
soon as a zero-cost solution has been found.

After the initialization phase, the F&O heuristic tries to improve upon the initial solution
by solving a series of somewhat easier IP formulations. Let us denote with parameters x′i,j,s the
incumbent solution from the previous iteration or the initial solution in case of the �rst iteration. At
each iteration, we then choose with uniform probability one of the following optimization problems
to be solved with Ilog Cplex and a runtime of 300 seconds (parameter d is initialized at 1 and
increases with 1 every 200 iterations).

HAP(d) Draw with uniform probabilities a random subset of teams T ′ ⊆ T , |T ′| = min(d, n).
All games that do not involve any team from T ′ are �xed (i.e. xi,j,s = x′i,j,s ∀i, j ∈ T \
T ′ : i 6= j,∀s ∈ S), whereas all games that involve at least one team in T ′ are free to be
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optimized. However, the home-away pattern set must stay the same (i.e.
∑

j∈T\{i} xi,j,s =∑
j∈T\{i} x

′
i,j,s ∀i ∈ T, ∀s ∈ S).

Opponent(d) Same as HAP(d), but now the opponent schedule must stay the same (i.e. (xi,j,s +
xj,i,s) = (x′i,j,s + x′j,i,s) ∀i, j ∈ T : i 6= j,∀s ∈ S).

FixedGames(d) Same as Opponent(d) and HAP(d), but without the restriction that the HAP
set or opponent schedule must stay the same.

FixedSlots(d) Draw with uniform probabilities a random subset of time slots S′ ⊆ S, |S′| =
min(b1.5dc, |S|). All games not scheduled during time slots in S′ are �xed (i.e. xi,j,s =
x′i,j,s ∀s ∈ S \ S′, ∀i, j ∈ T : i 6= j), whereas all games scheduled in S′ are free to be
optimized.

Table 6 shows the computational results when running each of the monolithic IP and CP for-
mulation and the F&O heuristic with an overall computation time of 1 hour, 16 GB of RAM, and
8 threads on a CentOS 7.4 GNU/Linux based system with an Intel E5-2680 2.5 GHz processor. All
IP formulations were solved with Ilog Cplex version 12.10, and the CP formulations were solved
with cplex cp optimizer version 12.10. Table 6 shows that none of the problem instances can be
solved with proven optimality by a straightforward IP or CP formulation. In fact, even just �nding
a feasible solution turns out to be challenging: the IP formulation �nds a feasible solution for only
12 out of 45 problem instances, whereas the opponent and pattern CP formulations �nd feasible
solutions for 16 and 15 problem instances respectively. This convinces us that the problem instances
are not too easy. Neither are the problem instances overly challenging, as the F&O heuristic �nds a
feasible solution for the vast majority of the instances. The fact that the algorithms �nd solutions
with di�erent objective values, of which the best one is considerably lower than the objective value
of the auxiliary timetable (Column `Aux'), also suggests that the problem instances are neither
overconstrained in the sense that only one or very few feasible solutions exists (making it hard for
participants to compete based on solution quality).

4. Competition rules and results

The competition website (www.itc2021.ugent.be) contains the competition rules, as well as
all problem instances and their best known solutions. It also o�ers an open-source validation tool
and tutorial on the problem format, in order to lower the threshold for participation (and further
research) as much as possible. It serves as a permanent repository for ITC2021. In this section, we
discuss the most important rules, as well as the results obtained by the participants.

4.1. Competition rules and timing

Over the years, various organizers of the international timetabling competitions have wrapped
their mind around developing competition rules. We are much indebted to them, as their experience
has crystallized into the rules that were used for the ITC2019 competition (Müller et al., 2019),
which we largely adopted for ITC2021. We believe the general idea behind these rules is that
they guarantee an e�cient and transparent competition in the sense that they do not require the
organizer to run the participants' code, nor put any unnecessary burden on the participants, and
that evaluation criteria are simple and unambiguous.
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Instance Aux. IP CP F&O heuristic

Oppon. Pattern IP Oppon. Pattern Rel.

Early 1 1898 7 7 7 7 7 7 753
Early 2 852 7 7 7 7 7 7 465
Early 3 1899 6060 3089 7 1518 1380 1603 1467
Early 4 1828 7 7 7 7 7 7 7
Early 5 4085 7 7 7 7 7 7 7
Early 6 5214 7 7 7 7 7 7 7
Early 7 8736 7 7 7 7 7 7 7
Early 8 3554 4604 3961 3344 1743 1825 1825 1834
Early 9 1557 5228 3488 2483 887 973 963 1013
Early 10 4919 7 7 7 7 7 7 7
Early 11 8724 7 7 7 7 7 7 7364
Early 12 1125 7 7 7 1780 7 7 7
Early 13 1254 7 7 7 450 7 7 388
Early 14 1103 9038 3889 3379 1072 949 976 1055
Early 15 5699 7 6612 7154 6403 7 7285 5811

Middle 1 6296 7 7 7 7 7 7 7
Middle 2 7465 7 7 7 7 7 7 7
Middle 3 10470 7 7 7 7 7 7 7
Middle 4 385 118 227 7 36 29 31 31
Middle 5 1177 6627 2956 4691 1179 7 1105 1031
Middle 6 2855 7 7 7 7 7 7 7
Middle 7 6341 7 7 7 3951 7 7 3893
Middle 8 1057 7 920 887 407 379 465 444
Middle 9 2245 7 3450 3015 1650 1680 1530 1670
Middle 10 2585 7 7 7 7 7 7 7
Middle 11 4318 7 7 7 7 7 7 7
Middle 12 2517 7 3886 7 3333 2506 7 1873
Middle 13 4699 7 7 6398 3410 7 2623 2461
Middle 14 3072 7 7 7 2406 7 7 1938
Middle 15 6493 9612 7133 7061 1810 1542 1962 1830

