
2022

A
ph

ot
o

of
 N

ov
i S

ad
 (S

er
bi

a)
, s

ho
w

in
g

ke
yp

oi
nt

 fe
at

ur
es

 a
s i

de
nt

ifi
ed

 b
y t

he
 SI

FT

lo
ca

l i
m

ag
e

de
sc

rip
to

r.

Nina Žižakić - doctoral dissertation

Autoencoder-Based Image Dimensionality Reduction Methods

Nina Žižakić

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Aleksandra Pizurica, PhD
Department of Telecommunications and Information Processing
Faculty of Engineering and Architecture, Ghent University

Supervisor

November 2022

C

M

Y

CM

MY

CY

CMY

K

Nina iaki - spine 10mm.pdf 1 31/10/2022 10:13

Autoencoder-Based Image Dimensionality Reduction Methods

Nina Žižakić

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Aleksandra Pizurica, PhD
Department of Telecommunications and Information Processing
Faculty of Engineering and Architecture, Ghent University

Supervisor

November 2022

Wettelijk depot: D/2022/10.500/83
NUR 984, 958
ISBN 978-94-6355-642-2

Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Prof. Alin Achim, PhD, University of Bristol, United Kingdom
Prof. Hiep Luong, PhD, Ghent University

Prof. Miloš Radovanović, PhD, University of Novi Sad, Serbia
Prof. Yvan Saeys, PhD, Ghent University
Prof. Steven Verstockt, PhD, Ghent University

Supervisor

Prof. Aleksandra Pizurica, PhD, Ghent University

Acknowledgements

– You have my sword.
– And my bow.
– And my axe.

—Aragorn, Legolas, and Gimli (respectively), from The Lord of the Rings: The
Fellowship of the Ring

Like Frodo in The Lord of the Rings, I, too, had a fellowship of people who
have helped me in the journey to accomplishing my task (in my case, the task
of finishing a PhD). I would like to explicitly thank them here.

First and foremost, I would like to express my deepest gratitude to my
PhD advisor, prof. dr. ir. Aleksandra Pižurica. Thank you for giving me the
opportunity to do my PhD here in Belgium, for believing in me when I didn’t,
for guiding me throughout my PhD with useful comments and discussions, and
for your kindness.

I am also grateful to the members of my PhD examination board for taking
the time to read my thesis, ask great questions, raise valid points and fair
criticisms – all of which have led to an improved version of my thesis.

Next, I would like to thank my colleagues and friends from Telin who have
made my PhD experience a great one! Thank you to Ivana, Martin, Ana,
Zuhaib, Maarten (whose fault it is if there are any errors in the Dutch sum-
mary), David, Dimitri, Apoorv, Sarah, Anoek, Zaira, Brian, Sanne, Gianni,
Michiel, Mathieu, Rafał, Jan, Hiep, Bart and others for fun (and often very
random) lunch discussions – you have all made the mediocre De Brug food
much more enjoyable! I also want to thank my GAIM colleagues whom I have
really enjoyed working with – thank you (and xièxiè!) to Laurens, Shaoguang,
Nicolas, Srđan, Marin, Izumi, Meizhu, Xianlu, Lingchen, Ting, Yoann and Ro-
man. Thank you also to Philippe and Davy for their IT (and moral!) support
and to Patrick and Sylvia for their help with any administrative or bureaucratic
issues that I had.

I would also like to thank my other friends in Belgium that have made me
feel like home here – the (ex) “Ghent friends” and the Iridians – both of whom
have accepted me in their group and made me feel like one of them.

Next, I would like to thank my friends from high school (‘specijalci’) and my
friends from uni, and especially the friends at the intersection of these two sets
– the (active) “Gelender” members Dića, Trujić and Nikola. Hanging out with
you guys is pure fun and seeing messages in our group chat always makes me
happy, even when they are about Dota or NBA. I would also like to thank other
‘specijalci’ – Živko, Valentin, Uroš, Mire, Sergej and everyone else – thank you
for accepting me in my true nerdy self. Thank you also to my friends from uni

ii

in Novi Sad: Slobica, Raške, Jović, Nataša and Nemanja; and my friends from
Paderborn: Milica, Demir and Matteo.

I would also like to thank my oldest friends (in terms of how long we’ve
known each other – I am making no comments about their age): my best
friend Milena (who is the light of every party, the most fun, kind, thoughtful
and joyous person, and the best best friend I could have ever hoped to have
(we have the same opinion!)), my ‘žena’ Antonina (who will have beaten me
by two days in getting a PhD!), my neighbour Miloš and my ‘mrvica’ Milica!
For the last 20 years I have a feeling I can share anything with you guys and
get nothing but your full support!

I would like to thank Michael (who gets his own paragraph) for being a fun
Covid-times office-mate, a kind person, and an immense support throughout
my PhD. Thank you for putting up with my PhD-related and non-PhD–related
stress and with my spam! Finally, I will not be less qualified than you!

Lastly, but most importantly, I want to thank my parents Mitar and
Dušanka. By definition, I would not have achieved any of this if it wasn’t
for you. But, you two have done so much for me. Thank you for investing in
me, for always being there for me, for supporting me and loving me uncondi-
tionally! I realise that I am extremely lucky to have you as my parents. I love
you and I dedicate this thesis to you.

Ghent, October 2022
Nina Žižakić

iii

Funding acknowledgement. This research received funding from
the Flemish Government (AI Research Program).

iv

Contents

Acknowledgements i

List of Abbreviations xiii

Samenvatting xv

Summary xix

1 Introduction 1
1.1 AI, deep learning and autoencoders 1
1.2 Image dimensionality reduction 3

1.2.1 Local image descriptors 5
1.2.2 Image hashing . 8

1.3 Research problems . 11
1.4 Main contributions . 12
1.5 Publications . 15

1.5.1 Publications in international journals 15
1.5.2 Publications in international conferences 16

1.6 Outline of the thesis . 16

2 Autoencoders 19
2.1 Deep learning for image processing – preliminaries 19

2.1.1 Layers . 20
2.1.2 Activation functions . 23
2.1.3 Loss functions . 26

2.2 A brief history of autoencoders 27
2.3 Applications of autoencoders 29
2.4 Types of autoencoders . 30

2.4.1 Classical autoencoders 30
2.4.2 Sparse autoencoders . 31
2.4.3 Denoising autoencoders 32
2.4.4 Variational autoencoders 32

2.5 Conclusion and summary . 36

3 Learning local image descriptors with autoencoders 41
3.1 Introduction and overview of local image descriptors 41
3.2 Benchmarks for local image descriptor evaluation 45
3.3 AE versus VAE and a hyperparameter study 46

3.3.1 Overview of the hyperparameters 46

vi CONTENTS

3.3.2 The experimental setup 50
3.3.3 Empirical results for hyperparameter selection 51

3.4 Approximate evaluation of autoencoders for local image descriptors 54
3.4.1 Image similarity metrics 55
3.4.2 Proposed approximate evaluation method 57

3.4.2.1 The experimental setup 57
3.4.2.2 Results and discussion 61

3.5 Invertible local image descriptors 63
3.5.1 Experimental results . 65

3.5.1.1 Evaluation on patch retrieval 65
3.5.1.2 Evaluation of invertibility 67

3.6 Conclusion . 69

4 Memory-efficient autoencoder-based local image descriptors 71
4.1 Introduction . 71
4.2 Reducing computational memory with intermediate representation 73
4.3 Experimental results . 76

4.3.1 Evaluation on HPatches benchmark 76
4.3.2 Robustness to noise . 77
4.3.3 Robustness to missing data 81

4.4 A case study – inpainting . 81
4.5 Conclusion . 87

5 Transferring the knowledge from hand-crafted to learning-
based descriptors 89
5.1 Introduction . 89
5.2 Framework for knowledge transfer 91
5.3 A learned variant of BRIEF . 92

5.3.1 BRIEF descriptor . 92
5.3.2 Learned BRIEF . 94

5.4 Experimental results . 95
5.5 Conclusions . 97

6 Deep image hashing with autoencoders 103
6.1 Introduction . 103
6.2 Hashing for content-based image retrieval – an overview 105
6.3 Variational Autoencoder Twin-Bottleneck Hashing 107

6.3.1 Improving the binary bottleneck 107
6.3.2 Expanding the continuous bottleneck 109

6.4 Experimental results . 109
6.5 Search of self-similar structures in electron microscopy images . 115
6.6 Conclusion . 117

7 Conclusions and future work 119
7.1 Conclusions . 119
7.2 Future work . 122

Bibliography 122

List of Figures

1.1 Ray Solomonoff’s notes from the 1956 Dartmouth workshop on
Thinking Machines . 1

1.2 Applications of image processing in everyday life 3
1.3 Image sampled uniformly at random 4
1.4 Manifold hypothesis . 5
1.5 Applications of local image descriptors 6
1.6 Mars Helicopter Ingenuity using local image descriptors 7
1.7 Content-based image retrieval 8
1.8 An example of content-based image retrieval 9

2.1 A single neuron in a neural network 21
2.2 Fully-connected layer . 21
2.3 Convolutional layer . 23
2.4 Max-pooling layer . 23
2.5 Sigmoid activation function . 24
2.6 Tanh activation function . 24
2.7 Rectified Linear Unit activation function 25
2.8 Parametric Linear Unit activation function 26
2.9 Exponential Linear Unit activation function 26
2.10 Autoencoders then and now . 28
2.11 Dimensionality reduction – local image descriptors 29
2.12 Image generation with β-VAEs 30
2.13 Classical autoencoder architecture 31
2.14 Sparse autoencoder architecture 32
2.15 Denoising autoencoder architecture 33
2.16 2D latent space of MNIST dataset learned by an AE and a VAE 34
2.17 Variational autoencoders as probabilistic graphical models . . . 34
2.18 Variational autoencoder as a probabilistic graphical model . . . 37
2.19 Variational autoencoder as a neural network 37
2.20 Manifolds learned with VAEs 38

3.1 The effect of different hyperparameter choices on descriptor’s
performance (on HPatches) . 52

3.2 Performance by HPatches tasks (matching, retrieval and verifi-
cation), showing the effect of different hyperparameter choices . 53

viii LIST OF FIGURES

3.3 Correlation between performance of a descriptor learned using
an AE on HPatches benchmark, and the distance in terms of
different IQA metrics between the input and output patches of
that AE . 58

3.4 Correlation between performance of a descriptor learned using
an AE on different HPatches tasks, and the distance in terms of
different IQA metrics between the input and output patches of
that AE . 59

3.5 Correlation between performance of a descriptor learned using
an AE on different HPatches tasks, and the distance in terms of
different IQA metrics between the input and output patches of
that AE . 60

3.6 Reconstructing an image from its SIFT descriptors 63
3.7 The selected variational autoencoder architecture that we used

for learning the invertible local image descriptor 64
3.8 Patch retrieval examples . 66
3.9 Comparison of patch retrieval performance and patch recon-

struction performance for different βnorm values 68
3.10 Examples of patch reconstruction based on the descriptor’s en-

coding . 69

4.1 Exploiting the proposed IR of an image in algorithms that re-
quire many patch comparisons 75

4.2 Encoder architecture in AEs: traditional and proposed 75
4.3 Comparison of performance on HPatches between different de-

scriptors . 78
4.4 Memory needed for storing patch encodings using different de-

scriptors and IR . 78
4.5 Patch retrieval examples . 79
4.6 Patch retrieval examples . 80
4.7 Comparison of descriptors’ robustness to noise and missing data 82
4.8 Noisy patch retrieval and patch retrieval where the query has

missing parts . 83
4.9 Image inpainting results . 85
4.10 Image inpainting results . 86

5.1 General framework for knowledge transfer from hand-crafted to
learning-based descriptors . 93

5.2 Visualisation of the proposed knowledge transfer and improve-
ment framework from a BRIEF descriptor to an autoencoder-
learned descriptor . 96

5.3 Performance comparison between on the patch retrieval task . 98
5.4 Performance comparison on the image matching task 98
5.5 Patch retrieval examples . 99
5.6 Patch retrieval examples . 100

6.1 Schematic of the twin-bottleneck hashing method 106

LIST OF FIGURES ix

6.2 Schematic of the proposed variational autoencoder twin-
bottleneck hashing . 108

6.3 Example images from MS-COCO dataset 110
6.4 Example images from CIFAR-10 dataset 110
6.5 Comparison of precision-recall curves on the CIFAR-10 dataset

for TBH, our two improvements separately and together 111
6.6 Comparison of precision-recall curves on the MS-COCO dataset

for TBH and our method . 112
6.7 mAP of our method and state-of-the-art self-supervised hashing

methods on the CIFAR-10 dataset 113
6.8 Retrieval examples for both TBH and our method 114
6.9 Content-based patch retrieval 116

x LIST OF FIGURES

List of Tables

3.1 Summary of the analysed hyperparameters and our findings re-
garding their influence on the quality of local image descriptors
learned with (V)AEs . 49

3.2 Patch retrieval performance comparison 67
3.3 Patch reconstruction performance comparison 67

xii LIST OF TABLES

List of Abbreviations

AAE Adversarial Autoencoder
AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network

BRIEF Binary Robust Independent Elementary Features
BCE Binary Cross-Entropy

CBIR Content-based image retrieval
CNN Convolutional Neural Network
CVAE Conditional Variational Autoencoder

DL Deep Learning

ELBO Evidence Lower Bound
ELU Exponential Linear Unit
EM Expectation-Maximisation (algorithm)

FAST Features from Accelerated Segment Test (descr.)
FC Fully-Connected (Layer)

GAN Generative Adversarial Network

i.i.d. Independent and identically distributed
IR Intermediate Representation

KLD Kullback-Leibler Divergence

LSH Locality Sensitive Hashing

mAP Mean Average Precision
ML Machine Learning
MP Max Pooling (Layer)
MSE Mean Squared Error
MS-SSIM Multiscale Structural Similarity

NLP Natural Language Processing

ORB Oriented FAST and Rotated BRIEF (descriptor)

xiv List of Abbreviations

PCA Principal Component Analysis
PGM Probabilistic Graphical Model

ReLU Rectified Linear Unit

SIFT Scale-Invariant Feature Transform (descriptor)
SSD Sum of Square Differences
SSIM Structural Similarity Index
SURF Speeded-Up Robust Features (descriptor)
SVM Support Vector Machine

TBH Twin Bottleneck Hashing
t-SNE t-distributed stochastic neighbour embedding

VAE Variational Autoencoder
VI Variational Inference

Samenvatting

Naar schatting worden elke seconde zo’n 45.000 beelden vastgelegd. Dat is
een enorme hoeveelheid beelden die zich opstapelt tot zo’n 1,5 triljoen beelden
per jaar. Ondanks de ongelooflijke vooruitgang van de computertechnologie
in de laatste 50 jaar, is het nog steeds moeilijk om de grote hoeveelheden
beelden die elke seconde worden vastgelegd en hun hoge dimensionaliteit bij te
houden. In het bijzonder is er een toenemende vraag naar zowel de extractie
van toepassingsspecifieke beeldkenmerken als de mogelijkheid om beelden te
representeren in een lagere dimensionale ruimte zodat ze kunnen worden ge-
bruikt door computervisie-algoritmen. Met andere woorden, methoden voor
beelddimensionaliteitsreductie zijn relevanter dan ooit.

Twee belangrijke families van methoden voor beelddimensionaliteitsreduc-
tie zijn lokale beelddescriptoren en methoden voor het hashen van beelden.
Lokale beelddescriptoren laten ons toe verschillende beeldpatches te matchen
op basis van hun gelijkenis en spelen dus een cruciale rol in vele beeldverw-
erkingstaken, zoals het tracken, herkennen en doorzoeken van objecten. Het
hashen van beelden is een fundamenteel instrument voor inhoudelijke samen-
vatting van beelden, waarbij de meest gelijkende beelden worden opgehaald
voor een gegeven zoekbeeld.

Lange tijd waren deze methoden voor het verminderen van de beelddimen-
sies gebaseerd op met de hand vervaardigde kenmerken die werden gebruikt
om een beeld of beeldfragment om te zetten in een laagdimensionale coder-
ing, die vervolgens kon worden gebruikt in computervisie-algoritmen. Bek-
ende voorbeelden van manuele vervaardigde methoden voor beelddimension-
aliteitsreductie zijn localiteitsgevoelige hashing en de lokale beelddescriptoren
SIFT en HOG. In het afgelopen decennium zijn de trends in beeldverwerking
verschoven van handcrafted methodes naar op leergebaseerde methoden, als
gevolg van het enorme succes van deep learning. Deze trend heeft geleid tot
een toename van de populariteit van op leergebaseerde methoden voor beelddi-
mensionaliteitsreductie, die al indrukwekkende resultaten hebben opgeleverd.
De belangstelling is echter vooral uitgegaan naar methoden met supervisie,
waarvoor gelabelde gegevens nodig zijn. Deze vereiste is problematisch voor
toepassingen waarbij de interessante patronen relatief zeldzaam kunnen zijn
en/of het labelproces kennis van deskundigen vereist (bijvoorbeeld bij elektro-
nenmicroscopiebeeldvorming van biologische weefsels). Een mogelijke oplossing
voor dit probleem is het overwegen van methoden die geen gelabelde gegevens
vereisen, die ook veelbelovende eerste resultaten hebben laten zien in dit on-
derzoeksgebied, maar meer onderzoek is nodig om te bepalen of deze methoden
een levensvatbare aanpak zijn voor dergelijke toepassingen.

Het doel van dit proefschrift is het ontwikkelen van zelfgesuperviseerde leer-

xvi Samenvatting

methoden gebaseerd op autoencoders (AE) en variationele autoencoders (VAE)
voor beelddimensionaliteitsreductie van lokale beelddescriptoren en het hashen
van beelden. Er zijn verschillende onopgeloste uitdagingen die we hebben geï-
dentificeerd in dit onderzoeksgebied. Het is onduidelijk hoe autoencoders zich
verhouden tot variationele autoencoders in deze context en wat de voor- en
nadelen zijn van beide methoden met betrekking tot dit probleem. Verder is
er geen literatuur over de invloed van hyperparameterselectie voor het trainen
van autoencoders en variationele autoencoderd voor beelddimensionaliteitsre-
ductie – dit wordt meestal ad hoc uitgevoerd zonder een grondig onderzoek
en rapportage over de invloed van hyperparameters op de prestaties van deze
methoden. Bovendien is de evaluatie van deze zelfgesuperviseerde methoden
ook een uitdagend probleem omdat we geen toegang hebben tot de gelabelde
gegevens. Hoewel het mogelijk is om de evaluatie uit te voeren op de bench-
marks, is deze evaluatie vaak computationeel intensief en niet haalbaar als een
metriek die tijdens de training kan worden gebruikt.

In deze dissertatie pakken we deze onderzoeksuitdagingen aan en stellen
we methoden voor die gebaseerd zijn op zelfgesuperviseerd leren, voor zowel
het leren van lokale beelddescriptoren als voor het hashen van beelden. De
belangrijkste bijdragen van dit proefschrift zijn als volgt:

• Een lokale beelddescriptor die het mogelijk maakt patch-coderingen
geheugenefficiënt op te slaan. Een veelvoorkomende uitdaging bij beeld-
verwerkingstaken die veel patch-vergelijkingen binnen een beeld vereisen,
is dat ze ofwel (i) alle patch descriptoren moeten opslaan (wat veel
geheugen vereist) of (ii) ze telkens opnieuw moeten berekend worden
wanneer de patches nodig zijn voor de taak (wat veel rekentijd vereist).
Wij stellen een originele architectuur van een autoencoder voor die effi-
ciënt omgaat met lokale beelddescriptoren. Deze methode vergemakkeli-
jkt toepassingen met veel patch-vergelijkingen binnen een beeld, die typ-
isch voorkomen in beeldverwerkingstaken zoals denoising en inpainting.
Onze voorgestelde architectuur produceert een speciale beeldrepresen-
tatie, die een compacte manier mogelijk maakt om de descriptoren van
alle patches van een beeld op te slaan, omdat de descriptoren van over-
lappende patches zichzelf overlappen, terwijl ook de descriptorprestaties
niet in gevaar worden gebracht. Bij wijze van proof-of-concept integreren
we onze descriptor in een inpainting-algoritme en evalueren we kwali-
tatief de prestaties ervan bij toepassing op de virtuele restauratie van
meesterschilderijen.

• Belangrijke inzichten in autoencoders voor het leren van lokale beeldde-
scriptoren. Ondanks het feit dat autoencoders en variationele autoen-
coders populaire zelfgesuperviseerd leermethoden zijn, zijn er verschil-
lende hiaten in de literatuur over hoe ze effectief getraind moeten worden
en hoe ze correct geëvalueerd kunnen worden. Bovendien ontbreekt het
in de literatuur aan grondige vergelijkingen tussen autoencoders en varia-
tionele autoencoders voor het leren van lokale beelddescriptoren. In deze
dissertatie gaan we in op deze problemen en presenteren we onze bevin-
dingen met betrekking tot de mogelijke benaderingen voor het trainen

xvii

en evalueren van autoencoders. We voeren een grondige vergelijkende
analyse uit van deze twee neurale netwerkarchitecturen samen met een
diepgaande analyse van de meest relevante hyperparameters om hun op-
timale selectie te begeleiden. Naast deze analyse geven we inzicht in
de uitdagingen en het belang van het selecteren van de juiste evaluati-
etechnieken tijdens het zelfgesuperviseerd leren van de lokale beeldde-
scriptoren en stellen we een snelle approximatieve evaluatiemethode voor
van descriptoren geleerd met autoencoders die sterk gecorreleerd is met
veelgebruikte benchmarks.

• Een raamwerk voor het overbrengen van de kennis van handcrafted naar
leergebaseerde lokale beelddescriptoren. Een interessant probleem dat nog
niet eerder is onderzocht (voor zover wij weten) is het probleem van het
gebruik van met de hand gekozen kenmerken als startpunt van waaruit
een neuraal netwerk verder kan worden getraind, om de training ervan
een voorsprong te geven met als potentieel voordeel dat de modellen beter
verklaarbaar worden. Daartoe hebben we een raamwerk ontwikkeld om
kennisoverdracht van handcrafted naar leergebaseerde descriptoren mo-
gelijk te maken. Dit raamwerk beoogt de prestaties van leergebaseerde
descriptoren te bereiken met behoud van veel van de voordelen van hand-
crafted descriptoren. De descriptor die met behulp van dit raamwerk
wordt aangeleerd is beter uit te leggen (geërfd van de handcrafted de-
scriptor) en kan nauwkeurig worden afgestemd op specifieke beeldverw-
erkingstoepassingen zonder dat daarvoor een gelabelde dataset nodig is.
Deze karakteristieken zijn niet waar voor de handgemaakte noch voor
de supergeviseerde leergebaseerde descriptoren. We demonstreren het
gebruik van dit raamwerk door het creëren van de geleerde BRIEF de-
scriptor (gebaseerd op de BRIEF handcrafted descriptor). Om dit te
bereiken stellen we een elegante implementatie van BRIEF voor als een
convolutioneel neuraal netwerk.

• Een lokale beelddescriptor die het mogelijk maakt om patch-coderingen
terug te draaien naar de originele patches. Het inverteren van lokale
beelddescriptoren is een actief onderzoeksgebied geweest in de afgelopen
tien jaar, maar het is nog nooit uitgevoerd met behulp van autoencoders.
In deze dissertatie dragen we een efficiënte methode aan voor het leren
van lokale beelddescriptoren en hun inversiefunctie met behulp van een
β-variationele autoencoder. We onderzoeken verschillende waarden van β
in de verliesfunctie van de β-VAE om de optimale balans te vinden tussen
het stimuleren van de overeenkomsten tussen input patches om behouden
te blijven in de linbeddingsruimte, en het verzekeren van een goede re-
constructie van de patches vanuit hun coderingen in de inbeddingsruimte.
Onze voorgestelde descriptor toont patch retrieval vergelijkbaar met de
referentie autoencoder-gebaseerde lokale beelddescriptor en toont verbe-
terde reconstructie van patches van hun coderingen.

• Een zelfgesuperviseerd deep image hashing methode die gebruik maakt van
variationele autoencoders om de compressie- en verklaarbaarheidaspecten

van image hashing te verbeteren. Onze voorgestelde deep hashing meth-
ode is gebaseerd op twin-bottleneck hashing die beide bottlenecks ver-
betert door gebruik te maken van recente inzichten op het gebied van
variationele autoencoders. In de binaire bottleneck veranderen we de gen-
eratie van hash codes om gebaseerd te zijn op variationele autoencoder,
waardoor het leren van ontwarde variabelen wordt bevorderd en we de
regularisator kunnen weglaten, waardoor het model wordt vereenvoudigd.
In het continue knelpunt gebruiken we een variationele autoencoder die
getraind wordt met behulp van een beperkte optimalisatieopzet, om de
trade-off tussen compressie en reconstructiekwaliteit van de gegenereerde
monsters beter te beheersen. Beide verbeteringen resulteren afzonderlijk
in betere hashingprestaties, en een nog beter resultaat wanneer ze samen
worden toegepast. De resultaten zijn grondig gevalideerd op alle hash-
code groottes (16-bit, 32-bit en 64-bit) en benchmark datasets CIFAR-
10 (60k beelden) en MS-COCO (330k beelden), en tonen aan dat onze
methode beter presteert dan de state-of-the-art in deep hashing zonder
gelabelde gegevens.

• Case study over het efficiënt zoeken van gelijkvormige structuren in
elektronenmicroscopiebeelden. We demonstreren het potentieel van de
toepassing van onze ontwikkelde beelddimensionaliteitsreductiemethoden
door te zoeken naar regio’s van beelden die biologische structuren bevat-
ten die vergelijkbaar zijn met de structuur van een zoekpatch. We ge-
bruiken lokale beelddescriptoren om de patches te coderen en het zoekpro-
ces te versnellen. De eerste stappen die voor deze toepassing zijn gezet,
laten veelbelovende resultaten zien.

Het in dit proefschrift gepresenteerde werk heeft geleid tot twee tijdschrift-
publicaties als eerste auteur (één opgenomen in het Web of Science en één in een
peer-reviewed internationaal tijdschrift), één tijdschriftpublicatie in voorberei-
ding, en zeven publicaties in de proceedings van internationale conferenties,
waarvan vijf als eerste auteur (één momenteel in review).

Summary

It is estimated that around 45 thousand images are captured every second,
a vast amount of images that accumulates to around 1.5 trillion images every
year. Despite incredible advances in computer technology over the last 50 years,
it is still difficult to keep up with the large quantities of images captured every
second and their high dimensionality. In particular, there is increasing demand
for both the extraction of application-specific image features and the ability
to represent images in lower-dimensional space so that they can be utilised by
computer vision algorithms. In other words, image dimensionality reduction
methods have become more relevant than ever.

Two important families of image dimensionality reduction methods are local
image descriptors and methods for image hashing. Local image descriptors
allow us to match different image patches based on their similarity and thus
play a crucial role in many image processing tasks, such as object tracking and
recognition, panorama image stitching, and image retrieval. Image hashing is
an fundamental tool for content-based image retrieval, where the most similar
images are retrieved for a given query image.

