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Abstract

Radar sensors have been shown to be capable of performing simultaneous localization and mapping (SLAM) tasks. However,
single-chip mmWave radar sensors have received little attention because of their limited resolution. In this paper, we present a
novel approach to obtain a robust ego-motion estimation of a UAV using a low power single-chip millimeter wave (mmWave)
FMCW radar sensor. By using a novel method to match local radar signal descriptors, we are able to achieve a robust trajectory
estimation. We then propose to optimise the trajectory by extracting loop closures from low-dimensional latent space descriptors.
We validate our solution in an industrial IoT lab with a drone, but it can be applied more broadly in power contrained platforms.

1 Introduction

Recent years have seen an increase in the development of radar
sensors and algorithms. With the limitations of LiDAR in harsh
weather conditions and visual sensors at night, interests have
grown in sensors such as radar that can be used in all kinds of
environments and conditions. Recent developments in low cost
mmWave radar sensors have opened a new field of applications
thanks to its easy integration and low power consumption.

However, current state of the art in radar SLAM mainly
focuses on mmWave radar sensors with longer range, high
azimuth resolution and a 360° field of view. A lot of this
research takes its ideas from visual SLAM that is carried over
to the radar domain. In [1] the authors show that with a modi-
fied ICP algorithm two radar point clouds can be mapped. The
authors in [2] propose to use SIFT feature descriptors for the
radar targets. Similary in [3] a RANSAC algorithm is used in
combination with a binary feature representation. We can also
apply a direct method such as the Fourier-Mellin Transform
to match radar frames [4]. In other work motion estimation is
done from the maximizing the quality of the map as a function
of the motion [5]. With the release of the Oxford Radar dataset
[6], we have seen a big research effort into developing SLAM
algorithms with radar as their only input. More advanced fea-
ture matching is also being done by novel keypoint descriptors
and pairwise compatibility scores [7][8]. Recently neural net-
works are leveraged to generate good keypoints on which
odometry estimation can be done [9][10]. This approach has
shown to be very powerful to provide keypoints that are robust
to the typical radar clutter.

Low power mmWave radar has been increasingly used the
last few years in other research domains. In [11], the authors
use mmWave radar to track and identify people using the
radar’s point cloud. The authors of [12] present a comprehen-
sive dataset consisting of synchronized FMCW radar, depth,

IMU and RGB data. More recently, in [13, 14] the entire radar
cube is used with a deep neural network to detect vulnerable
road users. Less research is done in solving the SLAM prob-
lem with mmWave radar. In [15], a mmWave radar is used to
execute indoor SLAM by iteratively applying the normal distri-
bution transform scan matching technique. However, an inertial
measurement unit (IMU) is required. LatentSLAM [16] uses a
biological approach for SLAM that produces good results with
radar data and/or when it is fused with vision or depth data. Due
to its low-dimensional state descriptors, only an experience
map is obtained.

None of these methods listed above have been succes-
fully demonstrated for drones, due to the power constraints,
increased number of degrees of freedom and rapid motions
inherent to drone flying.

In this paper our main contributions are:

+  We present a robust ego-motion estimation technique con-
sisting of a novel keypoint matching and loop closure
detection technique.

+ We show that our system can be used on a drone in an indoor
environment using a low power mmWave radar sensor.

In the next section, we provide the outline of our method.
In Section 3 the dataset is discussed on which we tested
our method. Experimental results are discussed in Section 4.
Finally, in Section 5 we present our conclusions and future
work.

2  Methodology

In this section we outline the different steps in our ego-motion
estimation algorithm. Our method is divided in the following
steps:

1. Radar preprocessing
2. Keypoint extraction
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Fig. 1: Principle behind CFAR detections. A sliding window
is used over the range-doppler map that calculates the adaptive
noise level over the training cells. Guard cells are used to pre-
vent leaks of the target energy in the noise level calculation.

3. Relative motion estimation
4. Loop closure

2.1 Radar preprocessing

In a typical radar processing pipeline the radar chip performs
all the necessary tasks on chip and outputs a sparse point set
of radar targets. Since this is not suited for in depth analy-
sis, our platform records the raw ADC samples, similarly as in
[12]. The subsequent range and doppler FFT are done in soft-
ware. The angle of arrival (AOA) can be estimated by the FFT
over the different antennas. However, this method delivers poor
performance in practice. It is necessary to refine the azimuth
resolution with a more sophisticated beamforming algorithm
like CAPON [17] or MUSIC. We opted to use CAPON because
of its good performance that can be achieved with relative
low computational requirements. Finally, we obtained the radar
cube. From this radar cube we can extract range-azimuth or
range-doppler images.