Late 1 3301 7 7 7 7 7 7 2509
Late 2 6239 7 7 7 7 7 7 7
Late 3 5714 8633 7273 6763 4179 3678 3719 3669
Late 4 956 68 7 1023 0 7 0 0
Late 5 2264 7 7 7 7 7 7 7
Late 6 2454 7 7 7 1371 7 7 1268
Late 7 6121 7 7 7 3072 7 7 3123
Late 8 2656 5059 3680 4121 1539 1612 1534 1580
Late 9 2519 3485 3039 2625 1984 1920 1995 1844
Late 10 3187 7 7 7 7 7 7 7
Late 11 1016 7 7 7 7 7 7 786
Late 12 7739 7 7 7 7 7 7 5964
Late 13 5744 7 7 7 7996 7 7 6048
Late 14 3513 7 3230 3400 7 2501 2323 2180
Late 15 1400 6185 4180 2770 1150 1160 1070 930

Table 6: Best found solutions for di�erent algorithms on the set of early problem instances. The di�erent columns for
the F&O heuristic denote which method was used to generate the initial feasible solution: IP, opponent CP, pattern
CP, or relaxation of hard constraints into soft constraints.
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Figure 4: Timeline for the International Timetabling Competition 2021.

An important rule is that there was no limit on the computation time. In fact, the objective
function value of the solution, as reported by the open-source validator on the competition website,
was the only criterion that mattered. While computation time is obviously not unimportant,
a fair comparison in terms of computation time is quite challenging (even more so for further
research after the competition has closed). It would involve running all code on the same system,
or compensating for di�erences in hardware, all of which would require extra work from participants
as well as organizers, and could easily lead to disputes. Moreover, from a practical point of view,
sports timetabling problems are often not so time-critical, as there are often several days or even
weeks available to obtain a good solution.

We also opted to allow the use of any commercial solver, again motivated by lowering the
threshold of participation and reaching out to the largest possible research community. Due to the
fact that we made sure that the instances were challenging computationally (see Section 3.3.4), we
did not worry that the instances would solve with a straightforward formulation on, e.g., state-of-
the-art IP solvers, rendering the competition uninteresting.

Although we allowed parameter tuning, we required participants to use the same version of their
algorithm for all instances, since we are looking for a solver that can cover a wide range of realistic
problems. While their algorithm may analyse the problem instance and set parameters accordingly,
it should apply this same procedure for all instances. In other words, participants should not set
di�erent parameters for di�erent instances manually, but it is acceptable if their code is doing this
automatically.

In total, we released three groups of 15 arti�cially generated problem instances each: early,
middle, and late instances. As indicated in the timeline given in Figure 4, the early group of
instances were available as soon as the competition was o�cially announced (mid October 2020),
while the middle group of instances were only released in February 2021. The late instances followed
half April 2021, which gave the participants two weeks to come up with solutions.

The competition awarded points to each solution based on the position among its competitors
and the type of the instance (early, middle or late). For each competitor and each instance,
only the best submitted feasible solution was considered. The top six, eight, and ten competitors
scored points according to the scale in Table 7; note that instances that were released later in the
competition were worth more points. When two or more solutions tied for the same position, the
points granted by these positions were split evenly between competitors (rounded up in case of
fractional points). When a solver did not compute any feasible solution for some instance, it was
awarded zero points for that instance. The winner of the competition is the participant with the
highest total number of points over all instances.

In order to have a more lively competition, we organized a milestone event mid-January 2021
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Instance

Position Early Middle Late

1st 10 15 25
2nd 7 11 18
3rd 5 8 15
4th 3 6 12
5th 2 4 10
6th 1 3 8
7th 2 6
8th 1 4
9th 2
10th 1

Table 7: Overview of points awarded per position for instances from each group.

where participants had the possibility to submit their best solutions found at that time. Although
optional, participation in the milestone was strongly encouraged as it provided participants with
the feedback on where their algorithms ranked among their peers as well as a chance to win a free
registration for the Mathsport International 2022 conference. Thanks to our sponsors, the EURO
working groups PATAT and OR in Sports, we could split 1,750 EUR prize money between the top
3 competitors, besides discounts on the registration for the PATAT 2022 conference.

4.2. Results

At the time of the �nal submission deadline, 13 research teams from 11 di�erent countries
submitted solutions to be taken into account for the �nal ranking; they are listed in Table 8. This
is a solid participation, compared to the cross-domain heuristic search challenge (17 teams), the two
international nurse rostering competitions (15 teams each), and the third and fourth international
timetabling competition (5 teams each).

Six �nalists were selected from the participating teams, whose �nal ranking was announced at
the Mathsport International 2021 conference (Van Bulck et al., 2021), and is given in Table 9. Team
UoS, from the University of Southamptom, has a clear lead over the team from the University of
Udine (second) and team Saturn, from the Higher School of Economics. Team UoS also has the
best score over the early, middle, and the late instances, and also won the milestone, before Udine
and TU/e. Team UoS also were the only team to �nd a feasible solution for each instance, and they
top the number of instances for which they found a best solution. While their victory is clearly well
deserved, this does not mean that the other teams have no merits. Indeed, many teams found at
least two best solutions and on more than half of the instances, one of the other teams beat team
UoS.