For a long time, these image dimensionality reduction methods relied on
hand-crafted features which were used to transform an image or image patch
into a lower-dimensional encoding, which could then be used in computer vi-
sion algorithms. Well-known examples of hand-crafted image dimensionality
reduction methods include locality-sensitive hashing and local image descrip-
tors SIFT and HOG. In the past decade, due to the huge success of deep
learning, the trends in image processing have shifted from hand-crafted to
learning-based methods. This trend has led to an increase in the popularity
of learning-based image dimensionality reduction methods which has already
yielded impressive results. However, the interest has mostly been concentrated
on supervised methods which require labelled data. This requirement is prob-
lematic for the applications where the patterns of interest may be relatively rare
and/or the labelling process requires expert knowledge (for example, electron
microscopy imaging of biological tissues). One potential solution to this prob-
lem is to consider methods that do not require labelled data, which have also
shown promising initial results in this area of research, however, more research
is needed to determine whether or not these methods are a viable approach for
such applications.

The objective of this thesis is to develop self-supervised learning methods
based on autoencoders (AEs) and variational autoencoders (VAEs) for image
dimensionality reduction – local image descriptors and image hashing. There
are several unaddressed challenges that we have identified in this area of re-
search. It is unclear how autoencoders compare with variational autoencoders

xx Summary

in this context and what are advantages and disadvantages of both methods
regarding this problem. Furthermore, there is no literature on the influence of
hyperparameter selection for training AEs and VAEs for image dimensionality
reduction – this is usually performed in an ad-hoc fashion without a thorough
investigation and reporting on the influence of hyperparameters on the perfor-
mance of the methods. Moreover, evaluating these self-supervised methods is
also a challenging problem since we do not have access to the labelled data.
While it is possible to perform the evaluation on the benchmarks, this evalua-
tion is often computationally intensive and not feasible as a metric to be used
during training.

In this thesis, we address these research challenges and propose self-
supervised-learning–based methods for both learning local image descriptors
and for image hashing. The main contributions of this thesis are as follows:

• A local image descriptor that allows for memory-efficient storing of patch
encodings. A common challenge with image processing tasks that require
many patch comparisons within an image is that they have to either (i)
store all the patches’ descriptors (which requires a lot of memory) or (ii)
recalculate them every time the patches are needed for the task (which
requires a lot of computational time). We propose an original autoencoder
architecture that efficiently handles local image descriptors. This method
facilitates applications with many patch comparisons within an image,
which typically arise in image processing tasks such as denoising and
inpainting. Our proposed network architecture produces a special image
representation, which enables a compact way of storing the descriptors
of all the patches of an image because the descriptors of overlapping
patches overlap themselves, while also not compromising on descriptor’s
performance. As a proof of concept, we integrate our descriptor into
an inpainting algorithm and qualitatively evaluate its performance when
applied to the virtual restoration of master paintings.

• Important insights into autoencoders for learning local image descriptors.
Despite the fact that autoencoders and variational autoencoders are pop-
ular self-supervised learning methods, there are several gaps in the liter-
ature on matters concerning how to effectively train and properly evalu-
ate them. Moreover, the literature lacks thorough comparisons between
autoencoders and variational autoencoders for learning local image de-
scriptors. In this thesis, we address these knowledge gaps and present
our findings regarding the possible approaches to the training and eval-
uation of autoencoders. We perform a thorough comparative analysis of
these two neural network architectures along with an in-depth analysis
of the most relevant hyperparameters to guide their optimal selection.
In addition to this analysis, we provide insights into the challenges and
the importance of selecting right evaluation techniques during the self-
supervised learning of the local image descriptors and propose a rapid ap-
proximate evaluation method for descriptors learned with autoencoders
which is strongly correlated with established benchmarks.

• A framework for transferring the knowledge from hand-crafted to learning-

xxi

based local image descriptors. An interesting problem that has not been
explored before (to the best of our knowledge) is the problem of using
the hand-crafted features as a starting point from which a neural net-
work can further be trained, in order to give its training a ‘head start’
and with the potential benefit of allowing for higher explainability of the
models. To that end, we developed a framework for enabling knowledge
transfer from hand-crafted to learning-based descriptors. This frame-
work aims to achieve the performance of learning-based descriptors while
preserving many of the benefits of hand-crafted descriptors. The descrip-
tor learned using this framework has improved explainability (inherited
from the hand-crafted descriptor) and can be fine-tuned for specific im-
age processing applications without the need for a labelled dataset. These
characteristics are not true of neither the hand-crafted nor the supervised-
learning–based descriptors. We demonstrate the use of this framework by
creating the learned BRIEF descriptor (based on the BRIEF hand-crafted
descriptor). To achieve this, we propose an elegant implementation of
BRIEF as a convolutional neural network.

• A local image descriptor that allows for inverting patch encodings back
onto the original patches. Inverting local image descriptors has been an
active area of research in the past decade, however, it has never been
performed using autoencoders. In this thesis, we contribute an efficient
method for learning local image descriptor and its inversion function using
a β-variational autoencoder. We examine different values of β in the loss
function of the β-VAE to find the optimal balance between incentivising
the similarities between input patches to be preserved in latent space,
and ensuring good reconstruction of the patches from their encodings
in latent space. Our proposed descriptor demonstrates patch retrieval
comparable to the reference autoencoder-based local image descriptor
and shows improved reconstruction of patches from their encodings.

• A self-supervised deep image hashing method that utilises variational au-
toencoders to improve the compression and explainability aspects of image
hashing. Our proposed deep hashing method is based on twin-bottleneck
hashing that improves both bottlenecks using recent insights in the field of
variational autoencoders. In the binary bottleneck we change the genera-
tion of hash codes to be based on variational autoencoder, thus promoting
learning of disentangled variables and allowing us to omit the regulariser,
therefore simplifying the model. In the continuous bottleneck we employ
a variational autoencoder that is trained using a constrained optimisation
setup, in order to better control the trade-off between compression and
reconstruction quality of generated samples. Both of these improvements
result in better hashing performance separately, and an even better result
when applied together. The results have been thoroughly validated on
all hash-code sizes (16-bit, 32-bit and 64-bit) and benchmark datasets
CIFAR-10 (60k images) and MS-COCO (330k images), showing that our
method outperforms the state of the art in deep hashing without labelled
data.

• Case study on efficient search of self-similar structures in electron mi-
croscopy images. We demonstrate the potential of the application of our
developed image dimensionality reduction methods by searching for re-
gions of images that contain biological structures similar to the structure
on the query image patch. We are using local image descriptors to encode
the patches and accelerate the search process. The first steps that have
been taken for this application show promising results.

The work presented in this thesis has led to two journal publications as
the first author (one included in the Web of Science and another in a peer-
reviewed international journal), one journal publication in preparation, and
seven publications in the proceedings of international conferences, five of which
as the first author (one currently in review).

1
Introduction

All we have to decide is what to do with the time that is given to us.
—Galadriel, from The Lord of the Rings: The Fellowship of the Ring

1.1 AI, deep learning and autoencoders

Humans have been intrigued by the idea of non-human intelligence since
the ancient times. The history of artificial intelligence (AI) is considered
to begin with the Greek myths of Pygmalion, Daedalus and Hephaestus
about artificial beings endowed with intelligence by their master craftsmen
[Sparkes 96, Tandy 97, Ovid 04]. In mid-19th century, more than hundred
years before the first computer was built, Charles Babbage and Ada Lovelace
worked on programmable mechanical calculating machines [McCorduck 04],
with Lovelace now being recognised as the first computer programmer for her
algorithm intended to be performed by such a machine [Lovelace 42]. In 1950,
Alan Turing published a seminal paper in which he contemplated the possi-
bility of machines that think [Turing 50]. He defined the term ‘thinking’ by
proposing the “imitation game as a test”, now famously known as the Turing
Test.

The term AI was coined in 1956 at a workshop at Dartmouth College [Ka-
plan 19]. The attendees of the workshop included famous names such as John
McCarthy (the organiser), Claude Shannon, John Nash, Marvin Minsky and
Ray Solomonoff [Solomonoff 56].

In the early days of AI, the researchers addressed problems that can be
described with formal (mathematical) rules, such as first-order logic. These

Figure 1.1: Ray Solomonoff’s notes from the 1956 Dartmouth College workshop on
Thinking Machines [Solomonoff 56], where the term AI was coined.

2 Introduction

problems were typically difficult for humans but were simple to implement on
the computers (e.g. finding a shortest path between two vertices in a weighted
graph). The real challenge for AI, however, proved to be solving problems that
are straightforward and intuitive for humans. Such problems include recognis-
ing objects in an image, speech recognition, and understanding text.

One initial approach to solving such problems is known as knowledge-
based systems, which involved hard-coding the knowledge about the world
using formal languages. The idea was that a computer can reason about the
statements in the formal languages by using the logic inference rules. This
approach, however, proved difficult as it was nearly impossible to create a
knowledge base large enough to encompass, for example, all the rules in a
natural language [Jacobs 85,Lenat 89].

The shortfalls of knowledge-based systems led researchers to believe that
one needs to build a system that can learn the rules instead of having them
hard-coded – thus machine learning was born. The idea of machine learning
was that algorithms can improve automatically by extracting patterns from
data. While the original ML algorithms (such as logistic regression) showed
good performance on simple datasets (e.g. the famous Kaggle challenge of
predicting survival on the Titanic [Kaggle 10]), it became clear that these
algorithms are not capable of addressing more challenging problems such as
computer vision and natural language processing.

After a few stagnate periods in the development of such systems, the field
of AI started to gain traction again around the year 2010. This increase in
interest was caused by several factors, namely, faster and cheaper computers,
algorithmic improvements, and access to large amounts of data (big data). Re-
searchers realised that making the neural networks deeper (where depth of a
network refers to the number of layers) and training them on larger amounts of
data would result in the improvement of their performance on image process-
ing tasks such as object classification [Krizhevsky 09]. Incorporating machine
learning techniques to use these deep neural networks has given rise to deep
learning, which is still a thriving field of research today.

The extent to which the field of deep learning has been successful cannot
be overstated. In the beginning, a lot of the success was in supervised deep
learning, where models learn to associate some input (data) to some output
(labels), with the applications such as image processing and computer vision
(e.g. image or object classification) [Krizhevsky 09, Simonyan 14, He 16] and
speech recognition [Deng 13,Abdel-Hamid 14,Sainath 15].

In some applications, however, supervised learning is not a viable approach
due to the requirement of providing labelled datasets. Modern datasets are
often made up of millions of samples that need to be labelled if they are to be
used by supervised learning techniques. Labelling this many samples, however,
is costly and in many cases simply not practical. Moreover, sometimes the
labelling can only be performed by experts in the field (e.g. medical doctors)
whose time is very valuable. Most companies and research groups do not have
the resources for this type of labelling and in these cases, supervised learning
is not a good fit.

In parallel to the development of supervised learning techniques, there has

1.2 Image dimensionality reduction 3

also been development of self-supervised learning techniques, which do not rely
on labelled data. These techniques exploit characteristics and patterns in the
data to learn the required behaviour.

One example of a highly successful self-supervised learning technique is an
autoencoder (AE) [Hinton 06], where a network is trained to reproduce its
input via a lower-dimensional intermediate layer. More recently, research into
autoencoders has led to variational autoencoders (VAEs), which are based on
probabilistic graphical models [Kingma 13]. In the past decade, AEs and VAEs
have been used for dimensionality reduction, learning features, and generative
modelling. In this thesis, we will study how AEs and VAEs can be trained and
used for image dimensionality reduction.

1.2 Image dimensionality reduction
Vast amounts of images are captured every second – many quick selfies we send
our friends, numerous photographs capturing important moments of our lives,
various medical scans the doctors perform to examine our health, abundant
satellite images monitoring the current climate and geopolitical issues. Despite
the fact that our computers – from the smartphones in our pockets to the mas-
sive clusters of supercomputers in specialised data centres – have seen incredible
advances and can perform operations unfathomable to us only a decade ago,
it is still difficult to keep up with the vast quantity of images captured every
second and their high dimensionality. In particular, there is increasing demand
for both the extraction of application-specific image features and the ability
to represent images in lower-dimensional space so that they can be utilised by
computer vision algorithms.

Figure 1.2: Applications of image processing in everyday life.

The information contained in images is highly redundant [Tošić 11]. In
natural images, we typically have many nearly-flat or slowly-changing areas
and many repetitive patterns, which is why we can efficiently compress the
images, i.e. transform them onto a lower-dimensional space. This property of
natural images is outlined in the manifold hypothesis [Cayton 05], which states
that natural images (and other types of data such as sounds and text) lie on
lower-dimensional manifolds. The supporting evidence for the manifold

4 Introduction

Figure 1.3: Image sampled uniformly at random (each pixel value is sampled from
a uniform distribution). Despite the fact that there is a non-zero probability of
generating an image that looks like a ‘natural image’ (e.g. of a house, a dog), we
do not observe this in practice, suggesting that natural images occupy a negligible
portion of the space of all possible images.

hypothesis can be summarised as follows. Firstly, by sampling uniformly from
the space of all possible images, it is extremely unlikely that a natural im-
age would ever be found. For example, Figure 1.3 shows a uniformly sampled
image, which resembles meaningless noise. Secondly, the natural image data
space seems to be continuous. We can imagine many possible transformations
that would allow one to trace a manifold through this space of all possible
images: one could gradually move the position and orientation of the camera,
gradually move or rotate objects in the camera’s frame, or gradually adjust
the brightness of the lights in the room. This characteristic of the image data
space is evident in Figure 1.4 (b), which shows how the subspace of hand-
written digits is interconnected. Moreover, the manifold hypothesis has been
supported through rigorous experiments [Brand 03,Belkin 03,Donoho 03,Cay-
ton 05,Weinberger 06,Narayanan 10,Fefferman 16].

The realisation that natural images lie on low-dimensional manifolds has
led to the research on manifold learning, and more generally, dimensionality
reduction.

The terms ‘manifold learning’ and ‘dimensionality reduction’ are used
loosely and sometimes interchangeably in the literature, but they are not ex-
actly the same. Dimensionality reduction generally refers to any kind of trans-
formation of the data from a high-dimensional space into a lower-dimensional
space. While this dimensionality reduction method can be linear, as it is with,
for example, Principal Component Analysis (PCA), newly-developed methods
are usually non-linear and aim to learn a lower-dimensional manifold (manifold
learning).

Image dimensionality reduction can be performed in many applications and
for a variety of reasons such as: allowing for faster and more efficient image
search (content-based image retrieval), extracting the most important features
of an image in order to classify it, lowering the computational time of different

1.2 Image dimensionality reduction 5

(a) (b)

Figure 1.4: (a) A visualisation of a manifold – a connected region which locally
appears to be a Euclidean space from any given point. (b) A two-dimensional manifold
learned with a variational autoencoder on the MNIST dataset of handwritten digits
[LeCun 10].

image processing tasks, facilitating explainability by providing insights into
a machine learning pipeline, or tackling any other problems that arise from
the curse of dimensionality. In this thesis, we focus on two types of image
dimensionality reduction methods: local image descriptors and image hashing.

1.2.1 Local image descriptors

Local image descriptors are functions that transform a small part of an image
(an image patch) into a compact representation – a patch encoding. A lo-
cal image descriptor should preserve similarities between patches – two similar
patches should also have similar encodings. Depending on the type of appli-
cation where the local image descriptor is employed, it can be invariant to
rotation, translation or brightness.

Local image descriptors are a crucial building block of various image process-
ing tasks including: image inpainting, denoising, stitching, object tracking, mo-
tion estimation, and saliency detection. For example, in image stitching, match-
ing parts of images are identified by comparing patches’ descriptors [Brown 07].
In object tracking and motion estimation, local image descriptors are used to
identify corresponding objects in subsequent frames and to associate those ob-
jects between frames [Yilmaz 06,Poddar 19]. Similarly to image stitching, this
is done by comparing descriptors of patches between frames. In image inpaint-
ing, the goal is to fill in the missing part of an image in a visually plausible way.
Patch-based inpainting methods replace (partially) missing image patches with
the matching ones taken from the undamaged parts of the image. Local image
descriptors can be used here to improve and speed up the search for matching

6 Introduction

Panorama image stitching

Object tracking Image denoising Image inpainting

Figure 1.5: Applications of local image descriptors

patches.
Local image descriptors are even used on Mars! Mars helicopter Ingenuity,

the first powered controlled extraterrestrial aircraft, is able to fly thanks to
local image descriptors. A modified local image descriptor FAST [Rosten 06] is
detecting and encoding terrain features in each frame of the video feed that is
being recorded by the navigation camera (Figure 1.6). Helicopter’s velocity is
then calculated based on the difference in positions of tracked features between
subsequent frames [Bayard 19].

The traditional approach to designing local image descriptors involved using
hand-crafted features, with SIFT [Lowe 99], HOG [Dalal 05], GLOH [Mikola-
jczyk 05], SURF [Bay 08] and DAISY [Tola 09] being the most famous de-
scriptors. In recent years, deep learning has become a popular approach to
solving many image processing challenges, including the design of local image
descriptors. The first learned local image descriptors arose from the neces-
sity to find a way of choosing parameters in the hand-crafted methods that

1.2 Image dimensionality reduction 7

Figure 1.6: The Ingenuity Mars Helicopter’s navigation camera uses local image
descriptors for autonomous navigation. Left: Helicopter’s shadow captured on the
surface of Jezero Crater during Ingenuity’s second experimental test flight on April
22, 2021. Credits: NASA/JPL-Caltech. Right: Example of feature tracking using
Ingenuity’s camera, showing features tracked over 10 consecutive frames. Image taken
from [Bayard 19].

does not involve hand-tuning [Jin 05, Winder 07]. As deep learning meth-
ods developed further a growing number of learning-based descriptors started
emerging. Nowadays, learned descriptors are mostly supervised methods that
learn useful features on pairs of similar and dissimilar patches, striving for a
high correlation between the similarity of the patches and the similarity of
their descriptors. Most recent methods involve the use of convolutional neural
networks [Fischer 14a, Han 15, Ono 18, Wang 20], some of which are siamese
networks [Zagoruyko 15,Simo-Serra 15], or triplets [Balntas 16,Tian 19].

Some learned descriptors have been shown to outperform hand-crafted ones
on benchmarks [Fischer 14a,Balntas 17]. Nevertheless, despite many advance-
ments in the learning approach and their superior performance on benchmarks,
hand-crafted descriptors still perform comparably or better than the learned
descriptors in practical applications [Schonberger 17]. He et al. [He 18] argue
that descriptor learning should not be approached as a standalone problem,
but rather as a component of a broader image processing task, which must
also be taken into consideration. For example, descriptors learned on general
datasets such as ImageNet may not necessarily work well when part of an im-
age processing task that involves some specific medical imaging dataset such
as X-ray images. The ability to fine-tune them on such specific datasets could
help improve their performance.

Self-supervised deep learning methods such as autoencoders do not suffer
from dependence on labelled data. Chen et al. were the first to apply au-
toencoders to learn local image descriptors [Chen 15]. Their method shows
promising results, however, the network architecture they used is very small
(containing only one hidden layer) and thus lacks the capacity to learn and
encode some useful features of patches.

In this thesis, we propose autoencoder-based and variational-autoencoder–

8 Introduction

based architectures suitable for learning to capture relevant patch features for
modern-day image processing applications. More generally, we research learn-
ing local image descriptors using autoencoders and variational autoencoders
and provide insights on different aspects of their training process. We compare
the performance of classical autoencoders with variational autoencoders and
study how to select their hyperparameter in an optimal manner. We also pro-
pose an efficient method for approximate evaluation of autoencoders which en-
ables their faster training. Furthermore, we investigate how to optimise for the
invertibility of descriptors learned with autoencoders and present an invertible
local image descriptor. We also propose a special autoencoder architecture that
is optimised for image processing tasks that require many patch comparisons
within a single image and, more specifically, for inpainting. Finally, we propose
a framework for transferring knowledge from hand-crafted to self-supervised-
learning–based descriptors in order to exploit the best characteristics of both
approaches.

1.2.2 Image hashing

Image hashing is another image dimensionality reduction method wherein
whole images are mapped onto low-dimensional hash codes (usually 16-bit, 32-
bit or 64-bit). Image hashing is mainly used for content-based image retrieval
(CBIR), where we want to retrieve the most similar images for a given query
image. This similarity does not have to be visual but can also be semantic
similarity, e.g. reflecting the types of object(s) depicted in images.

hash function

query image

retrieved
images

hash code

hash database

look up
similar hash
codes in the
database

retrieve
images

Figure 1.7: Content-based image retrieval

1.2 Image dimensionality reduction 9

Figure 1.8: An example of content-based image retrieval – Google image search.
An image is uploaded and visually similar images are retrieved (in addition to some
information about the image).

While there is overlap between image hashing and local image descriptors,
there are also important differences. For example, image hashing aims to rep-
resent specific information about the whole image (e.g., what is this a picture
of) while local image descriptors work with image patches and aim to enable
finding parts of the image that are similar.

Similarly to local image descriptors, we can classify image hashing methods
into two categories: traditional (data-independent) methods and learning-based
methods (data-dependent).

Traditional hashing methods rely on hand-crafted features, and can thus
only capture visual similarity between images, rather than a semantic similar-
ity. These methods are often referred to as locality sensitive hashing (LSH)
methods, named after a family of hash functions that maps similar inputs to
the same hash code. Following on the two pioneering works [Charikar 02,An-
doni 06], many variations have been proposed using different distance met-
rics [Indyk 98,Dasgupta 11,Kulis 11,Ji 12] or changing the search method [Pan-

10 Introduction

igrahy 05,Bawa 05,Pan 12]. The issue with these traditional hashing methods
is the fact that they have no way of encoding the semantic similarities between
images, only the visual similarities.

Learning-based methods, on the other hand, use deep learning to achieve
not only visual but also semantic similarity. They have shown superior perfor-
mance over the traditional hand-crafted methods. Most of the work in this field
has focused so far on supervised techniques, which exploit the data distribution
together with its annotations. Over recent years, many different architectures
have been proposed for supervised learning to hash. The most straightfor-
ward techniques make use of a deep encoder to directly encode inputs to hash
codes [Gong 13, Erin Liong 15, Shen 15, Wang 16b]. Yang et al. presented a
fine-tuning process to convert such an encoder of a classifier into a deep hashing
network [Yang 17]. Another popular supervised technique trains on predicting a
pairwise loss function [Lin 13,Xia 14,Liu 16,Shi 16]. A natural extension to this
are triplet-based losses, where a query data point is compared to both a similar
and a dissimilar data point [Wang 16a]. Supervised generative adversarial net-
works have proven to be viable hashing methods [Qiu 17, Cao 18, Wang 18],
as well as supervised autoencoder-based networks that exploit the models’
bottleneck to extract hash codes [Cao 16, Dadaneh 20]. While supervised-
learning–based methods show promising retrieval results, they require anno-
tated datasets. This is a severe limitation, because, for many real-world
datasets, it is not feasible or it is simply too costly to make annotations. There
is a high demand for methods that can learn useful hash functions solely based
on images, i.e. without relying on their labels or other types of additional
information on what the images depict.

There is a wide variety of image hashing methods that do not rely on labelled
data. Generative adversarial networks again show state-of-the-art performance
in this field [Cao 18,Dizaji 18,Song 18,Zieba 18]. Similarly, autoencoders also
remain a relevant technique [Carreira-Perpinán 15,En 17,Hansen 20]. Dai et
al. build on the idea of a variational autoencoder, applying it to construct hash
codes directly from the bottleneck [Dai 17]. Hu et al. propose a self-supervised
technique which assigns pseudo labels to the data using precomputed features
and shows promising results [Hu 17]. The approach optimises its hash function
to maximally compress the dataset and is a generative approach since it can be
used to regenerate the inputs. Recent work by Shen et al. [Shen 20] introduced
a method called twin-bottleneck hashing (TBH) that uses autoencoder-type
architecture which implements elements from graph-based learning.

In this thesis, we focus on self-supervised-learning–based image hashing.
We propose a novel image hashing method that is optimised for both learning
a useful hash function (that retrieves relevant images when being used for
content-based image retrieval) and for its explainability (which is achieved by
promoting disentangled representations). Our method achieves state-of-the-art
performance in image hashing, as validated on different benchmark datasets.

1.3 Research problems 11

1.3 Research problems

Tremendous amounts of images are captured every second, resulting in an ever-
increasing need to extract the most important information from images and
to represent them in a lower-dimensional space. This need necessitates the
demand for effective image dimensionality reduction methods.

Traditionally, image dimensionality reduction involved using hand-crafted
features to transform an image (or an image patch) to its lower-dimensional
encoding. Local image descriptors such as SIFT [Lowe 99] and HOG [Dalal 05]
are perhaps the most famous examples of hand-crafted methods. In the past
decade, due to the huge success of deep learning, the trends in image pro-
cessing have shifted from hand-crafted to learning-based methods. This trend
shift has also led to the growing popularity of learning-based image dimen-
sionality reduction methods, which showed impressive results [Shen 15, Bal-
ntas 16, He 18, Tian 19]. In general, these methods are supervised and rely
on large labelled datasets in order to achieve adequate performance. However,
when designing image dimensionality reduction methods for specific image pro-
cessing tasks (e.g. image dimensionality reduction of electron microscopy im-
ages), one will not always have access to the resources (time and/or money)
needed to acquire such extensive labelled datasets. In addition to the super-
vised methods, some self-supervised image dimensionality reduction methods
have also shown promising results [En 17,Song 18,Shen 20], however, this field
of research still has a lot of room for further development and innovation.

The objective of this thesis is to develop self-supervised learning methods
(autoencoders and variational autoencoders) for image dimensionality reduc-
tion – local image descriptors and image hashing. There are several unad-
dressed challenges that we have identified in this area of research. It is unclear
how autoencoders compare with variational autoencoders in this context and
what are advantages and disadvantages of both methods regarding this prob-
lem. Furthermore, there is no literature on the influence of hyperparameter
selection for training AEs and VAEs for image dimensionality reduction – this
is usually performed in an ad-hoc fashion without a thorough investigation
and reporting on the influence of hyperparameters on the performance of the
methods. Moreover, evaluating these self-supervised methods is also a chal-
lenging problem since we do not have access to the labelled data. While it is
possible to perform the evaluation on the benchmarks, this evaluation is of-
ten computationally intensive and not feasible as a metric to be used during
training.

The research objectives for this thesis are as follows:

• Explore the differences between autoencoders and variational autoen-
coders for learning local image descriptors and analyse the hyperparam-
eters’ impact on descriptor’s performance.

• Enable more efficient training of local image descriptors using self-
supervised methods by accelerating the evaluation of the descriptors dur-
ing training.

12 Introduction

• Enable more efficient storage of the patch encodings calculated using a
local image descriptor. Storing patch encodings for overlapping patches
is not efficient with local image descriptors, i.e. we have to store the en-
codings for all the patches separately, even if the patches are overlapping.

• Explore a model-based approach where the knowledge from a specified
hand-crafted descriptor is transferred to a learned descriptor. This type
of knowledge transfer would allow for retaining explainability of the de-
scriptor while allowing its performance to improve with the training.