2.2 Keypoint extraction

Due to the low azimuth resolution of the radar sensor, we
cannot use typical ORB or SIFT feature detectors to extract
keypoints from the range-azimuth plane. Instead, to extract
radar keypoints we use the constant false alarm rate (CFAR)
in the range-doppler map as shown in Fig. 1. We opted for OS-
CFAR for the advantages mentioned in [18]. The downside of
using CFAR features with a low azimuth resolution radar is
that they can be sparse and non-uniformly distributed through-
out the scene and inconsistent over time due to their statistical
nature. However, our experiments show that this is not a prob-
lem for our algorithm. With the given keypoints, we extract a
region of interest (ROI) around it in the range-azimuth plane.
This is shown in Fig. 2

2.3 Relative motion estimation

Given the detected keypoints we perform relative motion esti-
mation between two radar frames. Like in [3], we could use
a random sample consensus (RANSAC) algorithm to find the
correct correspondences between keypoints. However, due to
the statistical nature CFAR, the amount of outliers is too high
and we found that the RANSAC algorithm is not always able
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Fig. 2: Feature extraction from the range-azimuth plane. A
region of interest (ROI) around the CFAR target is extracted.
These descriptors are then later used to calculate a correlation
coefficient between two different radar scans.

to select a good set of inliers. Instead, we will use a global
minimization technique over all the extracted keypoints.

Our proposed method performs a grid search over possi-
ble motions. For each proposed motion, we evaluate the match
between the range-azimuth radar scans. For this, each keypoint
is transformed with the proposed motion and we extract the
ROI in the destination frame. We choose to work as much as
possible in polar coordinates because this is the natural sensor
domain of the radar. Introducing an extra radar scan conversion
from polar to cartesian would only introduce extra artifacts.
Furthermore the azimuth bins are not uniformly sized. All the
extracted ROI are then correlated between the radar scans. We
choose to work with the Pearson correlation coefficient because
it produces good results. The motion with the best correla-
tion coefficient is selected. In our algorithm, the grid search
is repeated twice. First a search is executed over a coarse grid.
With the resulting motion, a new search over a smaller but finer
grid is performed. The result is the most optimal motion. The
entire procedure is summarized in Fig. 3.

The advantage of our method is that it is very robust to the
varying CFAR keypoints. The correlation of all ROI combined
has the advantage that we don’t require a one-to-one correspon-
dence between keypoints which is more robust. Furthermore, it
doesn’t require a radar scan conversion which introduces extra
artifacts and is less efficient.

2.4 Loop Closure

The resulting trajectory estimate from the previous section pro-
duces a significant amount of drift, especially in the rotation
estimate. To reduce the drift, we use loop closures extracted
from latent space descriptors as described in LatentSLAM [16].
In LatentSLAM a neural network is trained and used that yields
latent space descriptors which are then mapped on to an experi-
ence map. This method is sensor agnostic and can be applied to
any sensor modality. In this paper, we are interested in making
a metric map hence we investigated if we can extract loop clo-
sures directly from the latent vector descriptors. We re-used the
neural network in [16] that is trained on the RGB camera. We
can then calculate a similarity score (t;,t,) between latent
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Fig. 3: Overview of the relative motion estimation algorithm.
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Fig. 4: Within the similarity matrix we can identify loop clo-
sures by extracting long sequences of high similarity on the
sub-diagonals.
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This is 1 minus the cosine similarity of the latent vectors,
meaning a good similarity is close to zero. In Fig. 4a, the
similarity scores are shown between each latent vector for
one of our drone flights. The latent vectors consist of 32
elements. After thresholding (Fig. 4b), loop closures can be
extracted by searching for long sequences of high similarity
on the sub-diagonals. In practice we looked for sequences of
50 observations or more with a high similarity score.

Together with the pose estimates from Section 2.3 we build
a pose graph using the g2o library [19]. For the pose variances
we use values in line with the radar resolution. The effect of the
performed loop closure for a drone flight is shown in Fig. 5.
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(a) Odometry estimate after rela- (b) Odometry estimate after loop
tive motion estimation. closure.

Fig. 5: On the left, the trajectory estimation obtained after
motion estimation explained in section 2.3 is displayed. After
loop closure, a trajectory estimation is obtained as displayed on
the right. The structure of the warehouse is clearly visible.

The optimisation resolves in particular drift in the rotation
estimation.

3 Dataset

We use a drone equipped with a Jetson Nano, Intel RealSense
depth camera and TI IWR1443 mmWave radar (Fig. 6a). The
drone is operated throughout our industrial IoT warehouse
(Fig. 6b). The TI radar characteristics are shown in Table 1.

Table 1 TIIWR1443 mmWave radar characteristics.