Shortly after the competition ended, we queried the participants on the method they used (see
Table 8). In the meantime, 9 participants have written preliminary descriptions of their approach
(often in the proceedings of the PATAT 2021 conference), and at the time of writing, many of them
are working on a full paper. Team UoS (winners) has used an IP-based matheuristic, in which they
iteratively �x many variables in their IP model, in order to reduce the computation time (Lamas-
Fernandez et al., 2021). Team Udine (second) has used a simulated annealing strategy, using 5
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neighborhoods from the literature, as well as one neighborhood they developed speci�cally for the
competition instances (Rosati et al., 2021). Team Saturn (third) has used a more classic though
novel IP decomposition approach (Sumin & Rodin, 2021). It is clear that a variety of methods
has been applied in this competition, including pseudoboolean optimization (Lester, 2021), which
had barely been explored in the context of sports timetabling before. We refer the readers to these
publications for more details.

Table 10 gives an overview of the best results found by the participants at the time the compe-
tition ended. On all but three instances, a single best solution was found. Two instances, middle 4
and late 4, turned out less discriminating, since 7 and 11 groups respectively found the same best
solution, which turned out optimal.

5. Conclusion

In this paper, we have described the organization and the outcome of the �fth international
timetabling competition (ITC2021), which is the �rst to focus on sports timetabling. We believe
ITC2021 has been a success, which has considerably contributed to the (sports) timetabling com-
munity. This is motivated by the large number of teams that participated in the competition.
Based on the fact that all teams managed to �nd a feasible solution for at least half of the instances
(while no instance turned out too hard to �nd a feasible solution for all teams), and the spread of
the best found solutions over the teams, we believe that the set of instances were not too easy nor
too challenging to solve. Perhaps more than we anticipated at �rst, the results of this competition
show that it is possible to build a generic solver that handles the wide variety of constraints that
are common in sports timetabling. Instead of building dedicated algorithms that are applicable
only to one very speci�c sports competition, we hope that this motivates the research community
to move on to the development of more generic solvers (just like in other timetabling domains). At
the same time, we learned that there is no single best solver. Figuring out which aspects of the
problem are good predictors of the performance of an algorithm is an important future research
topic that can build on the results of this competition.

We proposed a novel integer programming approach to determine the (high-dimensional) feature
values that correspond with target coordinates in the two-dimensional instance space. Ultimately,
this allowed us to generate problem instances that �ll the gaps in the instance space. While this
approach has its limitations (e.g., constraints related to the presence of features are linear), it is ap-
plicable in a wider context than sports timetabling. Indeed, we think it could be a valuable method
to generate a diverse set of problem instances via the use of instance generators that require param-
eters corresponding to features (e.g., number of vertices or graph density in a network generator),
possibly linked by constraints, such as quadratic assignment, multi-dimensional knapsack, graph
colouring, or Boolean satis�ability (Bowly et al., 2019).

Finally, we want to point out that even though the competition has ended and prizes have been
awarded, the set of instances generated for the competition remains important. Only two instances
have been solved to optimality so far, so they remain challenging for future algorithmic approaches.
In fact, this paper may serve as a general guide for anyone who wants to work on the problem
instances in the future. It would also be natural to include these instances as a benchmark for
future publications on sports timetabling algorithms. During the competition, the ITC website was
accessed from all over the world, and even months after the competition has closed, our website
is still actively used, also beyond academia. For instance, the ITC2021 instances will be used in
a hackathon organized by the company Baobab Soluciones. We are also aware of a number of
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ongoing master theses on this topic, and a number of papers have appeared by research teams that
did not o�cially participate in the competition (see e.g., Alsmadi et al. (2022), Hutama & Muklason
(2021)). Improved solutions and lower bounds have also been reported to us after the closing of
the competition, and the competition website will keep track of these.
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Appendix A. File format

The problem instances are expressed using the RobinX data format developed by Van Bulck et al.
(2020b). The main intention of this xml data format is to promote problem instance data sharing
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<Instance>
<MetaData> . . . </MetaData>
<Resources> . . . </Resources>
<Structure> . . . </ St ructure>
<Const ra int s>

<Capac i tyConstra ints />
<GameConstraints/>
<BreakConstra ints />
<Fa i rne s sCons t ra in t s />
<Separa t i onConst ra in t s />

</Const ra int s>
<Object iveFunct ion>

SC
</Object iveFunct ion>

</ Ins tance>

Figure A.5: Main structure of the problem in-
stance xml �le format.

<MetaData>
<InstanceName>Example . xml</InstanceName>
<DataType>A</DataType>
<Contr ibutor>ITC2021</Contr ibutor>
<Date year="2020" month="10"/>

</MetaData>

Figure A.6: xml speci�cation for the meta data of the problem
instance.

<Resources>
<Leagues>

<league id="0" name="League 0"/>
</Leagues>
<Teams>

<team id="0" league="0" name="T1"/>
</Teams>
<Slot s>

<s l o t id="0" name="S lo t 0"/>
</Slot s>

</Resources>

Figure A.7: Speci�cation for the resources of the problem
instance.

<Structure>
<Format l eague Id s="0">

<numberRoundRobin>
2

</numberRoundRobin>
<compactness>C</compactness>
<gameMode>P</gameMode>

</Format>
</ Structure>

Figure A.8: Speci�cation for the round-robin struc-
ture of the problem instance.

and reuse among di�erent users and software applications, which is exactly what the timetabling
competition envisions. The xml data format is open, human readable (i.e., no binary format),
software and platform independent, and �exible enough to store the problem instances which is
why we believe it minimizes the speci�cation burden while maximizing accessibility. The main
structure of the xml �les is provided in Figure A.5. In the remainder of this section, we outline
the structure of the problem instances according to this format.