• Develop a framework for inverting the encodings from self-supervised-
learning–based local image descriptors back onto their original image
patch. This problem has been an active area of research in the past
decade, starting from inverting the hand-crafted descriptors [Weinza-
epfel 11, Vondrick 13] to, more recently, inverting supervised-learning–
based descriptors [Mahendran 15]. However, the research on inverting
self-supervised-learning–based descriptors lacks adequate literature.

• Develop self-supervised image hashing method optimised without com-
promising on its explainability. Most well-performing image hashing
methods are learning-based methods, with the neural networks often be-
ing seen as a black box. This can be an issue, especially in some criti-
cal use-cases such as medicine (where it is also difficult to find labelled
datasets, thus self-supervised learning is a better fit). Applying more
explainable self-supervised neural networks is needed for this use-case.

• Explore the potential of using image dimensionality reduction methods
for the efficient search of self-similar structures in biological datasets. An
example application of this is as follows. When a biologist or a doc-
tor notices a strange pattern in an image of tissue, it would be of great
use if they could find other occurrences of similar-looking tissue. It is
possible to perform brute-force search for finding similar-looking patch
candidates, but this limits the search space that can be searched in rea-
sonable time. Performing such search in lower-dimensional space would
allow us to expand the search space and/or decrease the computational
time.

1.4 Main contributions

The focus of this thesis is to develop a more in-depth understanding on how
autoencoders can be applied to perform two kinds of prominent image dimen-
sionality reduction: local image descriptors and image hashing. In addition to
investigating and developing local image descriptors and deep image hashing
methods, we also provide insights into some important aspects of deep learning.
These include exploring how to efficiently evaluate autoencoders, investigating
what are the most important hyperparameters when training them for image
dimensionality reduction, studying how to optimise for the invertibility of data

1.4 Main contributions 13

encodings, and researching how to transfer knowledge from traditional (hand-
crafted) methods to the learning-based methods, thus reaping the benefits of
both approaches. The main contributions of this thesis can be summarised as
follows:

• A local image descriptor that allows for memory-efficient storing of patch
encodings.

A common challenge with image processing tasks that require many patch
comparisons within an image is that they have to either (i) store all the
patches’ descriptors (which requires a lot of memory) or (ii) recalculate
them every time the patches are needed for the task (which requires
a lot of computational time). We propose modifying the architecture
of an autoencoder in order to yield a descriptor design specifically tai-
lored for applications with many patch comparisons within a single image.
Our proposed network architecture produces a special image representa-
tion which enables a compact way of storing the descriptors of all the
patches of an image because the descriptors of overlapping patches over-
lap themselves. We call this data structure intermediate representation,
and extracting a descriptor from it is efficient and is achieved through
a single max-pooling operation. We show that this architectural change
does not impact the descriptor’s performance when evaluated on a stan-
dard benchmark for local image descriptors and at the same time results
in significant savings in memory complexity in single-image tasks. As
a proof of concept, we integrate our descriptor into an inpainting al-
gorithm and qualitatively evaluate its performance when applied to the
virtual restoration of master paintings.

This research resulted in three conference papers [Žižakić 19a,Žižakić 19b,
Meeus 20].

• Important insights into autoencoders for learning local image descriptors.

Despite the fact that autoencoders and variational autoencoders are pop-
ular self-supervised learning methods, there are several gaps in the liter-
ature on matters concerning how to effectively train and properly evalu-
ate them. Moreover, the literature lacks thorough comparisons between
autoencoders and variational autoencoders for learning local image de-
scriptors. In this thesis, we address these knowledge gaps and present
our findings regarding the possible approaches to the training and eval-
uation of autoencoders. We perform a thorough comparative analysis of
these two neural network architectures along with an in-depth analysis
of the most relevant hyperparameters to guide their optimal selection.
In addition to this analysis, we provide insights into the challenges and
the importance of selecting right evaluation techniques during the self-
supervised learning of the local image descriptors and propose a rapid ap-
proximate evaluation method for descriptors learned with autoencoders
which is strongly correlated with established benchmarks.

This research resulted in a journal article [Žižakić 21a] and a conference
paper currently under review [Žižakić 22].

14 Introduction

• A framework for transferring the knowledge from hand-crafted to learning-
based local image descriptors.

An interesting problem that has not been explored before (to the best
of our knowledge) is the problem of using the hand-crafted features as
a starting point from which a neural network can further be trained, in
order to give its training a ‘head start’ and with the potential benefit of
allowing for higher explainability of the models.

To that end, we developed a framework for enabling knowledge transfer
from hand-crafted to learning-based descriptors. This framework aims
to achieve the performance of learning-based descriptors while preserving
some benefits of hand-crafted descriptors – the descriptor learned using
this framework has improved explainability (inherited from the hand-
crafted descriptor) and can be fine-tuned for specific image processing
applications without the need for a labelled dataset. These characteristics
are not true of neither the hand-crafted nor the supervised-learning–based
descriptors. We demonstrate the use of this framework by creating the
learned BRIEF descriptor (based on the BRIEF hand-crafted descriptor
[Calonder 10]). To achieve this, we propose an elegant implementation of
BRIEF as a convolutional neural network.

This research resulted in one conference paper [Žižakić 20a].

• A local image descriptor that allows for inverting patch encodings back
onto the original patches.

Inverting local image descriptors has been an active area of research in
the past decade [Weinzaepfel 11,d’Angelo 12,Vondrick 13,Mahendran 15].
In this thesis, we contribute an efficient method for learning local image
descriptor and its inversion function using a β-variational autoencoder.
We examine different values of β in the loss function of the β-VAE to
find the optimal balance between incentivising the similarities between
input patches to be preserved in latent space, and ensuring good re-
construction of the patches from their encodings in latent space. Our
proposed descriptor demonstrates patch retrieval comparable to the ref-
erence autoencoder-based local image descriptor and shows improved re-
construction of patches from their encodings.

This research resulted in a conference paper [Žižakić 20b] and a journal
article [Žižakić 21b].

• A self-supervised deep image hashing method that utilises variational au-
toencoders to improve the compression and explainability aspects of image
hashing.

Our proposed deep hashing method is based on twin-bottleneck hashing
that improves both bottlenecks using recent insights in the field of vari-
ational autoencoders. In the binary bottleneck we change the generation
of hash codes to be based on variational autoencoder, thus promoting
learning of disentangled variables and allowing us to omit the regulariser,
therefore simplifying the model. In the continuous bottleneck we employ

1.5 Publications 15

a variational autoencoder that is trained using a constrained optimisation
setup, in order to better control the trade-off between compression and
reconstruction quality of generated samples. Both of these improvements
result in better hashing performance separately, and an even better result
when applied together. The results have been thoroughly validated on
all hash-code sizes (16-bit, 32-bit and 64-bit) and datasets (CIFAR and
MS-COCO), showing that our method outperforms the state of the art
in deep hashing without labelled data.

This research resulted in one conference paper [Verwilst 21].

• Case study on efficient search of self-similar structures in electron mi-
croscopy images.

We demonstrate the potential of the application of our developed image
dimensionality reduction methods by searching for regions of images that
contain biological structures similar to the structure on the query image
patch. We are using local image descriptors to encode the patches and
accelerate the search process. The first steps that have been taken for
this application show promising results.

We are currently preparing a journal paper based on this research.

1.5 Publications

The work presented in this thesis has so far led to two journal publications as
the first author (one included in the Web of Science and another in a peer-
reviewed international journal), one journal publication in preparation, and
seven publications in the proceedings of international conferences, five of which
as the first author (one currently in review).

In addition to these publications, the source code and documentation for
all publications has been made open source and is available on GitHub1.

1.5.1 Publications in international journals

• Nina Žižakić and Aleksandra Pižurica. Efficient local image descriptors
learned with autoencoders. IEEE Access, vol. 10, pages 221-235, 2021.
[Žižakić 21a]

• Nina Žižakić and Aleksandra Pižurica. β-variational autoencoders for
learning invertible local image descriptors. Image Processing & Commu-
nications, vol. 24, no. 1, pages 71-78, 2021. [Žižakić 21b]

• Zeno Dhaene, Nina Žižakić, Shaoguang Huang, Xian Li and Aleksandra
Pižurica. HSIToolbox: a web-based application for the classification of
hyperspectral images. SoftwareX, 2022 (in preparation). [Dhaene 22]

1https://github.com/nimpy

https://github.com/nimpy

16 Introduction

1.5.2 Publications in international conferences
• Nina Žižakić, Izumi Ito, Laurens Meeus and Aleksandra Pižurica.

Autoencoder-learned local image descriptor for image inpainting. In
BNAIC/BENELEARN 2019, volume 2491, 2019. [Žižakić 19a]

• Nina Žižakić, Izumi Ito and Aleksandra Pižurica. Learning local image
descriptors with autoencoders. In International Conference on Image Pro-
cessing and Communications, pages 214-221. Springer, 2019. [Žižakić 19b]

• Nina Žižakić and Aleksandra Pižurica. Learned BRIEF – transfer-
ring the knowledge from hand-crafted to learning-based descriptors. In
2020 IEEE 22nd International Workshop on Multimedia Signal Process-
ing (MMSP). IEEE, 2020. [Žižakić 20a]

• Nina Žižakić and Aleksandra Pižurica. Invertible local image descrip-
tors learned with variational autoencoders. In IEICE Information and
Communication Technology Forum (ICTF) 2020, Proceedings. IEICE
Europe Section, 2020. [Žižakić 20b]

• Laurens Meeus, Shaoguang Huang, Nina Žižakić, Xianghui Xie, Bart
Devolder, Hélène Dubois, Maximiliaan Martens and Aleksandra Pižurica.
Assisting classical paintings restoration: efficient paint loss detection and
descriptor-based inpainting using shared pretraining. In Optics, Pho-
tonics and Digital Technologies for Imaging Applications VI, volume
11353, page 113530H. International Society for Optics and Photonics,
2020. [Meeus 20]

• Maxim Verwilst, Nina Žižakić, Lingchen Gu and Aleksandra Pižurica.
Deep image hashing based on twin-bottleneck hashing with variational au-
toencoders. In 2021 IEEE 23rd International Workshop on Multimedia
Signal Processing (MMSP). IEEE, 2021. [Verwilst 21]

• Nina Žižakić and Aleksandra Pižurica. How to efficiently evaluate au-
toencoders for learning local image descriptors. European Signal Process-
ing Conference (EUSIPCO), 2022 (in review) [Žižakić 22].

1.6 Outline of the thesis
The structure of the remainder of this thesis is summarised over the following
paragraphs.

Chapter 2 introduces autoencoders – the self-supervised deep learning
method that is used throughout this thesis. The chapter starts with an overview
of deep learning in general, before introducing some common concepts, terms
and notations regarding deep neural networks. We then briefly discuss the
history of autoencoders and present a summary of the different types of au-
toencoders with a special emphasis on classical and variational autoencoders
(since they are used throughout this thesis). The chapter concludes with a dis-
cussion about the applications of autoencoders with an emphasis on learning
local image descriptors and learning to hash images.

1.6 Outline of the thesis 17

Chapter 3 investigates different aspects of learning local image descriptors
using autoencoders. After presenting a review of the literature on methods
for designing both hand-crafted and learning-based local image descriptors, we
present different methods for evaluating local image descriptors. We first dis-
cuss the available benchmarks for descriptors before proposing a rapid approxi-
mate evaluation method for local image descriptors learned with autoencoders.
Our results in this chapter provide valuable insights into different evaluation
metrics that can be used for this task. Furthermore, we compare autoencoders
and variational autoencoders to see which architecture is the most suitable for
the task of learning local image descriptors and we perform a comprehensive
analysis of the most important hyperparameters. Finally, we conduct research
into invertibility of local image descriptors and propose a method for learning
the local image descriptor specifically designed to be inverted.

Chapter 4 addresses the problem of designing local image descriptors specifi-
cally made for applications with single-image tasks. We propose a novel autoen-
coder architecture that yields a data structure that we call intermediate repre-
sentation, which is a compact way of storing the descriptors of all the patches of
an image. Intermediate representation enables fast retrieval of patch encodings
without the memory requirements to store all the encodings separately. We
show that this method does not sacrifice the descriptor’s performance in order
to achieve these computational memory and time improvements. We evaluate
our method on a standard benchmark and compare its performance with other
self-supervised-learning–based descriptors and with supervised-learning–based
and hand-crafted descriptors. As a proof of concept, we integrate this method
into an inpainting algorithm and show both qualitative improvements and an
ability to handle higher-resolution images.

Chapter 5 examines the strengths and weaknesses of hand-crafted and
learning-based local image descriptors and explores whether it is possible to
achieve the strengths of both in a single descriptor. To that end, we propose in
this chapter a framework for knowledge transfer from hand-crafted to learning-
based descriptors that is based on autoencoders and that requires no labelled
data. We utilise this framework to implement what we call learned BRIEF
descriptor (based on the BRIEF descriptor by Calonder et al. [Calonder 10]).
We show that our learned BRIEF consistently outperforms the original BRIEF
descriptor, serving as a proof of concept for our knowledge transfer framework.

Chapter 6 focuses on image hashing using autoencoders. We give an
overview of image hashing methods, both for the traditional image hashing
and for the deep hashing, offering an explanation as to why the latter methods
have had more success in recent literature. As part of the literature review,
we introduce an important recent deep hashing method called twin-bottleneck
hashing. We then propose a novel deep hashing method that builds upon
twin-bottleneck hashing by improving both bottlenecks. Firstly, in the binary
bottleneck, we change the generation of hash codes to be based on a varia-
tional autoencoder with disentangled variables and we omit the regulariser.
Secondly, in the continuous bottleneck, we employ a variational autoencoder
that is trained using a constrained optimisation setup to better control the
trade-off between compression and reconstruction quality of generated sam-

18 Introduction

ples. We discuss these design choices in detail and show through extensive
experiments that these design choices lead to state-of-the-art performance. We
showcase our deep image hashing method by employing it for content-based
patch retrieval on electron microscopy images, where we observe that retrieved
image patches correspond to the query patch in terms of the tissue type.

Chapter 7 concludes this thesis with a summary of the most significant
results of this research and provides potential directions for future work.

2
Autoencoders

I will take the Ring, though I do not know the way.
—Frodo Baggins, from The Lord of the Rings: The Fellowship of the Ring

Over the past decades of artificial intelligence, autoencoders have played
an indispensable role in the field of deep learning. They have been used for
dimensionality reduction, for feature learning and more recently, for generative
modelling. They also form the basis of the research presented in the following
chapters of this thesis.

This chapter provides an introduction to the general theory behind deep
learning and artificial neural networks as well as a formal overview of autoen-
coders themselves. We first introduce the preliminaries and most important
concepts of deep learning methods, after which we discuss a brief history of
autoencoders, describe their different types, and give an overview of the appli-
cations of autoencoders.

2.1 Deep learning for image processing – prelim-
inaries

Artificial neural networks, in the following referred to simply as neural net-
works, are the cornerstone of deep learning, being the foundation of many
modern AI methods. The goal of a neural network is to learn to approximate
some useful function f∗. A neural network defines a mapping y = f(x; θ) and
is trained to learn parameters θ that result in the best approximation of f∗.
The learned function f(x; θ) is constrained by its specific architectural choice,
namely (typically feedforward) layers where information flows from one layer
to the next, building the complex function from simpler primitives (neurons).

Besides the neural network itself, for its training we also need a dataset on
which it will be trained, an optimisation procedure that will be used to train it,
and a loss function that will be minimised during the optimisation procedure.

The choice of a neural network comes down to the choice of its architecture.
They are typically composed of many functions, known as layers in the deep
learning terminology. For example, we might have functions f (1), f (2), and f (3)

connected in a chain, forming a neural network f(x) = f (3)(f (2)(f (1)(x))) with

20 Autoencoders

depth 3. In deep learning terminology, drawing inspiration from neuroscience,
the inputs and outputs to the layers are called neurons or activation units.
When implementing these neural networks, these are simply numbers (usually
between 0 and 1), where higher numbers indicate higher “activation” of this
neuron. We can divide these functions into two categories: layers and activation
functions. In the next section we give brief overview and describe the most
common types of layers and activation functions used in neural networks for
image processing tasks.

Concerning the choice of an optimisation algorithm, according to the re-
cent review paper [Schmidt 21], the most commonly used ones are Adadelta
[Zeiler 12] and Adam [Kingma 14], which are also used in this thesis.

The choice of the dataset is, in general, dependant on the application for
which the neural network is going to be used. For example, if we want a
neural network to learn to classify an image of a hand-written digit, we might
want to use the MNIST dataset [LeCun 10] of labelled images of hand-written
digits. In case we want our neural network to learn to classify objects found in
natural images in general (e.g. a balloon or a strawberry), we might want to
use ImageNet dataset [Deng 09] of more than 14 million labelled images (labels
indicate what object(s) are pictured in an image).

With datasets, we also distinguish whether they consist of labelled data or
not. If the data is labelled (e.g. for each image of a hand-written digit, we
have information about which digit is in the image), we would typically use
supervised learning, where the neural network learns to output the label
assigned to each data sample, i.e., it learns a mapping between the input x
(data sample) and its output y (label). On the other hand, for unsupervised
or self-supervised neural networks, we do not need a labelled dataset. In the
case of unsupervised learning, we do not learn a mapping, but typically
only assume an input space consisting of data samples x for which to learn
the inherent structure, without any y. An example of unsupervised learning is
clustering. In the case of self-supervised learning, the neural network does
learn a mapping, but it does not require a labelled dataset. For example, in the
case of autoencoders, the mapping that is being learned is x −→ x (with some
constraint on the network in order to learn to extract the most useful features
of data).

In recent years, many leading researchers in the field, among which notably
Andrew Ng, have been advocating for an approach to deep learning that puts
more focus on the choice of the dataset, involving systematically improving
the dataset in order to increase the accuracy the neural network. In order to
measure the quality of different datasets, one could compare their performance
on a fixed neural network architecture (usually taking one of the state-of-the-
art architectures for a given task). While this approach is out of the scope of
this thesis, it is worth noting this shift in deep learning trends.

2.1.1 Layers

We discuss the most common neural network layers that are used for image
processing tasks and also throughout this thesis.

2.1 Deep learning for image processing – preliminaries 21

Fully-connected layer. This is the simplest type of neural network layer,
as its name suggests, each neuron of its input is connected to each neuron of
its output. Formally, the output of the i-th neuron of a fully-connected layer
is calculated as

yi =

n∑
u=1

(wiuxu + bi),

x = {x1, ..., xn},W =

w11 . . . w1n

...
. . .

...
wn1 . . . wnn

 ,b = {b1, ..., bn}
(2.1)

where x is the input vector to the layer, W and b are the learned parameters
of this layer (the weight matrix and the bias vector respectively), and n is the
size of the layer, i.e., the number of output neurons in the layer (Figure 2.1).
By performing this calculation for each output neuron of the layer, we get its
output vector y (Figure 2.2).

Figure 2.1: A single neuron in a fully-connected layer of a neural network.

1

3

5

1

2

0

2

1

1

3

0

0

1 1 0 4

2 4

1 5

2 0

0 0

2 2 3 5 2 1

9

6

1

1

0

1

0
1

8
1

. =
12

Figure 2.2: Fully-connected layer. Left: standard visualisation of this layer, inputs
and outputs are shown as a column vectors. Right: an example showing the operation
that the fully-connected layer performs.

One major criticism of fully-connected layers is that they do not take ad-
vantage of the fact that neighbouring pixels in natural images tend to be close

22 Autoencoders

in value. Convolutional layers, which we will introduce next, are able to take
advantage of that, while also reducing the amount of parameters to be trained.
Modern neural networks for image processing tasks consist mostly of convo-
lutional and max-pooling layers, which come with a several benefits for such
tasks that we will discuss next.

Convolutional layer. There are two main ideas behind the convolutional
layers that differentiate them from fully-connected layers: local connectivity
and parameter sharing. Local connectivity means that the output neurons will
be connected only to the input neurons that are within a small window in the
spatial dimension. Parameter sharing refers to the fact that the parameters
for all these windows (in the convolutional neural network terminology known
as kernels) are the same. These two properties of convolutional layers imply
several beneficial properties. The fact that the parameters are only local and
are shared means that the convolutional layers have significantly less param-
eters than their fully-connected counterparts for the same input and output
dimensions. This implies better performance in terms of computational mem-
ory and time. Secondly, it also implies a certain degree of equivariance to the
translation of these layers, which is a desirable property for signal processing
tasks. Furthermore, it allows for inputs of any size, which is a very useful
property in these tasks – for example, having to have an image of a certain size
in order to classify it would be impractical. Finally, convolutional architecture
mimics the way our brains work when it comes to processing these inputs, we
can think of each convolutional layer as taking an input and calculating a bit
more abstract features. For example, when it comes to object recognition, the
first layer of a CNN might extract edges, the second layer corners and contours,
the third layer object parts, and then this would be used to classify the ob-
ject. Here we formally define the most common type of convolutional layer, the
two-dimensional convolutional layer, which is used in image processing neural
networks (including neural networks in this thesis). Let x be the input tensor,
an image. It has two spatial dimensions and a third dimension that represents
different image channels (for a colour image, red, green and blue). We want to
calculate the output tensor y. The output neuron at location (i, j) in the k-th
channel of the convolutional layer is calculated as

y
(k)
ij =

∑
c∈C

n∑
u=1

n∑
v=1

w(k,c)
uv x

(c)
(i+u)(j+v) + b(k), (2.2)

where C is the set of input channel indices, w(k,c) are the weights of the con-
volutional kernel for the k-th channel applied on the c-th input channel, b(k) is
the bias for the k-th channel, and n× n is the size of the convolutional kernel
for this layer. This operation slightly differs from the mathematical operation
convolution (of discrete functions) – here the kernel is not flipped, which is
equivalent of the operation of cross-correlation, as is shown in Equation 2.2.

Max-pooling layer. This type of layer often comes after one or more
convolutional layers. There are several motivations for using max-pooling – it
provides non-linearity, it plays the role of dimensionality reduction, and reduces
the number of training parameters (and hence the training time). Furthermore,

2.1 Deep learning for image processing – preliminaries 23

Figure 2.3: Convolutional layer. Left: standard visualisation of this layer, inputs
and outputs are shown as a cuboids. Right: an example showing the operation that
the convolutional layer performs.

it also enables the extraction of translation-invariant features. For an input
tensor x, having two spatial dimensions and a channel dimension, max-pooling
is performed over each channel as follows:

yij = max
(
x(pi+u)(pj+v)

)
, (2.3)

with u ∈ [0, p], v ∈ [0, p], where p is the max-pooling size. The outputs of all
the channels constitute the tensor y, which is the output of the max-pooling
layer.

1

3

5

1

2

6

2

1

7 6

3

8

4

4

8

0

1 2 3 4

Figure 2.4: Max-pooling layer. Left: standard visualisation of this layer, inputs and
outputs are shown as a cuboids. Right: an example showing the operation that the
max-pooling layer performs.

2.1.2 Activation functions

It is a standard practice in neural networks to add a non-linear activation
functions after a linear layer (such as fully-connected or convolutional layer).
The reasoning for this is that the function we are trying to learn is most likely
non-linear, therefore using only linear functions for its approximation will not
lead to a good approximation. These non-linear activation functions are usually
applied element-wise to the output of such a layer. They are typically very
simple and fast to compute. Here we list some of the most common activation
functions, which will be used later in the thesis.

Sigmoid activation function (also known as the logistic activation func-
tion) takes any real value as input and outputs a value between 0 and 1. It is

24 Autoencoders

defined as:
f(x) =

1

1 + e−x
(2.4)

This function is used very commonly for the last layer of the neural network,
when we want the output of the whole network to be between 0 and 1, or that
each output neuron is in this range. It is used in binary classification (where the
output can be interpreted as the percentage of certainty of the input belonging
to the positive class) or when the output of the network is an image (whose
pixel values are normalised to be between 0 and 1).

0.00

0.25

0.50

0.75

1.00

-4 -2 0 2 4

Figure 2.5: Sigmoid activation function

Tanh activation function is similar to the sigmoid activation function,
having the same S-shape, with the difference that its output is in the range of
−1 to 1. It is defined as:

f(x) =
ex − e−x

ex + e−x
(2.5)

It is zero-centred, and therefore preferred over the sigmoid activation function
for the use after hidden layers, but it is less commonly used than ReLU-based
activation functions.

-1.0

-0.5

0.0

0.5

1.0

-4 -2 0 2 4

Figure 2.6: Tanh activation function

Rectified Linear Unit (ReLU) activation function is the most commonly
used activation function (except for the choice of activation function that goes
after the last layer, as was discussed in the paragraph on sigmoid). ReLU is

2.1 Deep learning for image processing – preliminaries 25

defined as:
f(x) = max(0, x). (2.6)

Applying this function to the output of a linear transformation yields a non-
linear transformation. However, ReLU preserves many properties that make
linear models easy to optimise with gradient-based methods due to the fact that
it is piece-wise linear (with two linear pieces). This activation function is the
default activation function recommended for use with most feedforward neural
networks. However, its limitation is that for negative numbers, its derivative
is zero. Therefore, during the optimisation (i.e. backpropagation), the weights
and biases for some neurons are not updated, which can create dead neurons
that never get activated. This phenomenon is called the “dying ReLU problem”.
In order to tackle this problem, several different variants of this function have
been proposed, which are described in the following paragraphs.

-2

0

2

4

-4 -2 0 2 4

Figure 2.7: Rectified Linear Unit (ReLU) activation function

Parametric Linear Unit (PReLU) activation function is one such ver-
sion of ReLU where the negative area has a small positive slope. Formally, it
is defined as:

f(x) = max(ax, x), (2.7)

where a is the slope parameter. The gradient of the negative part of the function
is a non-zero value and therefore, dead neurons would no longer be present in
that region. However, in practice it is not clear whether this activation function
leads to better results than ReLU.

Exponential Linear Unit (ELU) activation function is another version
of ReLU that tries to tackle the dying ReLU problem. It is defined as follows:

f(x) =

{
x if x ≥ 0

α(ex − 1)) if x < 0
(2.8)

with α typically taking a value between 0.1 and 0.3. The idea of this function is
that by introducing log curve for negative values of input, it helps the network
nudge weights and biases in the right direction. Similarly to PReLU, in practice
it shows comparable performance to ReLU.

There also exist other types of activation functions, including the smooth
variants of ReLU and ELU, which are differentiable at zero (unlike ReLU
and ELU). Examples of these include Gaussian-error linear unit (GELU)

26 Autoencoders

-2

0

2

4

-4 -2 0 2 4

Figure 2.8: Parametric Linear Unit (PReLU) activation function

-2

0

2

4

-4 -2 0 2 4

Figure 2.9: Exponential Linear Unit (ELU) activation function

[Hendrycks 16], Mish [Misra 19] and Smooth Activation Unit (SAU) [Biswas 21].
These activation functions show promising results in terms of performance on
academic benchmarks. However, they are still not widely used and were not
part of standard deep learning libraries at the time when the research in this
PhD was conducted, hence they are also not included in the subsequent analy-
sis. However, it can be of interest to include them in the future hyperparameter
studies (using the same framework as described in Section 3.3).