Table Table Column Head
Frequency 76 - 81 GHz
Number of receivers 4
Number of transmitters 3
TX power 12 dBm
Range 20m
FOV 180°
Range bins 256
Angular bins 32
Avg. power consumption 1.7-2.1W

The recorded trajectories consist of loops through the differ-
ent aisles in a random order. Figure 7 visualizes the warehouse
and a potential trajectory. The different aisles are difficult to
disambiguate and make for an ideal challenging dataset. We
evaluate our approach on multiple drone flights through our
warehouse, the trajectories are shown in Figure 8. We per-
formed multiple variations in flying through the different aisles.
In total, we included three different drone flights in our dataset
totaling around 10 minutes of flight time (2500 frames) and
around 350m of travelled distance.



(a) Platform. (b) Warehouse setting.

Fig. 6: Drone platform with Jetson Nano (top), Intel RealSense
depth camera (middle), TT IWR1443 mmWave radar (bottom
left) and Infineon 24Ghz radar (not used, bottom right).
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Fig. 7: Layout of the warehouse with a potential trajectory
included in red. Executed trajectories are loops through vary-
ing aisles in any order. On the right, the radar range-azimuth
response is displayed in various positions in the warehouse.

Fig. 8: The performed trajectories within the warehouse.

Due to the high cost of installing a ultra-wideband local-
isation in our warehouse, we don’t have ground truth data
available. The only sensor we can compare against is the IMU
onboard the drone. In our setup, only the yaw rate of the IMU
was reliably enough to make a comparison with our rotation
estimate. Other measurements were not reliable due to the
vibrations in the drone platform during flight.

Table 2 Evaluation results for three different drone
flights. For each sequence, the amount of radar frames
and extracted loop closures is indicated. After bundle
adjustment, the yaw absolute trajectory estimation error is
reduced (AT Ey,,,) significantly. The error is calculated
against the yaw rate of the IMU unit.

Seq No.of  Loop ATFEy ., ATEy .0
* frames closures w/o BA (deg) w/ BA (deg)
1 800 4 3.17 2.14
2 705 7 3.44 2.43
3 1000 7 2.76 1.98
4 Results

Within our experiments, the relative motion estimation per-
forms first a coarse grid search over Ax, Ay € [—1m, 1m]
and A € [—10°,10°]. The step size is respectively 0.1m
and 1°. Depending on the flight conditions, a coarser search
grid can also work. After an initial estimate is obtained, a
fine grid search is done around this estimate over Az, Ay €
[—0.2m, 0.2m] and A# € [—2°,2°]. Here the used step size is
respectively 0.05m and 0.5°. The pose variances on the trans-
lation estimation is taken at o2 = 05 = 0.1m?, in line with the
range resolution of 0,078m. For the rotation similarly deter-
mined to be o = 0.1rad?. Due to the limited computational
power and the decision to record raw radar cubes, our drone
is able to record everything at SHz. The processing of the data
happens offline.

We compare our obtained odometry, specifically the esti-
mated yaw rate, with the yaw rate of the IMU data by calcu-
lating the absolute and relative trajectory errors [20, 21]. In
Table 2 the absolute trajectory yaw error (AT E,,,,) is shown
for the different sequences. The loop closures have the desired
effect of reducing the yaw estimation error. In Figure 9 the
estimated trajectories are shown. The middle row shows the
accumulated yaw rate (before and after loop closure) of the
drone compared with the accumulated yaw rate of the IMU
sensor. It clearly shows that after performing loop closure the
overal trajectory estimate is significantly improved. In the bot-
tom row of Figure 9, the relative trajectory yaw error (RFy 4.,)
is shown in function of the distance traveled, it shows that our
method limits the RFy,,, between 2.00°and 5.00°. We were
unable to compare to other methods from literature since those
failed on our dataset which is more difficult due to the reduced
resolution of the radar sensor and drone platform.

There are sequences where our method leads to a trajectory
estimate where the different aisles are not well enough distin-
guished, this can be observed in the third sequence in Figure 9.
This doesn’t come to a surprise to us with the limited resolution
of the radar sensor. With a fine enough search grid, these situ-
ations can be avoided. More so, very long sequences can result
in trajectory estimate that collapses after loop closure.
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Fig. 9: Evaluation results of the proposed method on the 3 sequences. On the first row the estimated trajectories are shown, on
the second row the estimated yaw-rate is compared with the IMU turning rate. The cumulative value is used to better visualise
the result. On the last row, the relative trajectory yaw error (R FEy-,.,) with respect to the IMU yaw rate is shown.



5 Conclusion

In this paper we proposed a new ego-motion estimation algo-
rithm that can be used on low power and low cost mmWave
radar. By combining a novel keypoint matching method with
a new way to extract loop closures from latent space descrip-
tors, we are able to achieve robust odometry. Our results look
promising for further development of SLAM technologies for
low power mmWave radar.

In the future we will look into fusing our radar data with
other sensors to achieve a more accurate trajectory. Another
idea where we will explore is better estimating the used
variances for the pose estimations when performing bundle
adjustment which could avoid problems such as the trajectory
collapse discussed in the previous section.
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