Appendix A.1. Meta data, resources, and structure

The meta data of a problem instance (see Figure A.6) consists of a unique instance name, the
data type which is always arti�cial (`A'), the contributor which is always `ITC2021', and the date
on which the problem instance was released.

The resources in an ITC2021 problem instance consist of the teams, time slots, and a single
league in which all teams play (see Figure A.7). Recall from Section 2 that the total number of
teams is either 16, 18, or 20. The total number of time slots is thus 30, 34, or 38, respectively.

The structure of the competition format is always a compact 2RR. The gameMode tag has value
`P' if the timetable needs to be phased, and has value `NULL' otherwise (see Figure A.8).
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Appendix A.2. Constraints and objective

Recall that the set of constraints is a partition of hard constraints (Chard) and soft constraints
(Csoft). For each constraint c, the type attribute denotes whether a constraint is hard (`HARD')
or soft (`SOFT'). The validation of constraint c results in a vector of nc integral numbers, called
the deviation vector Dc = [d1 d2 . . . dnc ]. The deviation vector of a violated constraint con-
tains one or more non-zero elements. The objective in the ITC2021 problem instances is to min-
imize the penalties from violated soft constraints while respecting all hard constraints (value `SC'
in the ObjectiveFunction tag of Figure A.5). More in particular, the objective is to minimize∑

c∈Csoft wc
∑nc

i=1 di where wc is a weight given by the penalty attribute of each soft constraint.
In the remainder of this section, we give the syntax, deviation vector, and a speci�c example for

each of the nine constraint types already brie�y outlined in Section 2. For a more formal description
of the constraints and their deviation vector, we refer to Van Bulck et al. (2020b).

CA1 <CA1 teams="0" max="0" mode="H" slots="0" type="SOFT"/>

The team in teams (always a singleton) plays at most max home games (mode = "H") or away
games (mode = "A") during time slots in slots.

The team in teams triggers a deviation equal to the number of home games (mode = "H") or
away games (mode = "A") in slots more than max.

Team 0 cannot play at home on time slot 0.

CA2 <CA2 teams1="0" max="1" mode1="HA" mode2="GLOBAL" teams2="1;2"
slots="0;1;2" type="SOFT"/>

The team in teams1 (always a singleton) plays at most max home games (mode1 = "H"), away
games (mode1 = "A"), or games (mode1 = "HA") against teams (mode2 = "GLOBAL"; the
only mode we consider) in teams2 during time slots in slots.

The team in teams1 triggers a deviation equal to the number of home games (mode1 = "H"),
away games (mode1 = "A"), or games (mode1 = "HA") against teams in teams2 during time
slots in slots more than max.

Team 0 plays at most one game against teams 1 and 2 during the �rst three time slots.

CA3 <CA3 teams1="0" max="2" mode1="HA" teams2="1;2;3" intp="3" mode2=
"SLOTS" type="SOFT"/>

Each team in teams1 plays at most max home games (mode1 = "H"), away games (mode1 =
"A"), or games (mode1 = "HA") against teams in teams2 in each sequence of intp time slots
(mode2 = "SLOTS"; the only mode we consider).

Each team in teams1 triggers a deviation equal to the sum of the number of home games
(mode1 = "H"), away games (mode1 = "A"), or games (mode1 = "HA") against teams in
teams2 more than max for each sequence of intp time slots.

Team 0 plays at most two consecutive games against teams 1, 2, and 3.

CA4 <CA4 teams1="0;1" max="3" mode1="H" teams2="2,3" mode2="GLOBAL"
slots="0;1" type="SOFT"/>

Teams in teams1 play at most max home games (mode1 = "H"), away games (mode1 = "A"),
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or games (mode1 = "HA") against teams in teams2 during time slots in slots (mode2 =
"GLOBAL") or during each time slot in slots (mode2 = "EVERY").

The set slots (mode2 = "GLOBAL") or each time slot in slots (mode2 = "EVERY") triggers
a deviation equal to the number of games (i, j) (mode1 = "H"), (j, i) (mode1 = "A"), or (i, j)
and (j, i) (mode1 = "HA") with i a team from teams1 and j a team from teams2 more than
max.

Teams 0 and 1 together play at most three home games against teams 2 and 3 during the
�rst two time slots.

GA1 <GA1 min="0" max="0" meetings="0,1;1,2;" slots="3" type="SOFT"/>

At least min and at most max games from meetings = {i1, j1; i2, j2; . . . } take place during
time slots in slots.

The set slots triggers a deviation equal to the number of games in meetings less than min

or more than max.

Game (0, 1) and (1, 2) cannot take place during time slot 3.

BR1 <BR1 teams="0" intp="0" mode2="HA" slots="1" type="SOFT"/>

The team in teams (always a singleton) has at most intp breaks (mode2 = "HA", the only
mode we consider) during time slots in slots.

The team in teams triggers a deviation equal to the di�erence in the sum of breaks during
time slots in slots more than intp.

Team 0 cannot have a break on time slot 1.

BR2 <BR2 homeMode="HA" teams="0;1" mode2="LEQ" intp="2" slots="0;1" type="SOFT"/>

The sum over all breaks (homeMode = "HA", the only mode we consider) for teams in teams

(always containing all teams) is no more than (mode2 = "LEQ", the only mode we consider)
intp during time slots in slots (always containing all time slots).

The set teams triggers a deviation equal to the number of breaks in the set slots more than
intp.

Team 0 and 1 together do not have more than two breaks during the �rst four time slots.