2.1.3 Loss functions
Now that we have building blocks for the neural networks that will be used in
this thesis, what is left to discuss is loss functions which the neural networks
will be trained to minimise. Here we list the loss functions used in neural
networks for image processing. These loss functions can all be used to quantify
the difference between two images, which is an important property for training
autoencoders that work with images, which we do in this thesis. In the case of
autoencoders, the loss function will measure the difference between the input
and the output image, with the goal of minimising this difference. In the case
of variational autoencoders, there is an additional term in the loss function for
regularisation, as will be explained in Section 2.4.4.

Mean squared error (MSE) is a very intuitive way of mathematically
measuring the difference between two tensors. For two images x and y of size

2.2 A brief history of autoencoders 27

M ×N , it is defined as:

MSE(x, y) =
1

MN

M∑
i=1

N∑
j=1

(yij − xij)
2, (2.9)

One issue with using MSE (and other pixel-wise loss functions) is that it does
not take into account relationships between different pixels, and can be heavily
influenced even by a small pixel shift. Another problem with MSE is that it
can lead to loss saturation (“plateau”) when combined with sigmoid activation
function, which is the most common activation function of the last layer of the
network. This saturation can prevent gradient-based learning algorithms from
making progress.

Binary cross-entropy (BCE) is a loss function taken from probability
theory, and is commonly used because it avoids the problem of loss saturation
by having a log that undoes the exponential in the sigmoid activation function.
It is often the default choice for the loss function when the output of a neural
network is an image. For two images x and y of size M ×N , it is defined as:

BCE(x, y) = − 1

MN

M∑
i=1

N∑
j=1

(yij log xij + (1− yij) log(1− xij)) . (2.10)

This loss function is also calculated pixel-wise, and is therefore unable to take
into account the relationships between pixels.

We now delve into the world of autoencoders, starting with a short overview
of their history in the next section.

2.2 A brief history of autoencoders
The concept of autoencoders has been around since the eighties. It is diffi-
cult to pinpoint when they were first “born” because the literature is diverse
and terminology has evolved over time, but there are three important points
in time that mark the birth of autoencoders – when their concept was first
presented, when the word autoencoder was coined, and when they gained fame
and widespread use. The first time that the concept of teaching an artificial
neural network to learn a useful encoding by training its output to be the same
as input – the concept that we now call autoencoders – was mentioned (albeit
indirectly) is in the paper by Rumelhart, Hinton and Williams in 1985 [Rumel-
hart 85]. They refer to it as “the encoding problem”, and the idea was to
encode 8 bits of data using a very simple neural network with only one hidden
layer (Figure 2.10, left). The concept of autoencoders exists in the papers after
that, but not under that name (for example, in [Kramer 91] they are referred
to as autoassociative neural networks). The term ‘autoencoder’ was coined in
1994 [Hinton 94]. However, in a decade that follows, autoencoders and other
artificial neural networks were not a trendy topic due to the lack of resources
for their training. It was only in 2006 that the autoencoders gained the mo-
mentum, starting with the seminal paper (which is often quoted as the original

28 Autoencoders

autoencoder paper) that was published in Science Magazine [Hinton 06], where
autoencoders got their modern shape and form. We note that Geoffrey Hinton
was present in all stages of the birth of autoencoders.

 how it started how it’s going

Figure 2.10: Autoencoders then and now. Left: first diagram of the concept of au-
toencoders at the time encoding a single byte of data [Rumelhart 85]; right: generation
of images of faces based on images of celebrities using autoencoders [Pidhorskyi 20].
Images taken from [Rumelhart 85,Pidhorskyi 20].

In the past decade, there has been a lot of research and advancement in the
field of deep learning, including in the field of autoencoders. Variational au-
toencoders proposed by Kingma and Welling [Kingma 13] in 2013 are probably
the most important advancement in autoencoders in the last decade, adding
a probabilistic model flavour to the autoencoders. Since then and inspired by
the variational autoencoders, there have been several other variants of autoen-
coders proposed [Makhzani 15, Higgins 17, Tolstikhin 17, Pidhorskyi 20], and
the (variational) autoencoders started being used as deep generative models,
showing impressive results with, e.g. generating realistic images of faces (Figure
2.10, right).

A note on the terminology regarding autoencoders. It should be
noted that, in the literature, autoencoders are sometimes referred to as unsu-
pervised methods (including in some foundational and highly cited papers [Hin-
ton 95,Kingma 19], and even in the Wikipedia page on autoencoders, as it cur-
rently stands [Wikipedia 22]). This characterisation arose from the intention to
emphasise the difference with respect to supervised learning using labelled data,
but is too coarse in terms of the common understanding of the concept ‘unsu-
pervised learning’. As it was introduced in Section 2.1, unsupervised methods
(such as clustering) do not learn a mapping between input and output, but
infer patterns or structural properties of the data in other ways. In the case of
autoencoders, we do learn a mapping between the input and the output (albeit
the output being the same as the input). Hence, although autoencoders do
not use labelled data, they do not perform unsupervised learning in the strict
sense. Therefore, in this work we do not refer to autoencoders as unsupervised
methods but rather self-supervised, i.e. methods that learn a mapping between
input and output without labelled data.

In the next section, we give an overview of the applications of autoencoders.

2.3 Applications of autoencoders 29

2.3 Applications of autoencoders

Dimensionality reduction is one of the first applications of autoencoders, and
it is still an active field of research. It was also one of the first applications
of deep learning and one of the early motivations for studying autoencoders,
starting with the seminal work by Hinton and Salakhutdinov [Hinton 06].

One example of the use of dimensionality reduction is for finding a compact
representation of a patch in an image, i.e., finding a local image descriptor.
Local image descriptors are used in image processing tasks such as image de-
noising, inpainting, object tracking and motion estimation, where we employ
them to identify corresponding parts of images. Autoencoders can be used here
to encode image patches into these lower-dimensional representations which are
invariant to a certain degree of geometric noise (translation, scaling, shearing).
We research this application of autoencoders in chapters 3-5.

Figure 2.11: Dimensionality reduction – local image descriptors

Another use of dimensionality reduction is for information retrieval, the task
of finding data in a database that resemble a query data sample. The most
prominent type of information retrieval is content-based image retrieval, where
images are retrieved based on visual and semantic similarity to the query image.
The encoding of semantic information (semantic hashing) can be achieved with
autoencoders, as we study in Chapter 6.

In the past, autoencoders have also been used for self-supervised pretraining
of deep neural networks. For example, before training a deep neural network
to classify images from a dataset, one would train an autoencoder on the same
dataset and then use the learned weights of its encoder to initialise the classifier
network. The idea was that autoencoders would learn useful features and thus
facilitate faster and better training of the classifier. Nowdays, this application
of autoencoders is not very common.

A recent application of autoencoders (more specifically, variational autoen-
coders) is for generative modelling. The idea is that, after training a VAE
to encode and decode data from the learned latent space, we can also sample
the latent space to generate new realistic data samples. This line of study is
beyond the scope of this thesis.

In the following sections, we will have a closer look at these different types
of autoencoders and define them in a formal way.

30 Autoencoders

Figure 2.12: Image generation with β-variational autoencoders. Image taken from
[Higgins 17].

2.4 Types of autoencoders

Autoencoders (AEs) [Hinton 06] are self-supervised neural networks used for
learning compact representations of data. An autoencoder consists of two parts,
an encoder and a decoder, both of which can be seen as a neural network. An
autoencoder is trained by setting the target output values to be equal to the
input values, while imposing a constraint on the middle layer.

There are different types of autoencoders that are distinguished based on the
type of constraint (undercomplete autoencoders, sparse autoencoders), whether
the autoencoder is a probabilistic model or not (variational autoencoders),
based on whether the input to the autoencoder is corrupted or not (denoising
autoencoders). Here we describe the most prominent types of autoencoders.

2.4.1 Classical autoencoders

The most common, default type of autoencoder is autoencoder that imposes
only dimensionality constraint on the middle layer. These autoencoders are
sometimes referred to as undercomplete. In this thesis we refer to them as
classical autoencoders or simply autoencoders.

Formally, an autoencoder consists of an encoder E and a decoder D which are
parametrised with their weights wE ,wD and biases bE ,bD, respectively. The
autoencoder is trained to minimise the loss function J w.r.t. wE ,bE ,wD,bD:

min
wE ,bE ,wD,bD

J(X , EwE ,bE ,DwD,bD), (2.11)

2.4 Types of autoencoders 31

i.e. to minimise the following expression:

min
wE ,bE ,wD,bD

∑
x∈X

L(x,DwD,bD (EwE ,bE (x))) (2.12)

where x ∈ X is a data sample (e.g. an image) and L is some loss function.
Autoencoders working with image data usually consist of convolutional layers,
with an optional fully-connected layer at the end of the encoder and the be-
ginning of the decoder. The encoder of a classical autoencoder usually consists
of convolutional layers, each followed by a max-pooling layer, with an optional
fully-connected layer at the end. The decoder normally mirrors the encoder,
with convolutional–max-pooling combo being replaced with fractionally-strided
convolutional layers, thus enlarging the size of their output.

sample

Figure 2.13: Classical autoencoder architecture

The idea of such an autoencoder is that, since the middle layer does not
have the capacity to store the whole data samples, it needs to focus on their
most important features – therefore the autoencoder learns to extract these
features.

In practice this works well, however, theoretically it is possible that an
autoencoder of this type simply “memorises” the whole training dataset with-
out learning any useful features. For example, an autoencoder with a one-
dimensional code could learn to represent each data sample xi with its index i.
Despite the fact that this does not happen in practice, different variants of an
autoencoders have been proposed that try to tackle this weakness of classical
autoencoders. In the following sections we discuss some of them.

2.4.2 Sparse autoencoders

Instead of having a dimensionality constraint imposed on the middle layer, it
is also possible to impose a sparsity constraint. An autoencoder with such
a constraint is called sparse autoencoder [Ng 11]. Sparse autoencoders are
trained to minimise the loss function w.r.t. wE ,bE ,wD,bD:

min
wE ,bE ,wD,bD

∑
x∈X

L(x,DwD,bD (EwE ,bE (x))) + Ω(EwE ,bE (x)) (2.13)

where x ∈ X is a data sample, L is some loss function, and Ω is the sparsity
penalty that is imposed on the middle layer.

32 Autoencoders

sample

Figure 2.14: Sparse autoencoder architecture

Sparse autoencoders are typically used to learn features for another task,
e.g. image classification. The sparsity constraint forces the autoencoder to re-
spond to unique statistical features of the dataset it has been trained on (rather
than simply copying input to the output like an identity function). Learning
to perform the copying task with a sparsity penalty can therefore yield an au-
toencoder that has learned useful features as a byproduct. However, in recent
years, sparse autoencoders have not been widely used. This is largely due to the
fact that they are mostly used for self-supervised pre-training, and less so for
dimensionality reduction (unlike other types of autoencoders which are used
extensively for dimensionality reduction). For this reason, there exist fewer
implementations of sparse autoencoders (using some popular deep learning li-
braries such as PyTorch and Keras) than those of e.g. variational or classical
autoencoders, which further slows their practical adoption.

2.4.3 Denoising autoencoders
A denoising autoencoder takes yet another approach to ensure that the au-
toencoder learns a useful function. A denoising autoencoder takes a corrupted
data sample (e.g. an image to which the noise has been artificially added) and
learns to reconstruct the original. The idea behind this is that by learning to
undo the corruption, the denoising autoencoder implicitly learns the structure
of data [Alain 14,Bengio 13].

Denoising autoencoders are trained to minimise the loss function w.r.t.
wE ,bE ,wD,bD:

min
wE ,bE ,wD,bD

∑
x∈X

L(x′,DwD,bD (EwE ,bE (x))) (2.14)

where x ∈ X is a data sample and x′ the data sample with added noise and L
is some loss function.

2.4.4 Variational autoencoders
A pitfall of classical autoencoders is that they have no way of enforcing the con-
tinuity of the latent space and are thus unable to guarantee that the learned
encodings are useful, e.g., that encodings of similar inputs are similar them-
selves (see Figure 2.16 (left)). Furthermore, when sampling from the latent

2.4 Types of autoencoders 33

sample

Figure 2.15: Denoising autoencoder architecture

space and then reconstructing the encoding back into the data space, we have
no guarantee that the reconstruction will not look like random noise. Being
able to reconstruct a randomly sampled encoding into the data space and ob-
tain a data sample that appears to belong to the original dataset is a desired
property that classical autoencoders to not possess.

To tackle these problems, Kingma et al. have proposed variational autoen-
coders (VAEs) [Kingma 13, Kingma 19]. Similarly to classical autoencoders,
VAEs consist of an encoder and a decoder, with a middle layer on which a
dimensionality constraint is imposed. In contrast to classical autoencoders,
however, variational autoencoders are probabilistic models that assume a prior
distribution of the latent space, giving significant control over how we want to
model the latent distribution.

We start from a simple probabilistic graphical model (PGM) shown in Fig-
ure 2.17 (a). Let us consider some dataset X = {x(i)}, i = 1..N , which consists
of N i.i.d. samples of some variable x. We can think of the data as lying on
a manifold and assume it is being generated from some latent variable z. We
can only observe x, but we want to infer the characteristics of z, i.e. we want
to compute pθ(z|x) that approximates the underlying conditional distribution
p∗(z|x). Applying the Bayes’ theorem, we obtain the following:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(2.15)

The issue that we run into is that, often, the integral of the marginal likelihood
pθ(x) =

∫
pθ(z)pθ(x|z) dz is intractable, and therefore, we cannot evaluate or

differentiate the marginal likelihood. This implies that the posterior pθ(z|x) is
also intractable. Such intractabilities appear in cases of moderately complicated
likelihood functions pθ(x|z), e.g. a neural network with a nonlinear hidden
layer.

The variational inference approach to tackle this is to approximate the
posterior pθ(z|x) with another distribution qϕ(z|x) from some family Q. In
order to approximate pθ(z|x) with qϕ(z|x), we want to make these distributions
as close as possible. Minimising Kullback-Leibler divergence from pθ(z|x) to
qϕ(z|x) is often used for this purpose:

DKL(qϕ(z|x)||pθ(z|x)) =
∑
z

qϕ(z|x) log
pθ(z|x)
qϕ(z|x) (2.16)

34 Autoencoders

Figure 2.16: Two-dimensional latent space of MNIST dataset [LeCun 10]
learned by an autoencoder (left) and variational autoencoder (right). In
the autoencoder case (left), there are gaps between the encoding of some classes of
digits (e.g. classes 1 and 7). If we were to sample from a gap as shown in the image,
and then reconstruct this encoding back onto the original data space, we would have
no guarantee that the resulting image would look like a digit. On the other hand,
with variational autoencoders (right), sampling between the encodings of two data
samples (digits 1 and 2 in this case) will result in a data sample that looks like a
digit that is somewhere between 1 and 2. A VAE, unlike an AE, has a smooth latent
space, as can also been seen in Figure 2.20.

(a) (b)

Figure 2.17: Variational autoencoders as probabilistic graphical models.
(a) Probabilistic graphical model from which VAEs are built upon – the hidden vari-
able z governs the process that generates data x. (b) Approximating the posterior
pθ(z|x) with a tractable distribution qϕ(z|x) by finding the parameters ϕ such that
the Kullback-Leibler divergence from pθ(z|x) to q is minimal.

2.4 Types of autoencoders 35

Regarding the family of distributions Q, Gaussian mixture model is commonly
used.

Therefore, we minimise Kullback-Leibler divergence from pθ(z|x) to qϕ(z|x)
(Figure 2.17 (b)):

DKL(qϕ(z|x)||pθ(z|x)) =
∑
z

qϕ(z|x) log
pθ(z|x)
qϕ(z|x)

=

=
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
1

pθ(x)
=

=
∑
z

qϕ(z|x)
(
log

pθ(x, z)

qϕ(z|x)
− log pθ(x)

)
=

=
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
+
∑
z

qϕ(z|x) log pθ(x) =

=
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
+ log pθ(x)

∑
z

qϕ(z|x) =

=
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
+ log pθ(x)

(2.17)

Rearranging Equation 2.17, we obtain the following:

log pθ(x) = DKL(qϕ(z|x)||pθ(z|x)) +
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
(2.18)

The second term on the right-hand side of this equation is called Evidence
Lower Bound (ELBO), commonly labelled as Lθ,ϕ(x). ELBO gets its name
because it is the lower bound for the evidence pθ(x) (because DKL ≥ 0).
When minimising the Kullback-Leibler divergence from pθ(z|x) to qϕ(z|x) with
respect to parameters ϕ, the left side of Equation 2.18 (the log-likelihood) is
a constant. Therefore, minimising the KL divergence is equal to maximising
ELBO. Writing out ELBO we obtain:

Lθ,ϕ(x) =
∑
z

qϕ(z|x) log
pθ(x, z)

qϕ(z|x)
=

∑
z

qϕ(z|x) log
pθ(x|z)pθ(z)

qϕ(z|x)
=

=
∑
z

qϕ(z|x)
(
log pθ(x|z) + log

pθ(z)

qϕ(z|x)

)
=

=
∑
z

qϕ(z|x) log pθ(x|z) +
∑
z

qϕ(z|x) log
pθ(z)

qϕ(z|x)
=

= Eqϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||pθ(z))

(2.19)

Therefore, ELBO, which we are trying to maximise can be expressed as follows:

Lθ,ϕ(x) = Eqϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||pθ(z)) (2.20)

By maximising ELBO, we:

36 Autoencoders

1. Maximise the marginal likelihood (the first term of the right hand side
of Equation 2.20), thus improving our generative model (the decoder).
This term can be viewed as reconstruction term from the perspective of
neural networks, as in classical AEs.

2. Minimise the KL divergence from true posterior pθ(z) to the approxima-
tion function qϕ(z|x) (the second term of the right hand side of Equation
2.20), thus improving the encoder. This term can be viewed as regular-
isation term from the perspective of neural networks, making sure that
the latent space distribution is as close as possible to the true posterior
distribution that we have selected (usually Gaussian).

Therefore, starting from a probabilistic graphical model, using variational
inference, we arrive at an autoencoder-like structure called variational autoen-
coder (VAE) [Kingma 13]. For this reason, we say that VAEs marry PGMs
and deep learning.

The main benefit of VAEs is that we have control over how we model our
latent distribution and can thus ensure a smooth latent space (Figure 2.16
(right)). This property is especially important for the applications where we
want to achieve explainability, (e.g. medicine) but also in many other domains,
such as in computer graphics (for smooth reconstruction of deformations). Fur-
thermore, VAEs allow us to generate new data samples by sampling from the
latent space, and then propagating this sample through the decoder to obtain
the reconstruction. If we were to do this with a classical autoencoder, we would
not be able to guarantee that the reconstruction sits on the data manifold (as
shown in Figure 2.16 (left)). We show some examples of manifolds learned by
VAEs in Figure 2.20.

Regarding the choice of approximate posterior q(z|x) – in theory it can
be chosen freely, however, there are some practical considerations that narrow
down this choice. In order to be able to efficiently optimise the ELBO, we
need to be able to computationally efficiently compute and differentiate its
probability density qϕ(z|x), and also computationally efficiently sample from
it, because both of these operations are performed for each data point in a batch
at every iteration of optimisation. In practice, this often leads to choosing a
simple Gaussian posterior.

β-variational autoencoders. Higgins et al. [Higgins 17] have proposed
a generalisation of a variational autoencoder named β-VAE. In a β-VAE, the
ELBO function from Equation (2.20) is modified to add more weight on the
second term, thus allowing for a better control of the trade-off between the re-
construction capabilities and the smoothness and disentanglement of the latent
space:

L(θ, ϕ;x) = Eqϕ(z|x) log pθ(x|z)− βDKL(qϕ(z|x)||pθ(z)). (2.21)

2.5 Conclusion and summary
This chapter introduced autoencoders – a type of self-supervised deep neural
network that has been relevant since the emergence of the field of deep learn-

2.5 Conclusion and summary 37

Figure 2.18: Variational autoencoder as a probabilistic graphical model.
VAEs learn stochastic mappings between the x-space (observed data samples), whose
distribution is typically complicated, and a latent z-space, whose distribution can be
simple (e.g. Gaussian). Illustration taken from [Kingma 19].

sample

Figure 2.19: Variational autoencoder as a neural network. The encoder and
the decoder normally consist of convolutional and max-pooling layers, with a VAE-
specific sampling layer in the middle. The mean and standard deviation of the latent
distribution are learned, and then sampled in each pass through the network in order
to obtain the encoding of the VAE.

38 Autoencoders

Figure 2.20: Manifolds learned with VAEs for different datasets: MNIST [LeCun 10]
(up), Fashion MNIST [Xiao 17] (middle) and Frey Faces (bottom) [Frey 10]. The two-
dimensional latent space is sampled equidistantly in a grid-like fashion, and we can
observe the smooth transitions between different classes.

2.5 Conclusion and summary 39

ing and that continues to be relevant to this day. There are different types
of autoencoders based on their architecture (e.g. the constraint imposed on
the middle (encoding) layer) or their stochasticity. Most commonly used types
are the classical (undercomplete) AEs, sparse AEs, denoising AEs and varia-
tional AEs. Autoencoders have been used in dimensionality reduction problems
(such as learning local image descriptors or performing semantic hashing for in-
formation retrieval), self-supervised neural network pretraining, and, recently,
generative modelling.

40 Autoencoders

3
Learning local image

descriptors with
autoencoders

It’s a dangerous business, Frodo, going out your door. You step onto the road, and if
you don’t keep your feet, there’s no knowing where you might be swept off to.

—Bilbo Baggins, from The Lord of the Rings: The Fellowship of the Ring

This chapter focuses on learning local image descriptors in a self-supervised
way, using autoencoders and variational autoencoders. Specifically, we perform
a thorough comparative analysis of these two approaches along with an in-
depth analysis of the most relevant hyperparameters to guide their optimal
selection. In addition to this analysis, we give insights into the difficulties
and the importance of selecting right evaluation techniques during the self-
supervised learning of the local image descriptors. We explore the extent to
which a simple perceptual metric during training can predict the performance
on tasks such as patch matching, retrieval and verification. Finally, we also
perform research into the invertibility of local image descriptors (which is has
been an active area of research in the past decade), and propose a descriptor
specifically designed for being invertible. In the following chapter, we apply
the concepts from this chapter in order to propose an autoencoder-based local
image descriptor that allows for memory-efficient storing of patch encodings.

3.1 Introduction and overview of local image de-
scriptors

Finding a compact representation of a small patch in an image, i.e., find-
ing a local image descriptor, is a crucial building block of various image
processing tasks. Image inpainting, registration, denoising, stitching, object
tracking, motion estimation, and saliency detection are all examples of tasks
where local image descriptors are used [Tuytelaars 08,Wang 11,Pernici 13,Pa-
tel 16,Nai 18,Joshi 20]. For example, in object tracking and motion estimation,

42 Learning local image descriptors with autoencoders

local image descriptors are used to identify corresponding objects in subsequent
frames and to associate those objects between frames. Image inpainting relies
on using parts of an image to fill in areas that may be missing or corrupted.
By identifying the parts of the image that are the most similar to the parts
of the image bordering the missing or corrupted areas, local image descriptors
can significantly improve the performance of an inpainting algorithm.

Traditionally, local image descriptors were designed to use hand-crafted
features. The most prominent kind of hand-crafted descriptors used to be the
distribution-based descriptors, which are using distributions of image prop-
erties such as gradients to represent patches. They are sometimes referred
to as the SIFT-based descriptors [Balntas 17], after the paramount work by
Lowe [Lowe 99], one of the most cited papers in computer science. Other
prominent hand-crafted descriptors include HOG [Dalal 05], SURF [Bay 08],
GLOH [Mikolajczyk 05], PCA-SIFT [Ke 04], RSIFT [Arandjelović 12] and
DAISY [Tola 09], to name a few. Some hand-crafted descriptors produce encod-
ings in Hamming space – they are most commonly referred to as binary descrip-
tors. Examples of such descriptors are BRIEF [Calonder 10], ORB [Rublee 11],
BRISK [Leutenegger 11], FREAK [Alahi 12] and LDAHash [Strecha 11].

In recent years, a popular approach to solving many image processing chal-
lenges, including the design of local image descriptors, has shifted towards
the use of deep learning methods. The first learned local image descriptors
arose from the necessity to find a way of choosing parameters in the hand-
crafted methods that does not involve hand-tuning [Winder 07, Jin 05]. As
machine learning, and in particular, deep learning methods developed fur-
ther, a growing number of learning-based descriptors started emerging. Nowa-
days, learned descriptors are mostly supervised methods, learning useful fea-
tures on pairs of similar and dissimilar patches, striving for a high corre-
lation between the similarity of the patches and the similarity of their de-
scriptors. Most recent methods involve the use of convolutional neural net-
works [Fischer 14a,Han 15,Ono 18,Wang 20], some of which are siamese net-
works [Zagoruyko 15,Simo-Serra 15], or triplets [Balntas 16,Tian 19].

Nonetheless, despite the apparent improved performance on benchmarks,
reportedly, hand-crafted descriptors are still chosen over learned ones in prac-
tical applications. One important practical reason is that the most popular
computer vision library OpenCV still does not include implementations of any
learned descriptors, while containing implementations of several different hand-
crafted descriptors (SIFT, SURF, FAST, BRIEF, ORB). For this reason, most
researchers or engineers, whose focus is not specifically to improve on the lo-
cal image descriptors, will choose to use a descriptor provided by OpenCV as
it is the simplest and most reliable solution. Using learned descriptors would
require finding their implementations and even potentially training them. The
question one might pose is: why are there no implementations of learned de-
scriptors in OpenCV? We believe that several factors might be at play here.
Firstly, it takes time for an algorithm or method to go from being first pub-
lished in academic articles to being implemented in standard libraries, and that
time may not have passed yet for the learned descriptors. Secondly, the pro-
gramming language mismatch might also play a role here – OpenCV libraries

3.1 Introduction and overview of local image descriptors 43

are implemented in C and C++, whereas most deep learning models are im-
plemented in Python. And finally, the incentives to implement these models in
OpenCV (or other standard libraries) are lacking.

Furthermore, comparative evaluation studies such as [Schonberger 17] sug-
gest that, while learned local image descriptors show better performance on
benchmarks, traditional hand-crafted descriptors such as SIFT show better
performance when being part of a larger image processing task (such as object
tracking or image registration). This has been attributed to the fact that the
learned descriptors were trained too generally and thus often underperform on
a specific image processing task compared to the pre-designed ones [He 18].
Moreover, since the majority of learning-based approaches are supervised, they
require labelled data, which is often unavailable when creating descriptors for
specific image processing tasks. An alternative is to turn to self-supervised
models such as autoencoders (AEs) [Hinton 06] and variational autoencoders
(VAEs) [Kingma 13]. In this section, we study this approach and propose
solutions for the most prominent problems of this approach.