FA2 <FA2 teams="0;1;2" mode="H" intp="2" slots="0;1;2;3" type="SOFT" penalty="10"/>

Each pair of teams in teams (always containing all teams) has a di�erence in played home
games (mode = "H", the only mode we consider) that is not larger than intp after each time
slot in slots (always containing all time slots).

Each pair of teams in teams triggers a deviation equal to the largest di�erence in played home
games more than intp over all time slots in slots.

The di�erence in home games played between the �rst three teams is not larger than 2 during
the �rst four time slots.

SE1 <SE1 teams="0;1" min="5" mode1="SLOTS" type="SOFT" penalty="10"/>

Each pair of teams in teams (always containing all teams) has at least min time slots (mode1 =
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<So lu t i on>
<MetaData>

<InstanceName>Example . xml</InstanceName>
<SolutionName>ExampleSol . xml</SolutionName>
<Object iveValue i n f e a s i b i l i t y="0" ob j e c t i v e="2"/>

</MetaData>
<Games>

<ScheduledMatch home="1" away="2" s l o t="1">
. . .

</Games>
</ So lu t i on>

Figure A.9: Speci�cation for a solution to a problem instance.

"SLOTS", the only mode we consider) between two consecutive mutual games.

Each pair of teams in teams triggers a deviation equal to the sum of the number of time slots
less than min or more than max for all consecutive mutual games2.

There are at least 10 time slots between the mutual games of team 0 and 1.

Appendix A.3. Solution �le format

In order to store solutions, we also make use of RobinX (see Figure A.9). The metaData tag
stores the name of the instance xml �le, the name of the generated solution, and the objective
value which consists of the sum of violated hard constraints penalties (infeasibility attribute,
which should be zero) and the sum of violated soft constraints penalties (objective attribute).
Next comes a games tag which enumerates the time slot assigned to each game of the tournament.
The competition website provides access to a validator, allowing participants to verify whether a
solution expressed in this format satis�es all hard constraints and to determine its score on the
objective function.

Appendix B. Adding constraints around the auxiliary timetable

We use the notation q ∼ Pr(q1, q2, . . . , qn | r1, r2, . . . , rn) to denote that a discrete random
variable q follows a discrete probability distribution where each possible value qi has a selection
probability of ri/

∑
1≤k≤n rk. Furthermore, we use function U(a, b) to refer to the discrete uniform

distribution with minimal value a and maximal value b (i.e., U(a, b) = Pr(a, a + 1, . . . , b − 1, b |
1, 1, . . . , 1, 1)). Given the auxiliary timetable where the HAP of team i ∈ T on time slot s ∈ S is
denoted by parameters h′i,s and the assignment of opponents by parameters x′i,j,s with j ∈ T \ {i}
(see Section 3), the constraints are then generated as follows.

CA1 Draw a team i ∼ U(1, |T |) and set teams = {i}.

Hard Draw a random subset of time slots S′ ⊆ S with |S′| ∼ Pr(1, 2, 3, 4 | 2, 1, 1, 1) and set
slots = S′. Let nh =

∑
s∈S′ h

′
i,s and let na = |S′| − nh. If nh < na, set mode = "H"

and max = max(nh, |S′| > 1); otherwise, set mode = "A" and max = max(na, |S′| > 1).

2If two teams play against each other on time slots s1 and s2 and there should be k time slots in between, deviation
is given by max(k − (s2 − s1 − 1); 0) (and not max(k − (s2 − s1); 0) as stated in Van Bulck et al. (2020b)).
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Soft Set penalty = 1 and set slots = S′ with |S′| ∼ Pr(1, 2, 3, 4, 5, 6 | 30, 14, 14, 14, 14, 14).
With uniform probability, choose mode = "H" or "A", and set max = max(b|S′|/2c −
1, |S′| > 1).

CA2 Draw a team i ∼ U(1, |T |), set teams1 = {i}, and set with uniform probability mode1 = "H",
"A", or "HA".

Hard If mode1 is "HA", draw a random subset of time slots S′ ⊆ S with |S′| ∼ Pr(4, 5, 6 |
1, 1, 1) and set slots = S′; otherwise draw a time slot s ∼ U(1, |S|) and set slots = {s}.
Let T ′h = {j ∈ T : x′i,j,s = 1, s ∈ S′}, T ′a = {j ∈ T : x′j,i,s = 1, s ∈ S′}, and T ′ = T ′h ∪ T ′a.
If mode1 is "HA", draw a random subset of teams U ⊆ T such that |U \T ′| = d|S′|/2e+1
and |U∩T ′| = b|S′|/2c−1, set teams2 = U and set max = |{x′i,j,s : j ∈ T ′, s ∈ S′}∪{x′j,i,s :
j ∈ T ′, s ∈ S′}|. If mode1 is "H" or "A", with uniform probability, draw a team i from
T \ T ′h (or T \ T ′a), set teams2 = {i} and set max = 0.

Soft Set penalty=5, draw a random subset of time slots S′ ⊆ S with |S′| ∼ Pr(6, 7, 8 | 1, 1, 1),
set slots = S′, and draw a random subset of teams U ⊆ T \ {i} with |U | = |S′|. If
mode1 is "H" or "A" set max = b|slots|/2c−1, and set max = b|slots|/2c−2 otherwise.

CA3 Recall that there are at most two CA3 hard constraints.

Hard With uniform probability, choose mode1 = "H" or "A". Set teams1 = teams2 = T ,
max = 2, and intp = 3.