Autoencoders are neural networks where an encoder and decoder are si-
multaneously trained to encode data into and decode data from a compact
encoding, as explained in more detail in Chapter 2. In recent years, there has
been a surge of AE-based and VAE-based architectures in various computer
vision tasks [Kingma 13, Makhzani 15, Higgins 17, Pidhorskyi 20]. However,
they have been less studied so far for learning local image descriptors. The
only other work on this topic (to the best of our knowledge) is that of Chen et
al. [Chen 15] reported an AE-based descriptor showing promising results, how-
ever, the methods they used are no longer considered state of the art and they
do not explore using variational autoencoders. We proposed in our previous
work an approach for learning local image descriptors based on classical autoen-
coders [Žižakić 19a,Žižakić 19b] and variational autoencoders [Žižakić 20b]. In
our experience, both AEs and VAEs have shown promising results for learn-
ing local image descriptors, however, a thorough comparative analysis was still
missing. On one hand, VAEs facilitate learning a smoother latent space that
is easy for interpolation – a property that seems useful for descriptors. On the
other hand, VAEs are more complex and more difficult to work with. They
introduce new hyperparameters (such as β – the weight of the Kullback-Leibler
divergence term in the loss function), take slightly longer on average to train,
and are not deterministic.

In this chapter, we compare the performance of AE-based and VAE-based
descriptors and consider the advantages and disadvantages of the two ap-
proaches. Furthermore, we investigate some novel ways of optimising the per-
formance of the two descriptor types. For example, we explore the use of a
perceptual loss function and how different hyperparameters, such as activa-
tion functions and the level of data augmentation, impact the performance of
learned descriptors.

Another issue we encountered during developing a local image descriptor us-
ing a (variational) autoencoder is not being able to tell how well it will perform
as a descriptor once it is trained. The autoencoder is trained by minimising
the loss function which measures some difference (e.g. mean squared error or

44 Learning local image descriptors with autoencoders

binary cross-entropy) between the input and the output of the network. How-
ever, we have noticed that having the lowest such difference does not necessarily
lead to the best performing descriptors. It is only after evaluating the descrip-
tor on a benchmark (such as HPatches [Balntas 17]), which takes a very long
time (sometimes as long as the training itself), that we know how good the
descriptor is.

To overcome these limitations, in this chapter, we provide deeper insights
into the descriptor evaluation process and explore the selection of metrics (that
measure the difference between the input and the output of a (V)AE) which
can serve as “proxies” for how well the descriptor will perform.

In addition to these studies on local image descriptors with autoencoders,
in this chapter we also consider the invertibility of descriptors. Over the past
decade, there has been interest in inverting local image descriptors. The seminal
paper on reconstructing an image from its SIFT descriptors has started this
trend by Weinzaepfel et al. [Weinzaepfel 11], followed by works on inverting
binary descriptors [d’Angelo 12], HOG [Vondrick 13], and, more recently, using
deep learning for inverting descriptors [Mahendran 15].

In this chapter, we propose a self-supervised method that specialises in
learning both a descriptor function that maps image patches to their encodings
and an inverting function that decodes these encodings back into the original
image patches. To the best of our knowledge, we are the first to present a
descriptor that is optimised for inversion. Our method is using β-variational
autoencoders, which we modify to achieve an optimal balance between preserv-
ing similarities between patches and achieving good invertibility. We perform
a thorough analysis of how the β value influences this trade-off.

To summarise, the main contributions presented in this chapter are as fol-
lows:

1. We present a thorough comparison between autoencoder-based and
variational-autoencoder–based approach for learning local image descrip-
tors and analysis of hyperparameter importance for obtaining a successful
descriptor. To our knowledge, no comparison between AEs and VAEs in
this context has been carried out. We are also not aware of any other
works using VAEs for learning local image descriptors.

2. We perform a thorough hyperparameter analysis to establish which hy-
perparameters are the most important when learning a descriptor using
a (variational) autoencoder. In addition to that, we propose using per-
ceptual loss for training the autoencoders, which proved to significantly
increase the performance of the descriptor.

3. We provide important insights into evaluation metrics for the learned lo-
cal image descriptors and propose a rapid approximate evaluation method
for descriptors learned with autoencoders that shows high correlation
with the established benchmarks such as HPatches.

4. Following the works of many supervised invertible local image descriptors,
we propose a self-supervised invertible descriptor, which enables trans-

3.2 Benchmarks for local image descriptor evaluation 45

forming patch encodings back into image patches. We present a study on
the trade-offs between descriptor’s invertibility and its performance.

The rest of this chapter is organised as follows. In the following section,
we discuss the benchmarks for local image descriptors. In Section 3.3, we
compare the autoencoder-based and variational-autoencoder–based approach
to learning descriptors, and carry out a hyperparameter study for descriptors
learned in this way. In Section 3.4, we study the evaluation of autoencoders for
learning local image descriptors and propose an approach for fast approximate
evaluation of the trained models. In Section 3.5, we describe our proposed
invertible local image descriptor and we perform an empirical study to evaluate
it. We conclude the chapter in Section 3.6.

3.2 Benchmarks for local image descriptor eval-
uation

Evaluation of local image descriptors plays a crucial role in their design. The
learning-based descriptors rely on the evaluation at different stages to make the
decisions, both during the training of a neural network, and the optimisation of
the hyperparameters. For a long time (up until 2017), the most widely-adopted
benchmark for evaluating local image descriptors was the Oxford matching
dataset [Mikolajczyk 05] (from 2005), consisting of only 48 images. Other early
datasets include DTU Robots dataset [Aanæs 12], Hanover dataset [Cordes 13],
Generated Matching dataset [Fischer 14a], WxBs dataset [Mishkin 15]. Most
of them also contain a small amount of images, or do not support evaluation
of different tasks that local image descriptors perform.

In 2017, Balntas et al. published widely adopted, comprehensive HPatches
benchmark [Balntas 17]. It enables evaluation of local image descriptors’
performance on three different tasks:

• The patch retrieval task tests how well a descriptor can match a query
patch to a pool of patches extracted from many images, including many
distractors.

• The image matching task tests to what extent a descriptor can correctly
identify correspondences in two images based on a pair of patches – one
patch from each of the images.

• The patch verification task measures the ability of a descriptor to classify
whether two patches match, i.e., whether they are extracted from the
same measurement, as defined in the benchmark.

Each task can be of varying difficulty level (’easy’, ’hard’ and ’tough’ – referring
to the amount of geometric noise, as defined in [Balntas 17]).

While this allows a comprehensive evaluation of a descriptor, the evaluation
itself is very computationally expensive. It is, therefore, not viable to use this
benchmark to quickly evaluate the learned descriptor after every training (or,
better yet, every epoch in the training), in order to be able to get insights into

46 Learning local image descriptors with autoencoders

which aspects of the network work best, and thus be able to make informed
decisions about how to select hyperparameters, architecture of the neural net-
work, etc. For supervised learning, such an evaluation can be performed using
the labels provided in the dataset, but in self-supervised learning, we have no
labelled data and thus we need some effective way to predict descriptor’s per-
formance. In the case of autoencoders, one can evaluate the similarity between
the input and the output image patch (that is learned to be as close as pos-
sible to the input one). It is expected that evaluating this similarity by the
mean squared error (MSE) cannot predict well the performance on standard
patch retrieval tasks as MSE can be heavily influenced even by a small pixel
shift. Thus using this metric during training is likely to result in very different
encodings of structurally similar, but somewhat shifted or otherwise slightly
deformed patches. Therefore, in Section 3.4 we explore incorporating other im-
age similarity metrics and analyse how well they can predict the performance
of local image descriptors on standard tasks.

3.3 AE versus VAE and a hyperparameter study

Here we present an in-depth study on learning local image descriptors using
(variational) autoencoders. First, we describe the selected hyperparameters
(Section 3.3.1), then the experimental setup (Section 3.3.2) and, finally, the
empirical evaluation (Section 3.3.3).

Why the focus on AEs versus VAEs‽ Classical autoencoders serve as a
baseline for compacting the essential information from the input into a lower-
dimensional representation. However, their lack of ability to ensure the con-
tinuity of the latent space may be a drawback when learning local image de-
scriptors. Variational autoencoders are designed to ensure the smoothness of
latent space, and are therefore a viable alternative to AEs in this task. We
shall not consider sparse autoencoders as they are overcomplete, meaning that
the encoding is larger in dimensionality than the input. Encoding patches
into higher-dimensional, albeit sparse, vectors is not a desired property of a
descriptor and would require these encodings to be further compressed. De-
noising autoencoders add artificial noise to the input and are trained to denoise
it, thus also learning to encode useful properties of data samples. We emulate
this behaviour using data augmentation, which is taken as a separate hyper-
parameter, as we discuss later in this section. Contractive autoencoders have
been shown to be related to the denoising ones [Alain 14], therefore, we do not
consider them separately.

3.3.1 Overview of the hyperparameters

In choosing which hyperparameters to optimise and how, we need to consider
two aspects: (i) how well the autoencoder learned its primary task – to encode
the input into a low-dimensional representation and to recover a close replica
of the input from that encoding, and (ii) how well the generated encoding
performs as local image descriptor.

3.3 AE versus VAE and a hyperparameter study 47

When considering the first objective, the main goal of hyperparameter
search is to adjust the effective capacity of the neural network to match the
complexity of its task at hand [Goodfellow 16a]. The way hyperparameters can
influence this is by influencing the actual capacity of the network, the ability to
successfully minimise the cost function, or the degree of regularisation [Good-
fellow 16a]. The literature on how different hyperparameters influence these
different aspects is plentiful.

The second objective is more elusive and less explored. While it is straight-
forward how to optimise and evaluate autoencoders’ performance on recon-
structing the input (which is what they are trained to do), it is less straight-
forward how to optimise the objective “learn the best possible descriptor”. For
example, data augmentation may lead to worse performance on the first ob-
jective (learning to perfectly reconstruct) by AE learning to output blurred
patches, but may in fact lead to the better performance on the second ob-
jective (learning to preserve similarity among patches in the encodings, i.e.
learning a good descriptor). For this objective, there exists no literature on
which hyperparameters influence it and in which way. This is what we explore
in this section.

Table 3.1 lists the hyperparameters that we address, with the concrete
choices that we include in our analysis and the main empirical findings. Here
we explain briefly the analysed hyperparameters and the empirical findings will
be detailed in the next section.

An important parameter that we consider is the loss function used to calcu-
late the differences between the input images and the output (reconstructed)
images. The choice of loss function has been shown to strongly influence the
performance of neural networks, be it an autoencoder [Pihlgren 20], or other
types of neural networks [Janocha 17]. The default choice for the loss function
of AEs (and the default for the reconstruction term in VAEs) is the binary cross-
entropy, BCE(x, y) = −

∑N
i=1

∑N
j=1 yij log xij + (1− yij) log(1− xij), where x

and y are two images of size N × N . Recently, a perceptual loss, multiscale
structural similarity (MS-SSIM), has been shown to give significant improve-
ments when training autoencoders [Pihlgren 20], but has not been used before
for learning descriptors. MS-SSIM is a multiscale version of the SSIM, which
is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.1)

where x and y are two windows, µx and µy are the average and σ2
x and σ2

y are
the variance of x and y, respectively, σxy is the covariance between x and y,
and c1 and c2 are the variables to stabilize the division with weak denominator.
For more details on MS-SSIM, refer to [Wang 03].

The choice of activation function, in our experience, has a significant influ-
ence on the training and overall performance of the autoencoder. The Expo-
nential Linear Unit (ELU) and Rectified Linear Unit (ReLU) have shown to be
the best-performing ones, which is why we include these two in the analysis.
Exponential Linear Unit is defined as follows:

ELU(x) =

{
x if x ≥ 0

α(ex − 1)) if x < 0
(3.2)

48 Learning local image descriptors with autoencoders

and Rectified Linear Unit as ReLU(x) = max(0, x). We do not change the
activation of the last layer, where we use sigmoid function as it is common
when the output is in image format [Goodfellow 16a].

Data augmentation acts as a form of regularisation in the context of learning
descriptors. If we add some geometrical noise to the input, e.g. rotation by 10°,
and expect the output to be the original image, then the autoencoder will learn
to ignore these minor variations in the rotation. It is similar for other types of
geometric noise (translation, scaling, shearing) which we want our descriptor
to be (to an extent) invariant to. We empirically explore this hypothesis in
Section 3.3.3.

We also consider the choice of the type of autoencoder as a hyperparam-
eter. Here we briefly discuss the motivation behind choosing the types of
autoencoders for this study. Classical autoencoders that use dimensionality
constraint on the encoding layer are simplest implementation of the concept
of encoding useful information by learning to copy the input to the output
with some constraint (i.e. the concept of autoencoders), and therefore the
obvious first choice for learning a local image descriptor in a self-supervised
way. However, their lack of ability to ensure the continuity of the latent space
may be a drawback when learning local image descriptors, as was discussed
in Section 2.4.1 (smooth latent space of an autoencoder should lead to in-
creasing the similarity-preserving property of a descriptor learned from that
autoencoder). Variational autoencoders are designed to ensure the smoothness
of latent space, and therefore we study them as well. More specifically, we
consider their generalised form, β-VAEs, where we can tune the smoothness
of the latent space. Concerning sparse autoencoders, they are overcomplete,
meaning that the encoding is larger in dimensionality than the input. Encoding
patches into higher-dimensional, albeit sparse, vectors is not a useful property
of a descriptor and would require these encodings to be further compressed.
Therefore, sparse autoencoders are not considered in this study. Denoising au-
toencoders add artificial noise to the input and are trained to denoise it, thus
also learning to encode useful properties of data samples. We emulate this
using data augmentation, which is taken as a separate hyperparameter, as we
discuss later in this section. Contractive autoencoders have been shown to be
related to the denoising ones [Alain 14], therefore, we do not consider them
separately.

Beta parameter is a parameter specific to VAEs (i.e. to their generalisation,
β-VAEs) and is used in the loss function to regulate the trade-off between the
reconstruction term and the term that enforces the latent space distribution
to be as close as possible to the prior distribution. It is a very important pa-
rameter, as it influences the trade-off between VAE learning to reconstruct well
and its latent space having a distribution close to the prior distribution. The
correct choice of β has been shown to induce disentanglement of facial features
on the datasets of images of faces [Higgins 17], while also resulting in blurred
reconstructions of those images. We hypothesise that better disentanglement
is related to the descriptor producing more informative encodings, and in this
work we perform an analysis of the influences of β parameter on the descriptor’s
performance.

3.3 AE versus VAE and a hyperparameter study 49

Hyperparam. Values Empirical findings

Loss function BCE,
MS-SSIM

MS-SSIM consistently outperforms BCE
on all tasks and regardless of other
hyperparameters. Loss function seems to
be the most important parameter.

Activation
functions

ReLU, ELU ReLU is used by the best performing
descriptors. When using MS-SSIM loss
function, ReLU outperforms ELU, when
using BCE loss, it depends on the data
augmentation level – ReLU is better with
less data augmentation and ELU is better
with more data augmentation.

Data
augmentation
level

{0, 1, 2, 3} Best performing models overall use no
data augmentation, but when breaking
down into HPatches tasks, this is not
always the case. For the matching task
data augmentation levels 1 and 2 are the
best, for retrieval 1, and for verification 0.
Using data augmentation higher than 2
seems to degrade the performance of the
descriptor across all tasks.

The extent to
which the
latent space
distribution is
enforced to
be as close as
possible to
the prior
distribution

Variational
autoencoder
with β ∈
{1e-05, 1e-04,
1e-03},
classical
autoencoder

For all three HPatches tasks and overall,
variational autoencoders with β values on
the lower end (1e-05 or 1e-04) and
classical autoencoders show similar (best)
results. Classical autoencoders are
simpler, deterministic, and more trivial to
train (do not require tuning β
parameter), however, for
performance-sensitive applications VAEs
are a marginally better option. When
BCE loss is used, a VAE with a high β
value will perform poorly.

Table 3.1: Summary of the analysed hyperparameters and our findings regarding
their influence on the quality of local image descriptors learned with (variational)
autoencoders.

50 Learning local image descriptors with autoencoders

We do not study the optimisation of the learning rate – the studies on
it are plentiful. As it controls the first objective – effective capacity of the
network, and there are many algorithms that automatically optimise it (such
as RMSProp, Adam, Adadelta), its tuning is beyond the scope of this work.
We adopt one of the standard optimisation algorithms (Adam) with default
settings. Same holds for the weight decay coefficient.

Similarly, hyperparameters such as the number of hidden units in the layers
and the number of layers in the network, have been researched elsewhere since
they optimise the effective capacity of the network. Ultimately, they depend
on the size of input patches. Standard regularisations such as dropout have
also been explored in a general sense, they also optimise the first objective and
are not specific to our problem, therefore, we do not explore them either.

We use grid search over the selected parameters – the reason for this ap-
proach (as opposed to a more heuristic-based search) is that we can get more
insights into how they interact with each other when we have the results for
the grid than if we had it randomly distributed.

3.3.2 The experimental setup

Our neural network models are built using PyTorch library for deep learning.
We perform grid search for our hyperparameters using Weights & Biases Python
library.

We use standard autoencoder architecture in these experiments. The en-
coder consists of three convolutional layers with zero padding and kernel size
3× 3, each followed by a max-pooling layer. The last layer of the encoder is a
fully-connected layer. The decoder mirrors the encoder, with a fully-connected
layer followed by three transposed convolutional layers with stride 2 and kernel
size 2× 2.

The architecture of the variational autoencoder is the same as that of the
classical autoencoder, except that one fully connected layer at the end of the
encoder is replaced by two parallel ones (having the same input) – for the mean
and variance of the Gaussian distribution. Using the mean and variance, we
can sample from the Gaussian distribution in order to obtain the bottleneck
layer – the encoding of our descriptor. The number of Gaussians corresponds
to the size of latent space – in our case 32.

All the convolutional layers in the models have 32 filter maps as input and
output 32 filter maps, except for the first and the last one – the first one has
1 filter map as input (because the input is a one-channel (grayscale) image),
and the last one outputs 1 filter map in order to match the input of the model.
The autoencoders are trained on grayscale patches so that they can be assessed
with HPatches benchmark, but they can be easily extended to RGB patches
by changing the number of input and output layers to 3.

After the training of the (V)AE has been completed, the decoder part of
the network is discarded, and we are left with the encoder network, which is
our local image descriptor – for a given image patch, it outputs its encoding.

For a data augmentation level a (where a ∈ {0, 1, 2, 3}), we perform the
following transforms on the input patch to the (variational) autoencoder:

3.3 AE versus VAE and a hyperparameter study 51

• rotation by ar degrees, where ar ∼ U(−10a, 10a)

• translation by at% of the input patch size, where at ∼ U(−10a, 10a)

• scaling of the input patch to asc% of the original, where asc ∼ U(100 −
10a, 100 + 10a)

• shearing transform where the new y axis forms an angle of asc to the
original yaxis, where asc ∼ U(−10a, 10a)

We do not consider these types of data augmentation separately, as it would
significantly increase the hyperparameter search space, and, in general, data
augmentation is considered to have less impact on the training of neural net-
works than the other hyperparameters we have examined [Goodfellow 16b].

We use Adam optimiser for all neural networks in this chapter. The net-
works are trained on a dataset of 125k 65×65 patches that were extracted from
the images from ImageNet [Deng 09], KonIQ [Hosu 20] and Visual Genome [Kr-
ishna 17] datasets. The patches were extracted using FAST (Features from
Accelerated Segment Test) algorithm for feature detection [Rosten 06]. The
patch size has been chosen because HPatches benchmark expects this patch
size. The size of the encodings is 32. The ratio between training, validation
and test set is 8 : 1 : 1.

For the hyperparameter search we have created a full pipeline that allows
training the models and their subsequent evaluation on HPatches (as well as
using other metrics between the input and the output of the test set images).
It was, therefore, enough to start one script in order to execute the whole
hyperparameter grid search and evaluation. The code for the experiments in
this chapter is open-source and can be found in our GitHub repository.

3.3.3 Empirical results for hyperparameter selection
We now evaluate the performance of descriptors learned with (variational) au-
toencoders, analysing jointly the influence of the selected hyperparameters. For
each set of hyperparameters, we evaluated the learned descriptor on HPatches
benchmark [Balntas 17] for all three tasks: matching, retrieval and verification.
Since the performance on each of these tasks can yield different conclusions re-
garding the optimal values of the hyperparameters, we find it useful to have
one uniting evaluation measure, but HPatches does not provide that. Thus
we create an additional ‘overall’ performance metric by normalising the out-
puts from the three provided tasks between 0 and 1, and averaging the three
normalised values.

The results can be found in Figure 3.1 (overall performance) and Figure
3.2 (performance on the three individual tasks). These results allow us to
draw important conclusions about the choice of hyperparameters and the choice
between AEs and VAEs. Table 3.1 presents the summary of the findings, which
we discuss in more detail in the following paragraphs.

MS-SSIM loss yields better results than BCE on all tasks. This can be
explained by the fact that BCE is a pixel-wise loss function which implies (1)
that it does not consider the relations between different pixels in the patch,

52 Learning local image descriptors with autoencoders

0 1 2 3
Data augmentation level

0.0

0.2

0.4

0.6

0.8

1.0
HP

at
ch

es
 o

ve
ra

ll
pe

rfo
rm

an
ce

 (n
or

m
al

ise
d)

AE

0 1 2 3
Data augmentation level

VAE (= 1e-05)

0 1 2 3
Data augmentation level

VAE (= 1e-04)

0 1 2 3
Data augmentation level

VAE (= 1e-03)

Figure 3.1: HPatches performance (normalised), showing the effect of different hy-
perparameter choices. β value differs across the graphs, increasing from left to right,
in the left-most graph showing classical AE (essentially a deterministic VAE with
β = 0), and the other three graphs VAEs with β values 1e-05, 1e-04, 1e-03, respec-
tively. Data augmentation level is shown on x-axis of the graphs. The choice of
activation function is indicated in different colours (ReLU, ELU) and the loss func-
tion with different markers (× MS-SSIM, • BCE).

leading to an encoding that is unable to capture spatial structures and (2)
that it weighs all pixels equally, even though some groups of pixels may be
more discriminative. MS-SSIM loss is a perception-based loss that alleviates
these issues by considering the differences in structural information of an image
patch (i.e. the inter-dependencies between pixels), as well as the perceptual
aspects: luminance and contrast. It is important to note that the increased
performance of descriptors trained using MS-SSIM loss comes at the cost of
increased training time of an autoencoder. We accept this trade-off since the
incurred cost only impacts the training time – the inference time (i.e. time it
takes to calculate the descriptor) is not affected by the loss function.

Further on, the MS-SSIM loss function together with the ReLU activation
yields the best descriptors in terms of performance on all tasks and for both
autoencoders and variational autoencoders, and, in case of VAEs, this holds
for different values of β parameter. Interestingly, this performance is best with
little to no data augmentation.

Comparison between VAEs and AEs leads to interesting insights. For all
the three tasks as well as overall, the best performing descriptors are always
trained using variational autoencoders. However, the descriptors trained with
classical autoencoders are usually performing only slightly worse. Furthermore,
we have also observed that the worst performing descriptors also come from
variational autoencoders (when β value is too high). Therefore, rather modest
improvements that VAEs offer over AEs in these tasks come at a price of ad-
ditional training (tuning the β parameter), requiring additional computational
resources.

Regarding the choice of the loss function, we observe that working with
BCE favours small amount of data augmentation, while MS-SSIM sometimes

3.3 AE versus VAE and a hyperparameter study 53

0 1 2 3
Data augmentation level

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13
M

at
ch

in
g

(m
AP

)
AE

0 1 2 3
Data augmentation level

VAE (= 1e-05)

0 1 2 3
Data augmentation level

VAE (= 1e-04)

0 1 2 3
Data augmentation level

VAE (= 1e-03)

0 1 2 3
Data augmentation level

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

Re
tri

ev
al

 (m
AP

)

AE

0 1 2 3
Data augmentation level

VAE (= 1e-05)

0 1 2 3
Data augmentation level

VAE (= 1e-04)

0 1 2 3
Data augmentation level

VAE (= 1e-03)

0 1 2 3
Data augmentation level

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Ve
rif

ica
tio

n

AE

0 1 2 3
Data augmentation level

VAE (= 1e-05)

0 1 2 3
Data augmentation level

VAE (= 1e-04)

0 1 2 3
Data augmentation level

VAE (= 1e-03)

Figure 3.2: Performance by HPatches tasks: matching (top), retrieval (middle) and
verification (bottom), showing the effect of different hyperparameter choices. For
each task, β value differs across the graphs, increasing from left to right, in the left-
most graphs showing classical AEs (essentially a deterministic VAEs with β = 0),
and the other three graphs VAEs with β values 1e-05, 1e-04, 1e-03, respectively.
Data augmentation level is shown on x-axis of the graphs. The choice of activation
function is indicated in different colours (ReLU, ELU) and the loss function with
different markers (× MS-SSIM, • BCE).

54 Learning local image descriptors with autoencoders

works best with no data augmentation at all. We hypothesise that BCE needs
more data augmentation in order to “nudge” the network into preserving simi-
larities between patches – otherwise it may learn to reconstruct very well, but
also be very sensitive to small perturbations of the patches, which is undesir-
able. Surprisingly, moderate to high levels of data augmentation are negatively
impacting the performance, regardless of other parameters and for all the tasks.

Similarly, a too high β value (when using VAEs) is detrimental to the per-
formance of the learned descriptors. High β values mean more weight on the
KLD term of the loss function – which is essentially a form of regularisation.
However, same as with the data augmentation regularisation, having some KLD
regularisation is better than having none.

It is also interesting to see that when using MS-SSIM, ReLU activation
function works better than ELU for all the tasks, but when using BCE, there
is not a single best activation function – ReLU works better than ELU for
verification task, but ELU outperforms ReLU for the matching and retrieval
tasks.

Looking at different tasks, we found that hyperparameters influence each
other in the same way for matching and retrieval tasks, i.e. descriptors’ perfor-
mance on them is almost perfectly correlated (0.97). Verification, too, is highly
correlated with the other two tasks (with matching 0.91 and with retrieval 0.94),
but the best performing hyperparameter combinations are not always the same
between verification and either of the two tasks. Most notably, with matching
and retrieval, MS-SSIM always outperforms BCE. However, with verification
task, this is not always the case (nonetheless, the models that are performing
the best on this task do use MS-SSIM, and the ones performing the worst use
BCE).

We also notice that for MS-SSIM, ReLU performs consistently better than
ELU, but for BCE it is not clear which activation function is better.

3.4 Approximate evaluation of autoencoders for
local image descriptors

As we discussed in Chapter 2, the key feature of autoencoders is that they do
not need labelled data for training. Instead, they are trained to recreate at the
output a faithful “copy” of the input from a latent representation in their middle
layer. The idea is to learn to generalise by extracting the essential features of
the input for a given task, from which endless examples of the same kind can
be generated. What is assumed under generating examples “of the same kind”
depends on the given task (e.g. in some imaging tasks, invariance to certain
geometric transforms and/or noise is desired, and in others not). The question
that poses itself then is – how to measure the “goodness of fit” of the obtained
representation during training?