Soft Set penalty = 5. Choose with uniform probability mode1 = "H", "A" or "HA", and
draw a team i ∼ U(1, |T |) with teams1 = {i}. Draw a random subset of teams U ⊆ T
with |U | ∼ Pr(5, 6, 7 | 1, 1, 1), and set teams2 = U , max = 2, and intp = 4.

CA4 Scenario 1: simultaneous games between top teams (70% probability). Draw a random subset
of teams T ′ ⊆ T with |T ′| ∼ Pr(4, 5, 6 | 1, 1, 1), set teams1 = teams2 = T ′, mode1="H", and
mode2="GLOBAL".

Hard Collect a set of time slots S′ with |S′| = |T ′| such that a = |{x′i,j,s : i, j ∈ T ′, s ∈ S′}| is
minimal, and set slots = S′ and max = max(a, 2).

Soft Set penalty = 5, draw a random set of time slots S′ ⊆ S with |S′| = |T ′|, and set
slots = S′, max = b|T ′|/2c − 1.

Scenario 2: complementary HAPs (e.g., two teams share a stadium; 30% probability). Choose
with uniform probability two teams i, j ∈ T : i 6= j, and set teams1 = {i, j}, mode1 = "H",
max = 1, teams2 = T and mode2="EVERY".

Hard Denote with S′ = {s ∈ S : h′i,s = 0 ∨ h′j,s = 0}, draw a time slot s ∈ S′, and set
slots = {s}.

Soft Set penalty = 5, draw a time slot s ∼ U(1, |S|), and set slots = {s}.

GA1 Select with uniform probability a set of games G such that |G| ∼ Pr(1, 2, 3, 4 | 5, 1, 1, 1), and
set meetings = G and S′ = {s ∈ S : ∃x′i,j,s = 1, (i, j) ∈ G}. We now consider two scenarios:
scenario 1 (forbidden slots; 60% probability) where we set max = b|G|/2c, and scenario 2
(�xed slots; 40% probability) where we set min = d|G|/2e.
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Hard Collect a set of time slots S′ ⊆ S \ {s ∈ S : ∃x′i,j,s = 1, (i, j) ∈ G} with |S′| = |G|, and
set slots = S′.

Soft Collect a set of time slots S′ ⊆ S with |S′| = |G|, and set slots = S′.

BR1 Draw a team i ∼ U(1, |T |) and set teams = {i}.

Hard Draw a random subset of time slots S′ ⊆ S with |S′| ∼ Pr(1, 3, 6 | 1, 1, 1) and such that
i has b|S′|/3c breaks in the auxiliary timetable. Set slots = S′ and intp = b|S|/3c.

Soft Set penalty = 5 and draw a random subset of time slots S′ with |S′| ∼ Pr(1, 3, 6 | 1, 1, 1).
Set slots = S′ and intp = b|S′|/3c.

BR2 Recall that there is at most one BR2 hard or soft constraint. Set teams = T and slots = S.

Hard Denote with a the total number of breaks in the auxiliary timetable, and set intp = a.

Soft Set penalty = 10 and intp = |T | − 2.

FA2 Recall that we only consider the soft constraint mode of FA2, and that there is at most one
FA2 soft constraint.

Soft Set penalty = 10, teams = T , slots = S, mode = "H", and intp = 2.

SE1 Recall that we only consider the soft constraint mode of SE1, and that there is at most one
SE1 soft constraint.

Soft Set penalty = 10, teams = T , min = 10, and mode1 = "SLOTS".

Appendix C. IP formulation

The following IP formulation is based on Briskorn & Drexl (2009). Some of the constraints in
the ITC2021 format o�er a set of options to specify di�erent variants of the constraint. In this case,
the formulation always assumes that the �rst option is chosen. For all other options, we assume
that the reader can adapt the formulation accordingly.

Variables

xi,j,s = 1 if home team i ∈ T plays against away team j ∈ T \ {i} on time slot s ∈ S, 0 else

bi,s = 1 if team i ∈ T has a break on time slot s ∈ S \ {1} and s− 1 , 0 else

ec = excess on constraint c ∈ Csoft ∪ Chard

sc = slack on constraint c ∈ Csoft ∪ Chard

dc = deviation vector of constraint c ∈ Csoft ∪ Chard

minimize
∑

c∈Csoft

penaltyc dc (C.1)

Round-robin constraints∑
j∈T\{i}

(xi,j,s + xj,i,s) = 1 ∀i ∈ T, s ∈ S (C.2)

∑
s∈S

xi,j,s = 1 ∀i, j ∈ T, i 6= j (C.3)
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n−1∑
s=1

(xi,j,s + xj,i,s) = 1 ∀i, j ∈ T : i < j (C.4)

Capacity constraints∑
j∈T\{i}

∑
s∈slotsc

xi,j,s − dc,i ≤ maxc ∀i ∈ teamsc,∀c ∈ CA1 (C.5)

∑
j∈teams2c

∑
s∈slotsc

xi,j,s − dc,i ≤ maxc ∀i ∈ teams1c,∀c ∈ CA2 (C.6)

∑
j∈teams2c

s+intpc−1∑
p=s

xi,j,p − dc,i,s ≤ maxc ∀i ∈ teams1c,∀s ∈ S : s < |S| − intpc + 1,∀c ∈ CA3 (C.7)

∑
i∈teams1c

∑
j∈teams2c

∑
s∈slotsc

xi,j,s − dc ≤ maxc ∀c ∈ CA4 (C.8)

Game constraints

minc − dc ≤
∑

(i,j)∈meetingsc

∑
s∈slotsc

xi,j,s ≤ maxc + dc ∀c ∈ GA1 (C.9)