One approach is to use a benchmark designed for the task that the autoen-
coders are learning. For example, in the case of learning local image descriptors
using autoencoders, one could use HPatches benchmark for evaluating local im-
age descriptors [Balntas 17]. There are two issues with this approach: (1) The

3.4 Approximate evaluation of autoencoders for local image descriptors 55

benchmark evaluation itself might be too computationally intensive to perform
it during the training (e.g. after every n epochs, or after every finished run in
a hyperparameter sweep). For example, it takes around 40 minutes to evaluate
a local image descriptor on the aforementioned HPatches benchmark (on an
AMD Ryzen Threadripper 1920X 12-core processor with 32GB of RAM). (2)
Evaluating autoencoder’s performance on a benchmark requires a benchmark
in the first place. This is problematic in the cases where one wants to use the
autoencoder for a task for which a benchmark does not exist. Furthermore, the
requirement of a benchmark partially defeats the purpose of AEs not requiring
labelled data – since benchmark requires manual work and data labelling.

Another approach to measure the success of the learned representation is
to evaluate the difference between the inputs and the learned outputs of the
trained autoencoder. In practice, mean squared error (MSE) difference is usu-
ally used for this, especially during the training and/or hyperparameter sweeps.
However, there are multiple issues with MSE (as pointed out by Pihlgren et
al. [Pihlgren 20]): (1) MSE does not take into account relations between dif-
ferent pixels – it only matters that each output pixel is as close as possible to
the corresponding input pixel. (2) All pixels are weighted equally even though
some groups of pixels might be more important, e.g. the ones depicting the
salient features in the image.

In some cases, other measures of difference are used for evaluating the use-
fulness of AEs, but they are typically also pixel-wise metrics. However, these
measures of difference are often taken without a real explanation for why they
have been chosen. To the best of our knowledge, there exist no studies that
compare various measures of difference to see how they relate to the usefulness
of the trained AEs.

Here we tackle this issue for autoencoders learned for local image descrip-
tors. We investigate various measures of difference between the input and the
output of the trained AE and compare their correlation with the HPatches
benchmark for local image descriptors. In this way, we establish what mea-
sure of difference is the best “proxy” for how well the autoencoder is trained
to perform as a local image descriptor. The idea is that one could then use
this measure of difference during the AE training instead of evaluating the AE
on the benchmark during the training, which is a lot more computationally
intensive and sometimes even infeasible.

In the following section we introduce different image similarity metrics that
we consider for the approximate evaluation of autoencoders. In Section 3.4.2
we research the usefulness of these image similarity metrics for evaluating au-
toencoders for learning local image descriptors: we describe our experimental
setup in Section 3.4.2.1 and discuss the results in Section 3.4.2.2.

3.4.1 Image similarity metrics

Research into image similarity metrics has been a popular field of study with
many different methods proposed in the past decades. Here we list some of
the most important ones which we also examine as methods for approximate
evaluation of autoencoders.

56 Learning local image descriptors with autoencoders

Mean squared error (MSE) is a common image quality measurement metric,
calculated as MSE(x,y) = 1

MN

∑M
m=1

∑N
n=1(xmn − ymn)

2, for images x and y
of dimensions M × N . Peak signal-to-noise ratio (PSNR) is a metric derived
from MSE, so we do not consider it separately. We do include a variant PSNR
with blocking effect factor PSNR-B [Yim 10], which is also a common visual
quality metric in some tasks.

We incorporate three other MSE-based metrics. Sliding window
root mean squared error (RMSESW) is defined as: RMSESW(x,y) =
1
W

∑W
w=1

√
MSE(xw,yw), where xw and yw are corresponding windows of x

and y, and W is the number of these windows. ERGAS (Erreur Relative Glob-
ale Adimensionnelle de Synthèse, from its French acronym) is also based on
RMSE, for its definition, refer to [Wald 00]. Finally, normalised root mean

squared error (NRMSE): NRMSEf (x,y) =

√
MSE(x,y)

f , where f is a normalisa-
tion factor. There is no standard method of normalisation across the literature,
so we consider in this paper three different normalisation methods: (1) normal-
isation by averaged Euclidean norm of the first image x (the input image to
the autoencoder), (2) normalisation by the intensity range of x and (3) nor-
malisation by the mean of x.

The next metric that we consider is adapted Rand error (ARE) [Arganda-
Carreras 15], calculated as ARE(x,y) = 1 − 2pr

p+r , where p and r are adapted
Rand precision and adapted Rand recall (respectively), as defined in [Arganda-
Carreras 15]. ARE has originally been developed for evaluation of (3D) image
segmentation algorithms, but has since been used more broadly.

Variation of information (VoI) [Meilă 07] measures the distance between
images in terms of the information loss and gain between them. It is defined
as VoI(x,y) = H(x|y) +H(y|x), where H(·|·) is conditional entropy. We also
consider both conditional entropies separately for this study.

Visual information fidelity (VIF) is another information-theory–based met-
ric proposed by Sheikh and Bovik [Sheikh 06] which quantifies the infor-
mation shared between two images. For the formal definition of VIF, refer
to [Sheikh 06].

Universal image quality index (UQI) is a metric proposed by Wang and
Bovik [Wang 02] which models difference between images as a combination of
three factors: loss of correlation, contrast distortion, and luminance distortion.
It is calculated as follows:

UQI(x,y) =
4σx,yµxµy

(σ2
x + σ2

y)(µ
2
x + µ2

y)
, (3.3)

where µx and µy are the average and σ2
x and σ2

y are the variance of x and y,
respectively, σxy is the covariance between x and y.

Next, we discuss SSIM [Wang 04]. It is a perception-based metric that
considers the differences in structural information of an image patch (i.e. the
inter-dependencies between pixels), as well as the perceptual aspects: lumi-
nance and contrast. SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.4)

3.4 Approximate evaluation of autoencoders for local image descriptors 57

where µx, µy, σ2
x, σ2

y and σxy are defined as with UQI, and c1 and c2 are the
variables to stabilise the division with weak denominator.

Spatial Correlation Coefficient (SCC) is calculated by applying Laplacian
kernel to the images and then computing the correlation coefficient between
the resulting images, as proposed by Zhou et al. [Zhou 98].

3.4.2 Proposed approximate evaluation method
We now investigate and describe our proposed method for approximate evalua-
tion of the performance of a descriptor-learning autoencoder, based on how
the autoencoder reconstructs patches. We first describe our experimental
setup (Section 3.4.2.1) and then we present the results and discussion (Sec-
tion 3.4.2.2).

3.4.2.1 The experimental setup

The primary goal of this section is to establish whether some relatively simple
image similarity metric can serve as a low-complexity proxy for the computa-
tionally expensive evaluation on HPatches during the training of autoencoders.
We perform this evaluation based on the difference between the input and the
output patches of the autoencoder, as measured by the different image similar-
ity metrics. Our objective is to find which image similarity metric shows the
most similar results to the evaluation on HPatches benchmark, i.e. we want to
find the metric that is the most correlated with HPatches evaluation.

To this end, we train the autoencoder with different hyperparameters, and
for each fully-trained AE we note its performance on HPatches benchmark
and we also note the average distance between the input and the output of
the AE, measured by different image similarity metrics. We then compute the
Pearson correlation between the score on HPatches and each of the metrics. We
look at HPatches overall score (Figure 3.3), and the three different HPatches
tasks (image matching, patch retrieval and patch verification – Figure 3.4) to
establish which metric is the best for approximate evaluation of each of these.
The values shown in these figures are absolute values of the correlations that
are in the range [-1, 1] (where -1 means perfect negative correlation, 0 means
no correlation, and 1 means perfect positive correlation).

58 Learning local image descriptors with autoencoders

PSNR-B
VoI

ERGAS
NRMSE (eucl)

NRMSE (minmax)
RMSE (sw)

UQI
NRMSE (mean)

H (out|in)
H (in|out)

SCC
MSE
VIF

ARE
SSIM

0.01
0.01
0.03
0.03
0.03
0.03
0.03
0.04

0.08
0.14

0.19
0.21
0.22

0.27
0.83

UQI
PSNR-B

MS-SSIM
NRMSE (minmax)

RMSE (sw)
VIFP

NRMSE (eucl)
NRMSE (mean)

ERGAS
SCC
VOI
ARE

SSIM
MSE

0.01
0.04
0.05
0.06
0.07
0.08
0.08
0.09

0.12
0.12

0.16
0.26

0.8
0.85

Figure 3.3: Absolute value of correlation between performance of a descriptor
learned using an autoencoder on HPatches benchmark, and the distance in terms
of different metrics between the input and output patches of that autoencoder (top:
the hyperparameter sweep with both BCE and MS-SSIM loss; bottom: the hyperpa-
rameter sweep with only BCE loss). The range of the correlation values before taking
the absolute value is [−1, 1].

3.4
A

pproxim
ate

evaluation
of

autoencoders
for

localim
age

descriptors
59

PSNR-B
UQI
VoI

RMSE (sw)
NRMSE (minmax)

NRMSE (mean)
ERGAS

NRMSE (eucl)
H (out|in)
H (in|out)

SCC
VIF

ARE
MSE
SSIM

0.05
0.06
0.07
0.08
0.08
0.09
0.09
0.09

0.16
0.22
0.24

0.27
0.29

0.35
0.87

VoI
PSNR-B
ERGAS

NRMSE (mean)
NRMSE (eucl)

NRMSE (minmax)
UQI

RMSE (sw)
H (out|in)
H (in|out)

SCC
VIF

MSE
ARE

SSIM

0.01
0.03
0.04
0.05
0.05
0.05
0.05
0.05

0.09
0.15

0.21
0.23
0.25
0.27

0.83

H (in|out)
H (out|in)

UQI
ERGAS

NRMSE (minmax)
NRMSE (eucl)

NRMSE (mean)
PSNR-B

VoI
RMSE (sw)

SCC
VIF

ARE
MSE
SSIM

0.02
0.02

0.05
0.05
0.06
0.06
0.06
0.07
0.07
0.07

0.1
0.11

0.21
0.33

0.72

Image matching Patch retrieval Patch verification

Figure 3.4: Absolute value of correlation between performance of a descriptor learned using an autoencoder on HPatches benchmark (for 3
different tasks: image matching, patch retrieval and patch verification), and the distance in terms of different metrics between the input and
output patches of that autoencoder. The correlation has been measured on the hyperparameter sweep that includes both BCE and MS-SSIM
loss. The range of the correlation values before taking the absolute value is [−1, 1].

60
Learning

localim
age

descriptors
w

ith
autoencoders

PSNR-B
NRMSE (minmax)

RMSE (sw)
NRMSE (mean)

NRMSE (eucl)
UQI

ERGAS
MS-SSIM

VOI
VIFP
SCC
ARE

SSIM
MSE

0.0
0.02
0.03
0.04
0.04
0.05

0.09
0.1
0.12
0.13

0.16
0.3

0.79
0.85

PSNR-B
UQI

NRMSE (minmax)
RMSE (sw)

NRMSE (mean)
NRMSE (eucl)

MS-SSIM
ERGAS

VIFP
SCC
VOI
ARE

SSIM
MSE

0.02
0.03
0.03
0.05
0.06
0.06
0.08
0.1
0.11

0.15
0.15

0.29
0.81

0.87

SCC
VIFP

MS-SSIM
UQI

PSNR-B
NRMSE (minmax)

RMSE (sw)
ARE

NRMSE (mean)
NRMSE (eucl)

ERGAS
VOI

SSIM
MSE

0.01
0.01

0.04
0.07

0.12
0.15
0.16
0.16
0.17
0.17
0.18

0.22
0.74

0.8

Image matching Patch retrieval Patch verification

Figure 3.5: Absolute value of correlation between performance of a descriptor learned using an autoencoder on HPatches benchmark (for 3
different tasks: image matching, patch retrieval and patch verification), and the distance in terms of different metrics between the input and
output patches of that autoencoder. The correlation has been measured on the hyperparameter sweep that includes only the BCE loss. The
range of the correlation values before taking the absolute value is [−1, 1].

3.4 Approximate evaluation of autoencoders for local image descriptors 61

The patches in this experiment are taken from a test set (containing 12.5k
patches), which the autoencoder has not seen during training. The autoen-
coders were trained with different combinations of the following hyperparam-
eters (hyperparameter sweep): learning rate (values: 1e-03, 1e-04, 1e-05), loss
function (BCE and perceptual loss [Pihlgren 20]), activation function after all
the layers except for the last one (ReLU and ELU), data augmentation level,
and β parameter of the β-variational autoencoder (values: 1e-03, 1e-04, 1e-05,
and 0 (classical AE)). We compute the correlations between the HPatches met-
rics and the approximate evaluation metrics on two different hyperparameter
sweeps – one where the hyperparameter search space includes both BCE and
perceptual (MS-SSIM) loss, and the other where we use only the BCE loss.
In the former setup, the aim is to find a more general approximate evaluation
method that works best on different loss functions. In the latter setup, the idea
is find the approximate evaluation metric when using only the BCE loss, since
this is the most common loss function used for training (V)AEs.

We use Adam optimiser for all trainings. The networks are trained on a
dataset of 125k 65× 65 patches that were extracted from the images from Im-
ageNet [Deng 09], KonIQ [Hosu 20] and Visual Genome [Krishna 17] datasets.
The patches were extracted using FAST (Features from Accelerated Segment
Test) algorithm for feature detection [Rosten 06]. The patch size has been
chosen because HPatches benchmark expects this patch size. The size of the
encodings is 32. The ratio between training, validation and test set is 8 : 1 : 1.

The benchmark that we use for the accurate evaluation of the performance
of autoencoders is HPatches benchmark for local image descriptors [Balntas 17].
It enables evaluation of descriptors’ performance on three different tasks (patch
retrieval, image matching, and patch verification), each with varying difficulty
levels (‘easy’, ‘hard’ and ‘tough’ – referring to the amount of geometric noise.
For detailed definitions of this benchmark and these tasks, we refer the reader
to the HPatches paper [Balntas 17].

The autoencoder evaluation using each of the metrics did not exceed one
minute (on an AMD Ryzen Threadripper 1920X 12-core processor with 32GB
of RAM), as opposed to the evaluation on HPatches benchmark which takes
around 40 minutes on the same setup.

3.4.2.2 Results and discussion

Figure 3.3 shows the correlations between different image similarity metrics and
the overall HPatches score, both for the hyperparameter sweep with BCE and
MS-SSIM loss as well as for the hyperparameter sweep with only BCE loss. For
the former hyperparameter sweep, it is quite notable that by far the best met-
ric for approximate evaluation of autoencoders learning local image descriptors
is structural similarity index (SSIM), showing 0.83 correlation with HPatches
overall score. All other tested metrics show very low level of correlation: for
ARE, VIF and MSE, these are 0.27, 0.22 and 0.21, respectively, and for others
even smaller. Hence, we do not recommend using them for approximate eval-
uation of autoencoders. For the latter hyperparameter sweep, we notice that
the SSIM metric no longer shows the highest correlation – MSE now shows the

62 Learning local image descriptors with autoencoders

highest correlation (0.85), while SSIM shows slightly lower (0.8). Both metrics
show significantly higher correlation than other metrics (the next one being
only 0.26).

Figure 3.4 shows the correlations between the metrics and each of the three
HPatches tasks (image matching, patch retrieval and patch verification) calcu-
lated on the hyperparameter sweep with BCE and MS-SSIM loss. In all three
cases we observe SSIM metric outperforming the other metrics by a large mar-
gin. We note that for image matching and patch retrieval there is a moderate
correlation for ARE, MSE, VIF and SCC (above 0.2). For the task of patch
verification, the correlations with all the metrics are lower than for the other
two tasks.

Figure 3.5 shows the correlations between the metrics and each of the three
HPatches tasks (image matching, patch retrieval and patch verification) cal-
culated on the hyperparameter sweep with only BCE loss. Similarly to the
case with the overall HPatches score, SSIM metric shows the second highest
correlation – only slightly bellow the MSE metric, and both of them being
significantly higher than other metrics.

While the high performance of SSIM metric in the first hyperparameter
setup can be (partially) attributed to the fact that in half of the cases we were
optimising the MS-SSIM loss, it is still notable how high SSIM performs when
the autoencoders are optimised using only the BCE loss. We believe that the
reason for such high performance of SSIM is that it is a perceptual metric,
meaning that it is designed to mimic how humans would compare images. This
is achieved by considering the differences in structural information of images
(and image patches), i.e. inter-dependencies between pixels, as well as the
perceptual aspects: luminance and contrast. These aspects are very important
in particular for local image descriptors, which are designed to be able to match
different part of images that correspond to the same details in real life.

It is not surprising that some pixel-based metrics which do not account for
structural features are not well correlated with the ability of autoencoders to
learn a useful encoding as local image descriptor.

Image quality metrics VIF and UQI are not suitable for this task, which is
as expected given that their focus is on evaluating visual quality rather than
matching content. It would be of interest to consider some other measures that
reflect the structure of patches, e.g. comparing the patches’ encodings using
traditional local image descriptors such as SIFT [Lowe 99], SURF [Bay 08] or
BRIEF [Calonder 10].

We believe that these results are not only important because evaluating
autoencoders (for learning descriptors) with SSIM or MSE (depending on the
loss function of choice) instead of on the benchmarks could save a lot of com-
putational resources, but also we believe there is high value in the insights that
we provided, including that some other metrics are not good for approximate
evaluation of AEs.

3.5 Invertible local image descriptors 63

Figure 3.6: Reconstructing an image from its SIFT descriptors. Image taken from
[Weinzaepfel 11].

3.5 Invertible local image descriptors

In this section, we propose a method that specialises in learning both a de-
scriptor function that maps image patches to their encodings and an inverting
function that decodes these encodings back into the original image patches.
Inverting local image descriptors has been an active area of research in the
past decade, starting with the prominent work by Weinzaepfel et al. [Wein-
zaepfel 11] on reconstructing an image from its SIFT descriptors (shown in
Figure 3.6). The authors used a database of descriptors and their correspond-
ing patches to search for the nearest neighbour to the query descriptor, and
then take the patch connected to the retrieved nearest neighbour. Further
works on inverting other descriptors followed, including the inversion of binary
descriptors [d’Angelo 12] and of HOG [Vondrick 13]. A more recent paper
by Mahendran et al. [Mahendran 15] considers inverting descriptors back into
patches using deep learning.

So far, to the best of our knowledge, no one has proposed learning the
descriptor and its inversion function simultaneously, therefore, we find this an
interesting research area to explore. The benefit of invertible image descriptors
can be seen in the ability to then use the descriptors as a crude compression
method. Furthermore, they can be used as the last-resort (partial) recovery
of images that have been lost due to e.g. database failure, but which have
been indexed in databases (used for search and retrieval purposes) using the
encodings computed using local image descriptors.

We propose using a β-variational autoencoder for simultaneous learning
of local image descriptors and their reconstruction back into image patches.
Due to the nature of their architecture, both classical and variational autoen-
coders are ideal for the simultaneous learning of the descriptor function (the
encoder part of the autoencoder) and the reconstruction function (the decoder
part). For a comprehensive overview of variational autoencoders, refer to Sec-
tion 2.4.4. In contrast to classical autoencoders, VAEs include additional reg-
ularisation that allows modelling the latent space to be continuous and to be
easy to interpolate across, ensuring that similar input data samples (patches)

64 Learning local image descriptors with autoencoders

get mapped to similar points in the latent space (encoding), and vice versa.
This similarity-preserving property is a property of paramount importance for
local image descriptors. We also hypothesise that the additional regularisation
of VAEs will allow for learning sharper reconstructions in comparison to meth-
ods based on classic autoencoders, which we will show empirically in the next
section.

In β-VAE, a generalisation of the loss function of VAEs is achieved by adding
the β weight to the KL term. In this way, we can control the trade-off between
learning to faithfully reconstruct the input patches and preserving patch simi-
larities in the latent space. By setting the right value of β we can increase the
influence of the reconstruction term to ensure good invertibility of the descrip-
tor. In contrast to descriptors based on classical autoencoders, however, the
KL term in the VAE loss function ensures the continuity of the latent space
which could not be guaranteed when using the classical autoencoders.

Once we trained the β-VAE, the encoder part of it is our descriptor, and
the decoder part is the inversion function that maps the patch encodings back
to the original patches.

Figure 3.7 illustrates the architecture of the variational autoencoder used in
this section. The encoder consists of three convolutional layers followed by the
fully-connected layers for the means and variances of Gaussian distributions.
From these layers, we sample a vector that is the encoding of the input patch.
We set the dimensionality of the latent space M (and therefore, the mean,
variance, and the sampling layers) to be 128. The decoder architecture mirrors
that of the encoder – at the beginning, there is one layer fully-connected to
the sample (encoding), followed by three transposed convolutional layers. The
dimensions of the output patch of our VAE are the same as the dimensions of
the input.

 sample

Figure 3.7: The selected variational autoencoder architecture that we used for learn-
ing the invertible local image descriptor.

Following the notation from [Higgins 17], we use βnorm as the main hyper-
parameter that we vary. βnorm is defined as follows:

βnorm =
βM

N
, (3.5)

where M is the size of latent space and N is the input size. By normalising the
β value, the analysis that we present in the following section can be applied to
datasets of different patch size and different desired encoding sizes. We vary
the βnorm values over several orders of magnitude – from 10−5 to 102. In the

3.5 Invertible local image descriptors 65

following section, we show how the βnorm value influences the patch retrieval
of the descriptor and its invertibility.

We use rectified linear unit (ReLU) activation functions after all layers, ex-
cept the last layer, where we use the sigmoid activation function instead. We
use Adam optimiser to learn the weights of the VAE, which is trained on a
dataset of 80k 56 × 56 patches that were extracted from the images from the
ImageNet dataset using FAST (Features from Accelerated Segment Test) algo-
rithm for feature detection [Rosten 06]. The ratio between training, validation,
and test set is 8 : 1 : 1.

3.5.1 Experimental results
In this section, we show how the value of βnorm influences the proposed β-
VAE–based local image descriptor and its performance with respect to patch
retrieval (the main task for which local image descriptors are designed) and
patch inversion from the patches’ encodings.

We also evaluate both the retrieval and inversion capabilities of the pro-
posed approach in comparison with a reference autoencoder-based descriptor.
We compare our method only to this autoencoder-based descriptor, since non-
autoencoder-based descriptors have no straightforward way of being inverted
and thus give us no way of comparing their invertibility.

3.5.1.1 Evaluation on patch retrieval

Patch retrieval evaluation is performed as follows. We select a set of query
patches within a test dataset of patches consisting of 12.5k patches. For each
query patch, we retrieve the most similar patches by comparing their encodings
as calculated by the descriptors. We show some examples of patches retrieved in
such a way in Figure 3.8. The quality of patch retrieval is then evaluated based
on two metrics (peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM)) between the query patches and patches deemed most similar to
the queries based on the encodings computed with descriptors. The results are
averaged over 12.5k patches in the test set.

We first examine the patch retrieval capabilities of the proposed β-VAE–
based descriptor for different βnorm values. In Figure 3.9 (left), we see that,
according to the PSNR metric, the patch retrieval seems to be the best when
the βnorm value is the lowest, i.e., when the KL divergence term of the loss
function is the closest to 0. However, when using a metric that better mimics
human’s perception of differences between images, SSIM, we see that adding a
KL term is beneficial, as the patch retrieval in terms of SSIM shows a peak at
βnorm value of 10−4. In our case, this translates to β value of 0.0032.

Secondly, we compare the patch retrieval capabilities to a classical
autoencoder-based descriptor. We present our results in Table 3.2. We ob-
serve that the invertible descriptor is outperformed by the classical AE-based
one in terms of PSNR, however, in terms of SSIM, the proposed β-VAE–based
descriptor shows slightly better performance. These results are consistent with
the βnorm value analysis, since setting the βnorm to 0 would correspond to
using a regular autoencoder.

66 Learning local image descriptors with autoencoders

Figure 3.8: Patch retrieval examples. Large patch is the query patch. Top rows:
classical AE-based descriptor; bottom rows: proposed invertible descriptor.

3.5 Invertible local image descriptors 67

PSNR [dB] SSIM

Classical AE-based descriptor 26.0 0.23

Proposed invertible descriptor 24.6 0.25

Table 3.2: Patch retrieval performance comparison, averaged over 12.5k query
patches.

According to these experiments, we can claim that the proposed invertible
descriptor shows promising results in the main task for which descriptors are
designed: retrieving patches.

3.5.1.2 Evaluation of invertibility

Now we evaluate the extent to which a descriptor can reconstruct the original
patch from its encoding. For a test set of patches, we measure the average
difference between the original patch, and the patch reconstructed from the
encoding via the descriptor.

We again first show the analysis for different βnorm values (Figure 3.9
(right)). Here we see the best performance (in terms of both PSNR and SSIM)
for the βnorm value of 10−4. We conclude that the KL divergence (albeit
weighted very lightly) has a positive influence on the invertibility of the de-
scriptor. Therefore, using β-VAE for invertible local image descriptor indeed
makes sense – we can benefit from the regularisation by the KL divergence
term and also adjust the extent to which it is taken into account.

We also compare our descriptor to the autoencoder-based descriptor (Table
3.3). The proposed invertible descriptor shows better results than the classical
AE-based one across both metrics: PSNR and SSIM. In Figure 3.10, we show
some examples of patches reconstructed with the proposed VAE-based descrip-
tor. We can observe that the proposed descriptor outperforms the reference
method and is able to reconstruct the patches with improvements in capturing
details and with less artefacts.

PSNR [dB] SSIM

Classical AE-based descriptor 16.0 0.10

Proposed invertible descriptor 20.2 0.51

Table 3.3: Patch reconstruction performance comparison on image patches cropped
from images from ImageNet dataset, averaged over 12.5k patches.

68 Learning local image descriptors with autoencoders

10 5 10 4 10 3 10 2 10 1 100 101 102

norm

15

20

25

PS
NR

Patch retrieval

10 5 10 4 10 3 10 2 10 1 100 101 102

norm

0.175

0.200

0.225

0.250

SS
IM

10 5 10 4 10 3 10 2 10 1 100 101 102

norm

10.0

12.5

15.0

17.5

20.0

PS
NR

Patch inversion

10 5 10 4 10 3 10 2 10 1 100 101 102

norm

0.2

0.3

0.4

0.5

SS
IM

Figure 3.9: Comparison of patch retrieval performance (top two) and patch recon-
struction performance (bottom two) for different βnorm values.

3.6 Conclusion 69

Figure 3.10: Examples of patch reconstruction based on the descriptor’s encod-
ing. Top row: original patches; middle row: reconstructed patches using a classical
AE-based descriptor; bottom row: reconstructed patches using proposed invertible
descriptor.

3.6 Conclusion
In this chapter, we carried out an analysis of the hyperparameters’ influence on
the performance of the descriptor learned with an autoencoder. We observed
that autoencoders using MS-SSIM loss function, ReLU activation functions,
and little to no data augmentation are producing the best descriptors in terms
of performance on all HPatches tasks and for both classical and variational
autoencoders.

In addition, we performed a thorough comparison between autoencoders
and variational autoencoders approach for learning local image descriptors.
We show that VAE-based descriptors produce marginally better results than
AE-based descriptors on HPatches benchmark, but due to other difficulties
that come with VAEs (extra hyperparameters to tune being the most promi-
nent one), classical autoencoders are most likely a better choice for learning a
descriptor.

We also investigated which metrics are the best for rapid evaluation of
autoencoder-learned descriptors, and found SSIM distance between input and
output patches of the autoencoder to show a consistently high correlation with
the descriptors’ performance on HPatches benchmark. We therefore propose
using this metric for rapid approximate evaluation of local image descriptors
learned with autoencoders, especially when trained by optimising the MS-SSIM
loss.

Furthermore, we presented a novel descriptor based on β-variational au-
toencoders that is optimised for being inverted. We performed experiments
to investigate the trade-off between descriptor’s invertibility and its ability to
preserve patch similarities in the latent space, and found that the proposed
descriptor is capable of being inverted without this negatively affecting its per-
formance as a descriptor.

The results in this chapter present a solid ground for further research and in-
novation in the field of self-supervised deep learning for local image descriptors,
which we partake in the next chapter. The research in this chapter led to two
published journal articles (one included in the Web of Science [Žižakić 21a] and
another in a peer-reviewed international journal [Žižakić 21b]) and two confer-
ence papers (one of which is currently under review) [Žižakić 20b,Žižakić 22].

70 Learning local image descriptors with autoencoders

4
Memory-efficient

autoencoder-based local
image descriptors

Shall I describe it to you? Or would you like me to find you a box?
—Legolas, from The Lord of the Rings: The Fellowship of the Ring

While in the previous chapter, our focus was on optimising autoencoder-
based and variational-autoencoder–based architectures for learning local image
descriptors, here we introduce an architectural change to improve further their
efficacy in image processing tasks. We modify the encoder part of the autoen-
coder to introduce a structure that we call intermediate representation. The
key idea is to enable extracting an encoding of a single patch within the image
with minimal computation, while having a representation that is not memory
intensive.

4.1 Introduction
Over the recent years, camera resolution in smartphones has been increasing
drastically. In 2022, even budget phones take 4K resolution images (around 8
megapixels [Goulekas 01]), while the camera resolution of the high-end phones is
often over 50, or even 100 megapixels. As a consequence of this progress, image
processing of photos taken by smartphones has become very computationally
intensive, rendering some image processing tasks infeasible.

Let us, as an example, take image processing tasks that require patch match-
ing, i.e. finding the most similar patches in an image for a query patch. Patch
matching is used in tasks such as image denoising, inpainting, panorama stitch-
ing, motion estimation, etc. Comparing a query patch with all the possible
patches in a 4K resolution image requires almost ten million patch compar-
isons for a standard patch size (65 × 65 pixels). If the patches are compared
in a trivial way, i.e. by comparing each pixel of every patch, that results in
tens of billions pixel comparisons, rendering it infeasible even for high-end pro-
cessors that these phones have. A way to overcome this issue is to, instead of

72 Memory-efficient autoencoder-based local image descriptors

comparing patches pixel by pixel, compare patches’ descriptors – the compact
encodings of the patch.

This way, we can reduce the number of comparisons from the order of mag-
nitude of thousands to the order of magnitude of tens – a two orders of mag-
nitude decrease. In order to obtain the patches’ encodings, traditionally we
have two options: (1) calculate and store the encodings for all the patches once
before the start of the image processing algorithm or (2) calculate the encod-
ings on demand every time patch comparison (or patch matching) needs to be
performed.

Both of these approaches have their shortcomings. The first approach re-
quires a large block of memory to be reserved for storing the patches’ encodings,
e.g. a single 4K image would call for several gigabytes of memory to store all
the patches’ encodings (for a standard 65×65 patch size). The reason for such
high memory demand is that overlapping patches’ encodings are, in general, not
overlapping themselves, i.e. one needs to store a separate encoding for every
single patch, even if an encoding exists for another one with 99% overlap. The
second approach, i.e. calculating the encodings on demand, would partially
defeat the purpose of using patch descriptors in the first place due to compu-
tational overhead – for each patch comparison, we would have to first calculate
the patches’ encodings using a descriptor, and then compare the encodings.

In this chapter, we propose a novel approach that improves significantly the
efficiency of patch comparisons within a given image. The key idea is to create
an intermediate representation as a compact way of storing the descriptors of
all the patches of an image because the IRs of overlapping patches overlap
themselves. For example, the IRs of two patches with 90% overlap will also
have 90% overlap, and thus this overlap can only be stored in memory once.
Extracting a descriptor from the intermediate representation is then done fast
using only one max-pooling operation. We refer to the proposed intermediate
representation as IR.

Intermediate representation is produced by a specific autoencoder-based
architecture that we proposed, as will be described in the following sections.
Using autoencoders allows our descriptors to be learned in a self-supervised
way, enabling them to be fine-tuned for a particular use-case (type of data),
e.g. photographs of paintings (as we will show at the end of this chapter). The
descriptors learned in a supervised way or designed using hand-crafted features
do not support such specialisation based on the type of data at hand. For a
more detailed overview of the advantages of local image descriptors learned in
a self-supervised way, see Section 3.1.

We build on top of the results from the previous chapter, where we per-
formed a thorough analysis to find the optimal hyperparameters for (varia-
tional) autoencoders for learning local image descriptors. We also use the rapid
approximate evaluation method (proposed in the previous chapter) to efficiently
evaluate the descriptors’ performance during the training of our (variational)
autoencoders.

As a proof of concept for the proposed intermediate representation, we in-
tegrate our descriptor into an existing inpainting algorithm [Ružić 15] to show
the benefit of this representation. We hypothesise that the improved inpaint-

4.2 Reducing computational memory with intermediate representation 73

ing results come from being able to search over a larger patch space – made
possible due to our memory-efficient descriptor. To achieve such fine-tuning
with other (supervised) descriptors, it would be necessary to have a labelled
set for the type of images that need to be inpainted, which is unrealistic in
most cases. As a case study, we used high-resolution photographs of the panels
of Ghent Altarpiece [KIK-IRPA 10], on which we fine-tuned the descriptor and
tested our improved inpainting algorithm.

The rest of this chapter is organised as follows. In Section 4.2 we present our
proposed autoencoder architecture that yields the desired intermediate repre-
sentation structure. In Section 4.3, we present the experimental evaluation of
our method in three different ways: by evaluating it on an established descrip-
tor benchmark (Section 4.3.1), by evaluating its robustness to noise (Section
4.3.2) and to missing data (Section 4.3.3). We integrate our proposed method
into an inpainting algorithm in Section 4.4. Finally, we conclude this chapter
in Section 4.5.

4.2 Reducing computational memory with inter-
mediate representation

We propose the architecture of the encoder part of our autoencoder where we
discard all the max-pooling layers in the encoder except for the last one, whose
spatial extent we increase (in order to sufficiently reduce the dimension of the
encoding layer – the last layer of the encoder). The intermediate representation
is then the data structure that is obtained after the last convolutional layer and
just before the max-pooling layer, and the patch encodings are obtained from
the intermediate representation using a single max-pooling operation.

Formally, let I := I(0,:) be the input image, where with superscript (0, :)
we denote all the channels of the 0-th layer of the encoder. We define the
intermediate representation IR(I) as:

IR(I) = I(L,:), (4.1)

I(L,c) = A(ClL(A . . . (Cl1(I(0,:))))). (4.2)

where L is the number of convolutional layers in the encoder E , I(li,c) is the
c-th channel of the output of the li-th layer, A is some activation function, and
Cli is the li-th convolutional layer.

From the intermediate representation of an image IR(I), we obtain the
descriptor for a patch I[i..i+p][j..j+p] whose top left corner is in position (i, j),
where p is the patch size, as follows

E(I[i..i+p][j..j+p]) = MP(IR(I)[i..i+p][j..j+p]). (4.3)

We now discuss the impact of removing all the max-pooling layers (except
for the last one). Using max-pooling is usually motivated by its advantages
– adding non-linearity, playing the role of dimensionality reduction, and with

74 Memory-efficient autoencoder-based local image descriptors

that reducing the number of parameters to be trained and hence the training
time. However, it has been shown that (max-)pooling is not necessary for a
successful neural network, and other methods have been proposed to replace
it [Tobias-Springenberg 14]. Indeed, non-linearity between layers is already
achieved with non-linear activation functions. Dimensionality reduction is a
crucial property of autoencoders and thus we do leave one max-pooling layer
with large spatial extent at the end of the encoder to reduce the dimension of
the code layer. The longer training time due to removing other max-pooling
layers is a trade-off for decreasing the computational time and memory while
using the descriptor.

The proposed approach is beneficial in image processing problems that re-
quire many patch comparisons within a single image. IR is obtained by prop-
agating the complete image (containing patches of interest) through the con-
volutional layers in the encoder, but not the max-pooling. This is done only
once and before the actual processing starts. During the particular image
processing task, the descriptors are extracted from the stored IR using the fast
max-pooling operation on the corresponding section of the IR. Figure 4.1 shows
this process visually and Figure 4.2 shows the architecture of our network and
the IR.

The memory reduction is achieved due to it being sufficient to store only the
IR of the whole image (the IRs of patches are simply cropped from the IR of the
whole image in the same way a patch would be cropped from an image) and to
get the descriptors on demand using the fast max-pooling in contrast to storing
an encoding for a patch at each possible location in an image (Figure 4.1). It
is not necessary to separately store IRs of all the patches because the IRs of
neighbouring patches are overlapping (in the same way neighbouring patches
are overlapping in an image). Conversely, this is generally not the case for the
encodings of other descriptors – even for two patches shifted by one pixel in an
image, their two encodings may be arbitrarily different and one would therefore
need to store them both in memory. IR thus results in a tremendous decrease
in memory usage for image processing applications, as shown in Figure 4.4.
This decrease could make some algorithms that use many patch comparisons
feasible for use on large images.

Our architecture does, however, require slightly longer training time com-
pared to the one with the standard use of max-pooling (measured in minutes
– amounting to less than 5% increase for the additional training time), but it
reduces the computational time and memory while using the descriptor. We
accept the incurred computational time of training the autoencoder (which can
be performed only once) as a trade-off for huge savings in the computational
memory while using the descriptor.

To summarise, the idea of the proposed intermediate representation is to
allow IR-based descriptors to save memory (with respect to non-IR descriptors)
while keeping their performance on the same level. In the next section, we
show both the memory savings and the performance of IR descriptors that is
comparable to that of non-IR descriptors.

4.2 Reducing computational memory with intermediate representation 75

max pool

intermediate representationoriginal image encodings

max pool

max pool
conv. layers

Figure 4.1: Exploiting the proposed intermediate representation (IR) of
an image in algorithms that require many patch comparisons. The IR
is calculated once from the original image through the convolutional layers of the
encoder. In algorithms that need to compare patches (e.g. inpainting), the descriptors
are extracted from the IR using the fast max-pooling operation, and then compared.

convolution max pooling patch encoding intermediate
representation

Figure 4.2: Top: traditional encoder architecture in autoencoders, with max-pooling
layers after all convolutional layers. Bottom: proposed encoder architecture, which
omits max-pooling layers after all the convolutional layers but the last one, in order
to obtain an intermediate representation (IR) of image that preserves the spatial
information in the height-width plane.

76 Memory-efficient autoencoder-based local image descriptors

4.3 Experimental results

We evaluate the proposed descriptors in multiple ways. In section 4.3.1, we
use the popular HPatches benchmark for the evaluation of local image descrip-
tors [Balntas 17]. The idea is to compare the proposed IR descriptors with anal-
ogous non-IR descriptors (both of the types learned without labelled data), as
well as with state-of-the-art supervised-learning–based descriptors and hand-
crafted descriptors (to put the results of these self-supervised methods into
perspective).

In Section 4.3.2, we evaluate descriptors’ robustness to noise – how they be-
have when noise is added to the patches. This property is not only important
for applications in image inpainting, but also for image denoising. In Section
4.3.3, we evaluate descriptors’ robustness to missing data, i.e., how they behave
when parts of patches are missing. The robustness to missing data is an impor-
tant property for applications in image inpainting. In the next section (Section
4.4) we plug in our descriptor into an inpainting algorithm to showcase these
properties and how they improve the inpainting.

4.3.1 Evaluation on HPatches benchmark

In this section, we use the well-established HPatches benchmark [Balntas 17] to
evaluate the performance of different descriptors. We examine the performance
of descriptors that incorporate our proposed IR method and compare their per-
formance with their non-IR counterparts, as well as with the only other AE-
based descriptor reported so far, from Chen et al. [Chen 15]. To put the results
of these self-supervised methods into perspective, we also compare them with
a state-of-the-art supervised descriptor DeepDesc [Simo-Serra 15] and with an
established hand-crafted descriptor SIFT [Lowe 99]. The goals of this evalua-
tion are (1) to show comparison between AE-based and VAE-based descriptors,
(2) to show comparison between IR-based and non-IR–based descriptors, (3)
to show how our (V)AE-based descriptors compare to the only other AE-based
descriptor (from Chen et al. [Chen 15]), and (4) to show how self-supervised-
learning–based descriptors compare to the state-of-the-art supervised descrip-
tors and hand-crafted descriptors. We report both performance evaluated on
HPatches benchmark and performance in terms of memory requirements while
using these descriptors as part of an image processing algorithm on a single
image.

We have selected the best performing models based on the analysis of hy-
perparameters in Section 3.3 (for both models we choose ReLU activation func-
tion, no data augmentation, MS-SSIM loss function and for the VAE β value
of 0.0001).

Figure 4.3 shows descriptors’ performance evaluated on all three tasks of
HPatches benchmark. We can conclude that incorporating the IR architecture
into a (V)AE-based descriptor does not significantly impact its performance as
evaluated on HPatches benchmark – AE-IR version slightly outperforms AE
while VAE slightly outperforms VAE-IR. All four models’ performance is very
similar, with VAE and AE-IR exhibiting the best performance. However, the

4.3 Experimental results 77

memory-efficiency of the IR versions is significantly higher (as shown in Figure
4.4). The similarities between these methods can be seen in figures 4.5 and
4.6, which shows examples of the retrieved patches that are the most similar
to a query patch for all our methods. The patches were retrieved using the
descriptors, based on the similarities of patch encodings.

We also observe that all our four models outperform the descriptor trained
with autoencoders from [Chen 15]. However, it is clear from the Figure 4.3
that there is still a gap in performance between these self-supervised models on
one hand and supervised and hand-crafted models on the other hand. This is
to be expected given that the supervised models can leverage labels that show
semantic similarities between patches without these patches being very similar
in terms of their pixel values. These results also suggest that there is further
room for improvement and innovation in the (V)AE-based descriptors in order
to bridge the peformance gap with the hand-crafted ones.

When it comes to the memory requirements the proposed IR-based descrip-
tors (both AE-based and VAE-based) show a clear advantage over those that do
not use IR, such as the descriptor from Chen et al. [Chen 15], SIFT [Lowe 99],
DeepDesc [Simo-Serra 15], and descriptors trained with regular AEs and VAEs
(Figure 4.4). This is because our method takes advantage of the fact IRs of
overlapping patches are overlapping themselves, so it is enough to simply store
IR of the whole image and then extract from it descriptors using max pooling.
Therefore, we can confidently say that IR architectural change is beneficial in
image processing tasks on a single image because it shows a significant reduc-
tion in memory usage while keeping the descriptor’s performance on the same
level.

4.3.2 Robustness to noise

We test the noise robustness of two versions of our descriptor, v32 and v128
(named after the dimensionality of the descriptor for 16 × 16 patches). We
compare them to the exhaustive search on pixel intensity values, and to the
existing descriptor trained with the autoencoder of [Chen 15]. We trained all
the descriptors on the dataset described in Section 3.3.2.

The evaluation is performed as follows. We select a set of query patches
within an image with added Gaussian noise. For each query patch, we retrieve
the k most similar patches either by comparing their descriptors or by using
exhaustive search over the pixel values. The quality of patch retrieval is evalu-
ated based on the sum of square differences (SSD) between the pixels in query
and retrieved patches before the noise was added. The standard deviation of
the Gaussian noise was varied between 0 and 50.

Figure 4.7 summarises the results of our patch retrieval experiments and
some visual examples are shown in Figure 4.8 (top two examples). When no
noise is present, the exhaustive search retrieves the patches that are the most
similar to the query patch. However, noise deteriorates the performance of
the exhaustive search, whereas our descriptor v128 shows little decrease in
performance.

Our descriptors also show superior performance compared to the existing

78 Memory-efficient autoencoder-based local image descriptors

Figure 4.3: Comparison of performance on HPatches tasks (matching, retrieval
and verification) between descriptors learned with VAE and AE (both non-IR and
IR variants), a different autoencoder-based descriptor from Chen et al. [Chen 15],
hand-crafted descriptor SIFT [Lowe 99] and a supervised-learning–based descriptor
DeepDesc [Simo-Serra 15] which achieves state-of-the-art performance [Balntas 17].

image size

m
em

or
y

[n
um

be
r o

f f
lo

at
32

's
]

0

5.0E+8

1.0E+9

1.5E+9

2.0E+9

2.5E+9

0 1000 2000 3000 4000

non-IR descriptors IR descriptors (v128) IR descriptors (v32)

Figure 4.4: Memory needed for storing patch encodings with descriptors that do not
incorporate IR architecture (Chen et al. descriptor, descriptors trained with regular
AEs and VAEs) for all patches in an image compared to the memory for storing the
intermediate representation of the image (showing versions where encodings are of
length 32 and 128, respectively), from which a descriptor for a single patch can be
obtained with minimal computation.

4.3 Experimental results 79

Figure 4.5: Patch retrieval examples. Large patch is the query patch. Rows (top to
bottom): AE-based descriptor, VAE-based descriptor, AE-based descriptor with IR,
VAE-based descriptor with IR.

80 Memory-efficient autoencoder-based local image descriptors

Figure 4.6: Patch retrieval examples. Large patch is the query patch. Rows (top to
bottom): AE-based descriptor, VAE-based descriptor, AE-based descriptor with IR,
VAE-based descriptor with IR.

4.4 A case study – inpainting 81

descriptor learned with autoencoders. Our method v128 shows better results
than Chen [Chen 15], while having the same patch descriptor dimensionality.
Furthermore, our method v32 that shows similar results to [Chen 15] has an
order of magnitude lower dimensionality of the descriptor when encoding a
single patch. The dimensionality comparison changes even more in our favour
when encoding the whole image due to the usage of the IR (Figure 4.4).

4.3.3 Robustness to missing data

We set up an experiment to determine the capability of the proposed descriptor
when working with patches that contain missing regions. This type of operation
is of interest for applications such as inpainting and scene reconstruction from
multi-view data. The setup is similar to the noise robustness evaluation, but
here parts of the query patches have been randomly removed. We trained all
the descriptors on the dataset described in Section 3.3.2.

For the query patches with missing parts we want to find the best matching
undamaged patches. We are searching for the matching patches by comparing
the descriptors of the non-missing parts. The numerical evaluation is done
based on the SSD values of the complete (undamaged) query and the found
match. The results are shown in Figure 4.7 (bottom), again comparing our
two descriptors, descriptor from [Chen 15], and the exhaustive search over
pixel intensity values. Visual comparison is shown in Figure 4.8 (bottom two
examples).

The conclusions from these experiments are similar to those with the noisy
patches. When the missing area in a patch is small, exhaustive search retrieves
the best results. However, as the missing area is increasing, our descriptor v128
starts performing better and overtakes the exhaustive search, showing more ro-
bustness to missing data than the exhaustive search. Both of our proposed
methods outperform the existing method [Chen 15], with a slightly larger mar-
gin than in the case of noisy patches. In the following section we explore how
our descriptors perform when being part of an inpainting algorithm.

4.4 A case study – inpainting
We illustrate the use of our proposed IR-based local image descriptors in im-
age inpainting. The goal of image inpainting is to reconstruct the missing
region of an image in a visually plausible way using the information from the
surrounding regions of the image. Exemplar-based (sometimes called patch-
based) inpainting methods fill in the missing region by sampling and copying
the patches from the undamaged part of the image. These methods require
many patch comparisons in order to find appropriate patches to be used to fill
in the missing area. The patch size normally used is between 10 and 20 pixels.
While it is usually selected based on the image resolution, in some cases the
optimal patch size may depend on the image content (see, e.g., the discussion
in [Ružić 15]). Automatic choice of the patch size based on the image content is
out of the scope of this thesis. As the image dimensions are growing nowadays
(with some of the bleeding-edge mobile phones having 100-megapixel cameras),

82 Memory-efficient autoencoder-based local image descriptors

A B C D
104

105

106

107

SS
D

Noise = 0

A B C D
104

105

106

107

Noise = 10

A B C D
104

105

106

107

Noise = 20

A B C D
104

105

106

107

Noise = 30

A B C D
104

105

106

107

Noise = 40

A B C D
104

105

106

107

Noise = 50

A B C D

104

105

106

107

SS
D

Missing 0%

A B C D

104

105

106

107

Missing 10%

A B C D

104

105

106

107

Missing 20%

A B C D

104

105

106

107

Missing 30%

A B C D

104

105

106

107

Missing 40%

A B C D

104

105

106

107

Missing 50%

Figure 4.7: Comparison of descriptors’ robustness to noise (top) and miss-
ing data (bottom). A – proposed descriptor v32, B – proposed descriptor v128, C
– Chen et al. [Chen 15], D – exhaustive search on pixel intensity values. The plots
are showing SSDs of ground truth pixel values of patches found by the descriptors (in
A-C) and exhaustive search (D), based on the noise (top) and percentage of missing
area in a patch (bottom).

4.4 A case study – inpainting 83

query

pr
op

os
ed

 v
12

8
Ch

en
 e

t a
l.

ex
ha

us
tiv

e

query

pr
op

os
ed

 v
12

8
Ch

en
 e

t a
l.

ex
ha

us
tiv

e

query

pr
op

os
ed

 v
12

8
Ch

en
 e

t a
l.

ex
ha

us
tiv

e

query

pr
op

os
ed

 v
12

8
Ch

en
 e

t a
l.

ex
ha

us
tiv

e

Figure 4.8: Noisy patch retrieval (top two) and patch retrieval where the query has
missing parts (bottom two). For each query, the first row corresponds to the proposed
descriptor v128; the second row: the descriptor from [Chen 15], and the third row:
exhaustive search. The missing parts of the query patches (bottom two) are shown
in black.

84 Memory-efficient autoencoder-based local image descriptors

these inpainting algorithms are becoming infeasible. This presents a window of
opportunity for the local image descriptors to speed up these algorithms and
make them usable in the high-definition context of the images that we have
today.

Patch-based inpainting algorithms including [Criminisi 04, Komodakis 07,
Le Meur 11,Voronin 14,Ružić 15,Ghorai 16,Newson 17, Zhang 19] search for
well-matching candidate patches within some search window or within image
segments with given textural and colour characteristics (searching for well-
matching candidates in the whole image would be too computationally in-
tensive). We search instead well-matching patches using our learned patch
descriptor and we incorporate this patch search into the inpainting algorithm
from [Ružić 15].

We test the resulting method in virtual restoration of master paintings. As
a case study, we use images from the panels of the Ghent Altarpiece [KIK-
IRPA 10], on which a larger virtual restoration study is being performed
[Pižurica 15, Sizyakin 20]. The paint-loss areas to be inpainted are detected
with the algorithm from [Meeus 19].

Figure 4.10 shows the inpainting on a part of the panel the Prophet Zachary.
On this particular panel, the paint-loss areas are showing as light brown. Figure
4.9 shows the zoomed details. We have also used the inpainting algorithm
without the descriptors, however, we were not able to obtain the inpainting
results on the whole panel without using the descriptor due to the memory
error on our computer (an AMD Ryzen Threadripper 1920X 12-core processor
with 32GB of RAM).

The inpainting results are very promising and show that our descriptor was
both able to improve visually the inpainted images as well as the computational
aspect of the inpainting.

4.4 A case study – inpainting 85

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Image inpainting results. (a)-(b) Original image detail contain-
ing paint-loss (showing as light brown); (c)-(d) inpainted with a patch-based method
using the proposed local image descriptor; (e)-(f) inpainted without using the descrip-
tors. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of
KIK-IRPA, Brussels.

86
M

em
ory-effi

cient
autoencoder-based

localim
age

descriptors

(a) Original (b) Paint loss areas to be inpainted (c) Inpainted with a patch-based method us-
ing the proposed local image descriptors.

Figure 4.10: Image inpainting results. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA,
Brussels.

4.5 Conclusion 87

4.5 Conclusion
In this chapter, we proposed an intermediate representation (IR) structure –
an improvement to the encoder architecture of an autoencoder which produces
descriptors that perform better or equally as good but save memory in com-
parison to existing methods when used for patch search and matching within
a single image.

We have evaluated our IR-based descriptor on HPatches benchmark compar-
ing it not only to other self-supervised-learning–based descriptors, but also with
state-of-the-art supervised descriptors and hand-crafted descriptors. The eval-
uation shows that our method performs better or equally as good as other self-
supervised-learning–based methods, while improving on the memory-efficiency
of storing the descriptors. There is still a gap in performance between these
self-supervised models on one hand and supervised and hand-crafted models
on the other hand, leaving room for further innovation in the (V)AE-based
descriptors.

We have also evaluated the proposed descriptors’ robustness to noise and
missing data against an existing descriptor learned with autoencoders from
[Chen 15] and exhaustive search over pixel intensity values. The proposed
descriptors show improved results, and superior robustness to both noise and
missing data in comparison with exhaustive search.

As a proof of concept, we have integrated our descriptor into an inpainting
algorithm that resulted in visual improvements over the inpainted images and
the ability to handle higher resolution images.

The research in this chapter contributed to three conference papers
[Žižakić 19a,Žižakić 19b,Meeus 20] and one journal paper [Žižakić 21a].

88 Memory-efficient autoencoder-based local image descriptors

5
Transferring the knowledge

from hand-crafted to
learning-based descriptors

My precious.
—Gollum, from The Lord of the Rings: The Two Towers

While in the previous chapters, we were focusing on local image descriptors
designed only to learn from data, in this chapter, we present a novel approach
for designing descriptors that learn not only from data but also from hand-
crafted descriptors. The proposed method is a type of a knowledge transfer (as
will be described later in this section) which has, to the best of our knowledge,
not been considered before. In particular, we construct a learning model that
first mimics the behaviour of a hand-crafted descriptor and then learns to
improve upon it in a self-supervised manner, using autoencoders. This is a
general framework for knowledge-transfer from hand-crafted to learning-based
descriptors, and we demonstrate its use by constructing the learned BRIEF
descriptor based on the well-known hand-crafted descriptor BRIEF.

5.1 Introduction
As we have discussed in Chapter 3, local image descriptors play a crucial role
in many image processing tasks and can be categorised into hand-crafted and
learning-based methods. While learning-based methods show superior perfor-
mance on benchmarks [Balntas 17,Fischer 14b], hand-crafted descriptors still
outperform the learned ones in many cases of practical interest and are often a
descriptor of choice in practice [Schonberger 17]. Therefore, the hand-crafted
methods should not be neglected in research, but used to improve the learning-
based methods.