Break constraints∑
j∈T\{i}

(xi,j,s−1 + xi,j,s)− bi,s ≤ 1 ∀i ∈ T, s ∈ S \ {1} (C.10)

∑
j∈T\{i}

(xj,i,s−1 + xj,i,s)− bi,s ≤ 1 ∀i ∈ T, s ∈ S \ {1} (C.11)

∑
s∈slotsc

bi,s − dc,i ≤ intpc ∀i ∈ teamsc,∀c ∈ BR1 (C.12)

∑
s∈slotsc

∑
i∈teamsc

bi,s − dc 6 intpc ∀c ∈ BR2 (C.13)

Fairness and separation constraints∑
k∈T

∑
p∈S:
p6s

(xi,k,s − xj,k,s)− dc,{i,j} 6 intpc ∀i, j ∈ teamsc : i 6= j, ∀s ∈ slotsc, ∀c ∈ FA2 (C.14)

(minc − (s2 − s1 − 1))(xi,j,s1 + xj,i,s1 + xi,j,s2 + xj,i,s2 − 1) 6 dc,{i,j} ∀i, j ∈ teamsc : i < j,

s1, s2 ∈ S : s1 < s2 6 s1 + minc, ∀c ∈ SE1 (C.15)

Binary constraints

xi,j,s ∈ {0, 1} ∀i, j ∈ T : i 6= j, s ∈ S (C.16)

bi,s ∈ {0, 1} ∈ {0, 1} ∀i ∈ T, s ∈ S \ {1} (C.17)

dc ≥ 0 ∀c ∈ Csoft (C.18)

dc = 0 ∀c ∈ Chard (C.19)

We only explain the round-robin constraints, and assume that all other constraints are self-
explanatory. Constraints (C.2) state hat each team plays exactly one game per time slot. Further-
more, Constraints (C.3) state that each game of the 2RR is scheduled. Finally, if the tournament
needs to be phased, Constraints (C.4) is added.

Appendix D. CP formulation

The following CP formulation again assumes that the �rst option of each constraint is chosen (see
Appendix C), and is based on (Easton, 2003, Régin, 2001, Trick, 2003). Recall from Section 3.3.1
that distribute(cards, values, vars) is a global constraint where cards and values are vectors
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with the same index set I and vars is a vector of decision variables. The constraint is satis�ed
if for each i ∈ I exactly cards[i] variables in vars have value values[i]. The global constraint
all-different(vars) forces all variables in vars to take di�erent values, and count(varArray,
val) is a global constraint that counts the number of variables in varArray that are equal to val.

Decission variables

oi,s = j if team i ∈ T plays against team j ∈ T \ {i} in time slot s ∈ S

hi,s = 1 if team i ∈ T plays at home in slot s ∈ S, 0 if i plays away

bi,s = 1 if team i ∈ T has a break in time slot s ∈ S, 0 else

dc = deviation vector of constraint c ∈ Csoft ∪ Chard

minimize
∑

c∈Csoft

penaltyc dc (D.1)

Round-robin constraint

ooi,s,s = i ∀i ∈ T, s ∈ S (D.2)

(hi,s + hj,s 6= 1)⇒ oi,s 6= j ∀i, j ∈ T : i < j, s ∈ S (D.3)

(oi,s = j)⇒ (hi,s + hj,s = 1) ∀i, j ∈ T : i < j, s ∈ S (D.4)

distribute([2], [j, ∀j ∈ T \ {i}], [oi,s, ∀s ∈ S]) ∀i ∈ T (D.5)∑
s∈S

(oi,s = j ∧ hi,s = 1) = 1 ∀i, j ∈ T : i 6= j (D.6)

all-different(oi,s, s ∈ {1, . . . , n− 1}) ∀i ∈ T (D.7)

Pertinent constraints

oi,s 6= i ∀i ∈ T, s ∈ S (D.8)

distribute([n− 1, n− 1], [0, 1], [hi,s∀s ∈ S]) ∀i ∈ T (D.9)

distribute([n/2, n/2], [0, 1], [hi,s∀i ∈ T ]) ∀s ∈ S (D.10)

all-different(oi,s, i ∈ T ) ∀s ∈ S (D.11)

Capacity constraint

count([hi,s, ∀s ∈ slotsc], 1)− dc,i ≤ maxc ∀i ∈ teamsc, ∀c ∈ CA1 (D.12)∑
j∈teams2c

∑
s∈slotsc

(hi,s = 1 ∧ oi,s = j))− dc,i ≤ maxc ∀i ∈ teams1c, ∀c ∈ CA2 (D.13)

∑
j∈teams2c

s+intpc−1∑
p=s

(hi,p = 1 ∧ oi,p = j)− dc,i,s ≤ maxc ∀i ∈ teams1c, ∀s ∈ S : s < |S| − intpc + 1, ∀c ∈ CA3 (D.14)

∑
i∈teams1c

∑
j∈teams2c

∑
s∈slotsc

(hi,s = 1 ∧ oi,s = j)− dc ≤ maxc ∀c ∈ CA4 (D.15)

Game constraints

minc − dc ≤
∑

(i,j)∈meetingsc

∑
s∈slotsc

(oi,s = j ∧ hi,s = 1) ≤ maxc + dc ∀c ∈ GA1 (D.16)

Break constraints

bi,s = (hi,s = hi,s+1) ∀i ∈ T, s ∈ S \ |S| (D.17)∑
s∈slotsc

(hi,s = 1 ∧ bi,s = 1)− dc,i ≤ maxc ∀i ∈ teamsc, ∀c ∈ BR1 (D.18)

∑
i∈teamsc

∑
s∈slotsc

(hi,s = 1 ∧ bi,s = 1)− dc 6 intpc ∀c ∈ BR2 (D.19)

Fairness and separation constraints

count(hi,s∀s ∈ slotsc, 1)− count(hj,s∀s ∈ slotsc, 1)− dc,{i,j} 6 intpc ∀i, j ∈ teamsc : i 6= j,
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∀s ∈ slotsc,∀c ∈ FA2 (D.20)

(oi,s1 = j) ∧ (oi,s2 = j)⇒ dc,{i,j} = minc − (s2− s1− 1) ∀i, j ∈ teamsc : i < j, s1, s2 ∈ S :

s1 < s2 6 s1 + minc, ∀c ∈ SE1 (D.21)

dc ≥ 0 ∀c ⊆ Csoft (D.22)

dc = 0 ∀c ⊆ Chard (D.23)

We only explain the round-robin and pertinent constraints and assume that all other constraints
are self-explanatory. Constraints (D.2) link the opponent variables by using a so-called element
constraint which states that team i plays against team j on time slot s if and only if j plays against
i on s. We add Constraints (D.3) if we instantiate the hi,s variables �rst, and add Constraints
(D.4) if we instantiate the oi,s variables �rsts. Both constraints link the hi,s and oi,s variables.
Constraints (D.5) make use of the distribute constraint to state that every pair of opponents
meets twice, and Constraints (D.6) state that each team meets every other team once at home. In
case the tournament needs to be phased, we additionally add Constraints (D.7).

Constraints (D.8) further reduce the domain of the oi,s variables by stating that a team cannot
play against itself. Constraints (D.9) and (D.10) respectively state that each team plays exactly
n − 1 games at home, and that exactly half of the teams play home in each time slot. Finally,
Constraints (D.11) state that the opponents of each time slot are unique.
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Team Participants Institution (Country) Search method

UoS Carlos Lamas-Fernández University of
Southampton (UK)

Matheuristics
(Lamas-Fernandez
et al., 2021)

Toni Martínez-Sykora
Chris Potts

Udine Roberto Maria Rosati University of Udine
(Italy)

Metaheuristics (Rosati
et al., 2021)Matteo Petris

Luca Di Gaspero
Andrea Schaerf

Saturn Daniil Sumin Higher School of
Economics (Russia)

IP Decomposition
(Sumin & Rodin, 2021)Ivan Rodin

GOAL George H. G. Fonseca Federal University of
Ouro Preto (Brazil)

Matheuristics (Fonseca
& To�olo, 2021)Túlio A. M. To�olo

MODAL Timo Berthold Zuse Institute Berlin
(Germany)

IP + Metaheuristics
(Berthold et al., 2021)Thorsten Koch

Yuji Shinano

TU/e Jasper van Doornmalen Eindhoven
University of
Technology
(Netherlands)

Matheuristics (van
Doornmalen et al.,
2021)

Christopher Hojny
Roel Lambers
Frits Spieksma

DES Antony E. Phillips University of
Auckland (New
Zealand)

Matheuristics (Phillips
et al., 2021)Michael O'Sullivan

Cameron Walker

Gionar Giorgio Sartor
SINTEF (Norway)

Bjørnar Luteberget

DITUoI Arta Angelos Dimitsas University of
Ioannina (Greece)Christos Valouxis

Christos Gogos

NHH Ole Stordal Norwegian School of
Economics (Norway)

IP Decomposition
(Subba & Stordal, 2021)Subba Elias

Aures Arbaoui Taha Troyes University of
Technology (France)Athmani Mohamed Elamine

Henni Mohammed
Terzi Mourad

UoR Martin Lester University of
Reading (UK)

Pseudoboolean
optimization (Lester,
2021)Team zero Swarup Ghadiali IIT Bombay (India)

Table 8: Overview of competition participants, ordered according to their �nal rank in the competition.
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Points

Team Early Middle Late Total Feas. sol. Best sol.

1. UoS 121 178 297 596 45 21
2. Udine 75 114 235 424 44 4
3. Saturn 64 115 207 386 37 16
4. GOAL 38 72 133 243 37 4
5. MODAL 21 65 150 236 40 4
6. TU/e 41 47 136 224 38 2

7. DES 8 42 72 122 37 3
8. Gionar 25 16 68 109 40 3
9. DITUoI Arta 4 29 68 101 37 2
10. NHH 5 13 70 88 40 1
11. Aures 0 1 12 13 31 1
12. UoR 0 0 10 10 29 1
13. Team zero 0 0 5 5 26 0

Table 9: Final ranking of the ITC2021 participants; top 6 are �nalists.

Early Middle Late

Instance Best found Team Best found Team Best found Team

1 362 UoS 5177 UoS 1969 UoS
2 160 Saturn 7381 UoS 5400 UoS
3 1012 Saturn 9701 MODAL 2369 UoS
4 512 Saturn 7 7 teams 0 11 teams

5 3127 UoS 413 MODAL 1939 Saturn
6 3352 Saturn 1125 Saturn 923 UoS
7 4763 UoS 1784 Saturn 1558 Saturn
8 1064 GOAL 129 UoS 934 UoS
9 108 UoS 450 UoS 563 UoS
10 3400 UoS 1250 UoS 1988 Saturn
11 4436 UoS 2511 Saturn 207 Udine
12 380 Saturn 911 DES 3689 Saturn
13 121 UoS 253 Saturn 1820 GOAL
14 4 Gionar 1172 Udine 1206 Udine
15 3368 UoS 495 Saturn 20 Saturn & TU/e

Table 10: Overview of the best found results for each instance at the end of the competition.
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