In this chapter, we present a novel framework for constructing a learning
model that first mimics the behaviour of a hand-crafted descriptor and then
learns to improve upon it in a self-supervised manner. Two important assets
of the proposed approach compared to most of the current descriptor learning

90
Transferring the knowledge from hand-crafted to learning-based

descriptors

methods are: (1) improved explainability, inherited from a chosen hand-crafted
descriptor that it builds upon, and (2) no need for excessive labelled datasets.
Compared to the hand-crafted descriptor, we achieve better performance and
avoid the need for various ad-hoc choices of the parameters. Due to the self-
supervised nature of our method, the descriptor can be fine-tuned for various
applications without the specific labelled dataset for that application.

The framework that we present is a form of knowledge transfer. Knowledge
transfer is a term used in machine learning community where a neural network
is bootstrapped from an initial training based on, for example, a small or a
private dataset [Papernot 16]. In the case of our framework, this bootstrapping
process is performed by training the network using a hand-crafted descriptor
as a ground truth. The network is then further trained in a self-supervised
manner as part of an autoencoder.

In a different context, the connections between model-based approaches and
deep learning have been studied by unrolling the iterative optimisation algo-
rithms [Gregor 10,McCann 17, Monga 21]. In a seminal work [Gregor 10], it
was shown that an iterative optimisation algorithm like iterative thresholding
(ISTA) [Daubechies 04] can be unrolled (unfolded) into an equivalent represen-
tation using a convolutional neural network. This research domain is currently
very active, with many applications in image reconstruction and compressed
sensing [McCann 17], and in various inverse imaging problems [Monga 21].
These CNN-based versions of the unrolled iterative optimisation algorithms
are not only much faster than their underlying counterparts but also allow
for an elegant end-to-end optimisation of the parameters. Moreover, the deep
learning networks constructed this way typically outperform the original iter-
ative algorithm. In fact, it can be shown [McCann 17] that a properly trained
deep learning model will always perform at least as well or better than the
underlying model-based algorithm. In the same way, we claim that our learned
autoencoder-based local image descriptor, with proper training, will be supe-
rior to the hand-crafted one that served as its initialisation. We will support
this claim with a thorough evaluation on the widely used benchmarks for patch
descriptors.

Our method is a general framework for transferring the knowledge from an
arbitrary local image descriptor. In this chapter, we use the proposed frame-
work to transfer the knowledge from the BRIEF descriptor [Calonder 10], which
enjoys popularity as a computationally simple and efficient descriptor. How-
ever, our method can be applied on other descriptors too, as we will explain in
the Section 5.2.

To summarise, the main contributions in this chapter are twofold:

• We propose a framework for the transfer of knowledge from a hand-crafted
descriptor to a self-supervised-learning–based descriptor. At the time
of writing, no such framework has been reported, to the best of our
knowledge.

• Within this framework, we propose an elegant method for implementing
a learned BRIEF.

The rest of this chapter is organised as follows. In the following section, we

5.2 Framework for knowledge transfer 91

introduce our framework for knowledge transfer from hand-crafted to learning-
based descriptors. In Section 5.2, we first describe BRIEF descriptor from
[Calonder 10] (Section 5.3.1), and then we apply our framework to construct
our learned BRIEF descriptor (Section 5.3.2). In Section 5.4 we evaluate the
performance of our learned BRIEF in comparison with the original BRIEF
descriptor. Section 5.5 concludes this chapter.

5.2 Framework for knowledge transfer from
hand-crafted descriptors

The first contribution that we present in this chapter is a framework for the
transfer of knowledge from a hand-crafted descriptor to the self-supervised-
learning–based descriptor. The framework we propose consists of four steps
(Figure 5.1):
Step 1 – Construct and optimise a neural network EwE ,bE that mimics patch
encoding produced by a hand-crafted descriptor H. For a set of patches P
and loss function L where the loss function depends on the activation function
chosen for the last layer, solve:

min
wE ,bE

∑
p∈P

L(H(p), EwE ,bE (p))

Step 2 – Set EwE ,bE to be the encoder E of an autoencoder, and train the
decoder DwD,bD , minimising the loss between its output and the input patch:

min
wD,bD

∑
p∈P

L(p,DwD,bD (E(p)))

Step 3 – Train the whole autoencoder, consisting of the encoder EwE ,bE and
the decoder DwD,bD :

min
wE ,bE ,wD,bD

∑
p∈P

L(p,DwD,bD (EwE ,bE (p)))

Step 4 – Fine-tune the whole autoencoder on a dataset PSpec specific to the
desired application:

min
wE ,bE ,wD,bD

∑
p∈PSpec

L(p,DwD,bD (EwE ,bE (p)))

The first step is specific to the hand crafted descriptor that is chosen for
knowledge transfer, and may involve creating specific neural network archi-
tectures that are functionally similar to the hand-crafted descriptor. In some
cases, as we will show is the case with BRIEF in subsection 5.3.2, it is possi-
ble to completely implement the hand-crafted descriptor using standard neural
network layers (convolutional, fully-connected). In other cases, it may be neces-
sary to make the network learn to output the descriptor using training. In this
case, the network would be trained on a set of input patches until its output
was sufficiently close to the output of the hand-crafted descriptor.

92
Transferring the knowledge from hand-crafted to learning-based

descriptors

In the second step we train the decoder network to learn to reconstruct the
patch from its encoding, similarly to what Mahendran et al. [Mahendran 15]
did, but using a simple CNN without any regularisation. We found that, for
reconstructing BRIEF, this setup achieves a good starting point for the training
of the complete autoencoder, as we will discuss in subsection 5.3.2.

Next, in the third step, we simultaneously train both the encoder and de-
coder parts of the autoencoder. We train the autoencoder on the same general
dataset of patches used in both Step 1 and Step 2. In order for the learned
descriptor to achieve rotation and translation invariance, it is possible to add
geometric noise to the input patches while keeping the output patches the same.
We further discuss the effect of the geometric noise adding in the Section 5.4.

In the final, fourth step, the autoencoder is fine-tuned from the previous
step on an application-specific set of patches.

After the training is complete, the decoder part of the network can be
discarded, and we are left with the encoder network, which is our local image
descriptor.

In this chapter, we demonstrate our framework using BRIEF as the hand-
crafted descriptor from which we transfer the knowledge into a neural network.

5.3 A learned variant of BRIEF
We first describe the BRIEF descriptor from [Calonder 10] (Section 5.3.1), and
then we show how we apply our general framework to design the proposed
learned BRIEF descriptor (Section 5.3.2).

5.3.1 BRIEF descriptor
BRIEF (Binary Robust Independent Elementary Features) is a binary local
image descriptor that, for an input patch, calculates its binary code [Calon-
der 10]. The code is calculated as follows (see Figure 5.2-a (top)). First, the
input patch is smoothed in order to decrease the sensitivity to noise. The
smoothing is done using an averaging kernel of size 9× 9. Then, a binary fea-
ture vector is created, composed of the binary test responses. A binary test τ
between pixels coordinates x and y on a patch p is defined by:

τ(p;x, y) =

{
1 p(x) ≥ p(y)
0 p(x) < p(y)

(5.1)

The image patch is then encoded as the nd-dimensional bit string:

fnd
(p) =

∑
1≤i≤nd

2i−1τ(p;xi, yi). (5.2)

The pairs of pixel coordinates (xi, yi) are drawn from a Gaussian distribution
around the centre of the patch: (X,Y) ∼ i.i.d Gaussian(0, 1

25s
2), where s×s is

the size of the patch. In the case of OpenCV implementation of BRIEF, these
pairs of coordinates are then hard-coded and used across all configurations of
the descriptor.

5.3 A learned variant of BRIEF 93

learnedfixed

learned

learned

Step 1 – learn to mimic the hand-crafted descriptor using a CNN

train on pairs: ,

Step 2 – learn to invert hand-crafted descriptors back to patches

Step 3 – train the whole autoencoder

Step 4 – train the whole autoencoder on a specific dataset

train on pairs: ,

train on pairs: ,

train on pairs: , ;

where:

Figure 5.1: General framework for knowledge transfer from hand-crafted to self-
supervised-learning–based descriptors.

94
Transferring the knowledge from hand-crafted to learning-based

descriptors

5.3.2 Learned BRIEF

We now construct a learned variant of the BRIEF descriptor using the proposed
framework.

We mostly focus on describing Step 1, since it is specific to the BRIEF
descriptor. This step involves realising the original BRIEF descriptor as a con-
volutional neural network. In the case of BRIEF, in order to achieve a network
that mimics the descriptor’s output, this step does not necessitate training the
network but simply setting the weights and biases of the network to match
BRIEF’s behaviour. The architecture of this neural network is comprised of
several convolutional layers that implement BRIEF’s average blurring, and one
fully-connected layer that implements BRIEF’s binary tests (intensity compar-
isons between pixels).

In the original implementation of BRIEF, the average blurring is performed
with a 9 × 9 averaging kernel, i.e., in the deep learning terminology, a con-
volutional layer with one kernel of the size 9 × 9. In our implementation, we
use four convolutional layers, each with one 3 × 3 averaging kernel, instead of
a single layer with a 9 × 9 averaging kernel. This architecture is commonly
used in modern CNNs and yields a sufficiently similar blurring to the blurring
used in BRIEF. The activation functions of the convolution layers are rectifier
linear units which have no effect at this point (since all the values of the kernel
are greater than zero), but serve as non-linearity during the retraining of the
network.

The binary pixel tests are implemented as a fully-connected layer (preceded
by flattening the output from the previous convolutional layer in raster-scan
fashion). Binary pixel test τ defined in (5.1) can be reformulated as:

[σ(p(x)− p(y))] , (5.3)

where σ(·) is the sigmoid function and [·] denotes rounding to the nearest
integer. The proof follows:

[σ(p(x)− p(y))] =

[
1

1 + e−p(x)+p(y)

]
={

[A], A ∈ [0.5, 1) for p(x) ≥ p(y)
[A], A ∈ (0, 0.5) for p(x) < p(y)

={
1 p(x) ≥ p(y)
0 p(x) < p(y)

= τ(p;x, y)

From this formulation, we can see that the binary test vector can be calcu-
lated with a fully-connected layer whose weight matrix w is built as follows. For
all the binary tests τ(p;xi, yi) indexed with i, 1 ≤ i ≤ nd, we set the weights
wixi

= 1, wiyi
= −1, wij = 0, j ̸= xi, j ̸= yi. In other words, each neuron of

the output of the fully-connected layer (i.e., each neuron of the binary code)
is connected with exactly two neurons of the input of the fully-connected layer
(two pixels on which the binary test will be applied), one with the weight +1,
and the other with the weight −1, see Figure 5.2-a (bottom). The biases are set

5.4 Experimental results 95

to 0. What is left is to set the activation function of this fully-connected layer
to sigmoid, and the output of the whole network will be the BRIEF descriptor
of the input patch.

For Step 2, we use a decoder network consisting of a fully-connected layer (to
mirror the network from Step 1), and several convolutional layers followed by
upsampling until we reach the output of half of the size of the original patch.
Learning to decode into a downsampled patch makes the autoencoder more
resistant to Gaussian noise and, to some extent, to geometric noise. Step 3 in-
volves training with artificial geometric noise added to the input patches while
leaving the output patches the same. This should further increase descriptor’s
resilience to geometric noise such as rotation, translation, and shearing. Our re-
sults from the HPatches benchmark in the following section show that this step
is quite effective in making our descriptor resistant to these kinds of geometric
noise. The descriptor obtained from this step only differs in its weights from the
BRIEF descriptor implemented as a CNN (from Step 1). In the final step, one
would then apply further training with respect to a particular dataset, such as
MRI images or multimodal macro photography. These applications, however,
are beyond the scope of this thesis.

We set binary cross-entropy as the loss function L. We use Adadelta opti-
miser for all neural networks in this chapter. The networks are trained on a
dataset of 80k 56 × 56 patches that were extracted from the images from the
Imagenet dataset using FAST (Features from Accelerated Segment Test) algo-
rithm for feature detection [Rosten 06]. The ratio between training, validation,
and test set is 8 : 1 : 1. Our implementation is written in Keras and is publicly
available. 1

5.4 Experimental results

We evaluate the performance of our learned BRIEF in comparison with the
original BRIEF descriptor, as implemented in the OpenCV library. We also
evaluate the performance of a descriptor that uses the same architecture as
learned BRIEF, but has only been trained once from scratch, without been
initialised to mimic BRIEF and then fine-tuned. The evaluation is performed
on HPatches [Balntas 17], a comprehensive benchmark for evaluating local
image descriptors which was described in Section 3.2. We consider all tasks
and difficulty levels provided in the benchmark, and we discuss the results in
the following.

The patch retrieval task tests how well a descriptor can match a query patch
to a pool of patches extracted from many images, including many distractors.
Figure 5.3 shows the performance of three descriptors for different sizes of
test dataset (i.e., different sizes of the pools of patches in which the match-
ing patches are searched for), comparing performances on all three difficulty
levels. Our learned BRIEF shows improvement over the original BRIEF for
each difficulty and for each size of pool of patches. It also shows slightly (but
consistently) higher mean average precision than the descriptor that has not

1https://github.com/nimpy/learned-brief

96
Transferring the knowledge from hand-crafted to learning-based

descriptors

average blur

convolutional layers fully-conn. layer

pixel comparisons

(a)

fixed learned

learned

(b)

Figure 5.2: Visualisation of the proposed knowledge transfer and improvement
framework from a BRIEF descriptor to an autoencoder-learned descriptor. (a) Step
1 – implementing BRIEF as a CNN. Original BRIEF implementation (top) and our
proposed as a CNN (bottom). (b) Top: Step 2 – learning to invert a descriptor into
its patch by training the decoder part of the autoencoder. The encoder is here set
to be the network from step 1, implementing BRIEF. Bottom: Step 3 – training the
whole autoencoder on a general dataset of patches.

5.5 Conclusions 97

been initialised to mimic BRIEF. Based on the results from the benchmark (as
shown in Figure 5.3), we conclude that learned BRIEF outperforms the other
two descriptors by a constant margin irrespective of the amount of geometric
noise. The most influential factor is rather the size of the pool of patches –
we observe the largest improvement on smaller pools that are typical in tasks
such as panorama stitching, object tracking, and inpainting. Learned BRIEF
remains superior to BRIEF also on large pools of patches and after a certain
pool size (above ∼10000 patches) the improvement stabilises.

The image matching task tests to what extent a descriptor can correctly
identify correspondences in two images based on a pair of patches – one patch
from each of the images. Our results for this task are shown in Figure 5.4.
Similar to the previous task, the amount of geometric noise is varied. The re-
sults show that learned BRIEF also outperforms BRIEF on the image matching
task, no matter the amount of geometric noise. However, in this task we do
not see much difference between learned BRIEF and learned descriptor without
any initialisation. The descriptor that was trained from scratch even slightly
outperformed learned BRIEF on the easy amount of noise but shows the same
performance when there is more geometric noise present.

We show in figures 5.5 and 5.6 examples of retrieved patches, comparing
learned BRIEF with BRIEF. These patches have been taken from a subset
of the HPatches dataset. We compare the encoding of a query patch (showed
larger in the figure), with the encodings of other patches, using both the original
BRIEF descriptor and our learned BRIEF. We have observed that in most
cases, the first patch retrieved by our descriptor is a much better match than
the first patch retrieved by the original BRIEF. Furthermore, we have observed
that the original implementation generally retrieves a visually dissimilar patch
within the first five retrieved patches. This characteristic was not present in
learned BRIEF.

5.5 Conclusions
In brief, we introduced in this chapter a framework for transferring knowl-
edge from a hand-crafted descriptor to a self-supervised-learning–based de-
scriptor. We demonstrated the use of this framework by creating the learned
BRIEF descriptor based on the BRIEF hand-crafted descriptor. Furthermore,
we proposed an elegant implementation of BRIEF as a convolutional neural
network. Using HPatches benchmark for evaluating local image descriptors,
we showed that our learned BRIEF descriptor outperforms consistently the
original BRIEF.

This chapter acts as a proof of concept of our framework for knowledge
transfer from hand-crafted descriptors, showing that a learned descriptor cre-
ated in this way can outperform its hand-crafted counterpart. Regarding patch
retrieval, the experiments showed consistently the benefits of initialising the de-
scriptor as BRIEF and fine-tuning it further on a dataset of patches. On the
patch matching, however, the descriptor that was learned from scratch showed
equal performance to learned BRIEF. We can conclude that the experimen-
tal results do not support strongly using our framework for the tasks of patch

98
Transferring the knowledge from hand-crafted to learning-based

descriptors

0 2500 5000 7500 10000 12500 15000 17500 20000
Size of the pool of patches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
AP

BRIEF easy
BRIEF hard
BRIEF tough
Learned BRIEF easy
Learned BRIEF hard
Learned BRIEF tough
Descr. w/o BRIEF init. easy
Descr. w/o BRIEF init. hard
Descr. w/o BRIEF init. tough

Figure 5.3: Performance comparison on the patch retrieval task between BRIEF,
learned BRIEF, and the descriptor with same architecture as learned BRIEF but
without BRIEF-mimicking initialisation.

m
A

P

0.00

0.05

0.10

0.15

0.20

Easy Hard Tough

BRIEF Learned BRIEF Descr. without BRIEF init.

Figure 5.4: Performance comparison on the image matching task between BRIEF,
learned BRIEF, and the descriptor with same architecture as learned BRIEF but
without BRIEF-mimicking initialisation.

5.5 Conclusions 99

Figure 5.5: Patch retrieval examples. Large patch is the query patch. Top rows:
original BRIEF descriptor; bottom rows: learned BRIEF.

100
Transferring the knowledge from hand-crafted to learning-based

descriptors

Figure 5.6: Patch retrieval examples. Large patch is the query patch. Top rows:
original BRIEF descriptor; bottom rows: learned BRIEF.

5.5 Conclusions 101

matching, but certainly do for the task of patch retrieval.
The research in this chapter was reported in one conference paper

[Žižakić 20a].

102
Transferring the knowledge from hand-crafted to learning-based

descriptors

6
Deep image hashing with

autoencoders

The battle of Helm’s Deep is over; the battle for Middle Earth is about to begin.
—Gandalf, from The Lord of the Rings: The Two Towers

The focus in previous chapters was on local image descriptors – image di-
mensionality reduction methods for small parts of images (image patches) that
contain simple structures. In this chapter, we explore image dimensionality
methods for the whole images – image hashing methods. While the two cate-
gories of methods are similar, there are several important differences between
them. With image hashing, the images to be encoded are larger and the en-
codings are smaller than with local image descriptors. Encodings for image
hashing are often 16, 32, or 64 bits, as opposed to local image descriptors,
whose encodings are, in general, not binary vectors. One implication of these
differences is that, while local image descriptors can encode (nearly) all the
information in patches, the idea of image hashing methods is to encode some
general information about the image, e.g. whether it is an image of a dog. Re-
lated to this, the idea of image hashing methods is that all images that have the
same high-level description (such as being an image of a dog) would be mapped
to the same hash encoding. Conversely, the idea of local image descriptors is
that the patches that are capturing the same measurement (region of a scene)
would not necessarily have the same, but very similar encoding. That is to say,
image hashing methods are less fine-grained. While local image descriptors
encode patches into (often) unique encodings, image hashing methods perform
dimensionality reduction more akin to clustering.

6.1 Introduction

Due to the growth of computer vision applications, there has been an ever-
increasing supply of high-dimensional visual data. Thus, there is an increase in
demand for accurate and efficient retrieval methods for these datasets. Tradi-
tional nearest neighbour search methods tend to struggle with high-dimensional
data. Not only are these techniques impacted by the increasing computational

104 Deep image hashing with autoencoders

cost for calculating element-wise distances, they also fail to translate semantic
information into these distances. A promising solution to this problem is pre-
sented in the field of image hashing. Here, data in high-dimensional space is
mapped onto low-dimensional hash codes in such a way that distance between
data points is conserved into those hash codes. This allows for the application
of traditional methods on the converted low-dimensional data.

Hashing methods can be both data-independent and data-dependent (learn-
ing to hash). Data-independent hashing methods are based on hand-crafted fea-
tures, and can thus only capture visual similarity between images, rather than
a semantic similarity. Data-dependent methods, on the other hand, use deep
learning to achieve semantic similarity and have shown state-of-the-art perfor-
mance over classical data-independent methods [Dizaji 18, Shen 15, Carreira-
Perpinán 15,Shen 20]. Data-dependent hashing techniques can be subdivided
in two classes: those that require labelled data (supervised techniques) and
those that do not (e.g. self-supervised or unsupervised techniques). While su-
pervised techniques can use labels to increase retrieval accuracy significantly,
they also depend on said labels. In many real-world applications, datasets may
not have semantic annotations. Here we opt for self-supervised hashing tech-
niques, which use the intrinsic data structure to determine meaningful hash
codes.

Many self-supervised techniques are already established, examples of which
are autoencoder networks [Carreira-Perpinán 15,En 17,Dai 17], adversarial net-
works [Dizaji 18,Zieba 18,Song 18] and graph-based networks [Weiss 09,Liu 11].
A recent work by Shen et al. [Shen 20] shows state-of-the-art results. The
authors describe a hybrid autoencoder and graph-based network for hashing,
called Twin Bottleneck Hashing (TBH). The architecture leverages a code-
driven graph, allowing it to circumvent the static-graph problem which is in-
herent with precomputed graphs.

The main contribution of this chapter is a novel method for deep image
hashing based on variational autoencoders. We leverage and optimise the ar-
chitecture from twin-bottleneck hashing with recent insights from the field of
variational autoencoders. In particular, we propose two separate improvements
over TBH that are based on variational autoencoders. We experimentally show
an overall increased performance on the CIFAR-10 (60k images) and MS-COCO
(330k images) datasets for both improvements separately, with an even larger
performance increase when the improvements are applied together.

The rest of the chapter is organised as follows. We provide an overview of
state-of-the-art on hashing for content-based image retrieval in Section 6.2. In
Section 6.3, we present our image hashing method which builds upon TBH by
improving the binary bottleneck (Section 6.3.1) and expanding the continuous
bottleneck (Section 6.3.2). In Section 6.4, we experimentally evaluate the two
modifications, both separately and together, in all cases showing improvement
over the state of the art. We conclude our work in Section 6.6.

6.2 Hashing for content-based image retrieval – an overview 105

6.2 Hashing for content-based image retrieval –
an overview

Similarly to the local image descriptors (as we have seen in Section 3.1), hash-
ing techniques can be also categorised into data-independent (hand-crafted)
and data-dependent methods (learning to hash). Data-independent methods
tend to rely on hand-crafted features to extract hash codes, without using
the data distribution. These methods are often referred to as locality sen-
sitive hashing (LSH) methods, named after a family of hash functions that
maps similar inputs to the same hash code. Two works pioneered this tech-
nique [Charikar 02, Andoni 06]. There are a lot of variations using different
distance metrics [Indyk 98,Dasgupta 11,Kulis 11,Ji 12] or changing the search
method [Panigrahy 05,Bawa 05,Pan 12].

Data-dependent methods may not optimally exploit the full data distribu-
tion. These methods often fail to capture semantic similarities between data
points [Wang 17]. Data-driven methods are showing much more promising re-
sults in the field of image retrieval [Luo 20]. Most of the work in this field has
focused so far on supervised techniques, which exploit the data distribution
together with its annotations. Over recent years, many different architectures
have been proposed for supervised learning to hash. Perhaps the most straight-
forward techniques make use of a deep encoder to directly encode inputs to hash
codes [Gong 13, Erin Liong 15, Shen 15, Wang 16b]. Yang et al. presented a
fine-tuning process to convert such an encoder of a classifier into a deep hashing
network [Yang 17]. Another popular supervised technique trains on predicting a
pairwise loss function [Lin 13,Xia 14,Liu 16,Shi 16]. A natural extension to this
are triplet-based losses, where a query data point is compared to both a simi-
lar and a dissimilar data point [Wang 16a]. Supervised generative adversarial
networks have proven to be viable hashing methods [Qiu 17,Cao 18,Wang 18],
as well as supervised autoencoder-based networks that exploit the models’ bot-
tleneck to extract hash codes [Cao 16,Dadaneh 20].

While supervised data-dependent methods show promising retrieval results,
they require annotated datasets. This is a severe limitation, since, for many
real-world datasets, it is not feasible or it is simply too costly to make annota-
tions. Therefore, there is a demand for methods that can learn useful hash func-
tions solely based on data. There is a wide variety in the type of self-supervised
methods. Generative adversarial networks again show state-of-the-art perfor-
mance in this field [Zieba 18,Dizaji 18,Song 18,Cao 18]. Similarly, autoencoders
also remain a relevant technique [Carreira-Perpinán 15,En 17,Hansen 20]. Dai
et al. build on the idea of a variational autoencoder, applying it to construct
hash codes directly from the bottleneck [Dai 17]. Hu et al. propose a self-
supervised technique which assigns pseudo labels to the data using precom-
puted features and shows promising results [Hu 17]. The approach optimises
its hash function to maximally compress the dataset and is a generative ap-
proach since it can be used to regenerate the inputs. A recent work by Shen et
al. [Shen 20] introduced a method called twin-bottleneck hashing (TBH) that
uses autoencoder-type architecture which implements elements from graph-
based learning. This architecture inspired our work and thus we describe it

106 Deep image hashing with autoencoders

Figure 6.1: Schematic of the twin-bottleneck hashing (TBH) method [Shen 20].

in more detail in following section. While TBH provides state-of-the-art self-
supervised hashing, we show that, by improving certain components of the
architecture, we can improve its performance even further.

Twin-Bottleneck Hashing

Twin-bottleneck hashing (TBH) [Shen 20] is a deep image hashing method with
two autoencoder-like bottlenecks connected to a graph convolutional network
(architecture shown in Figure 6.1). We explain here briefly its main compo-
nents.

Twin bottlenecks. The most notable feature of TBH is the use of two
separate bottlenecks instead of one. First, a binary bottleneck, which is respon-
sible for generating the actual hash codes. Inspired by Dai et al., a stochastic
neuron is used to generate the hash codes [Dai 17]. An intrinsic problem that
arises is that we want binary codes to remain as small as possible, this limits the
flexibility of the model. To alleviate this problem, a second larger continuous
bottleneck allows for the model to capture much more complex representations.

Graph convolutional layer. The graph convolutional layer creates a
pathway to calculate the gradients for both bottlenecks. It uses the binary
variables to create a similarity graph, which is used to create the convolutional
filter along with a set of trainable weights. Intuitively, the graph convolutional
layer will penalise unrelated samples that are close together in Hamming space.
One of the major contributions of TBH is that the similarity graph is now
constructed and optimised during training, rather than built on precomputed
features.

Regularisation. TBH uses two discriminators as a means of regularisa-
tion. One discriminates hash codes from random binary codes. The other
one discriminates the output of the graph convolutional layer with uniformly
distributed samples between zero and one.

6.3 Variational Autoencoder Twin-Bottleneck Hashing 107

6.3 Variational Autoencoder Twin-Bottleneck
Hashing

Here we propose a self-supervised hashing approach, which builds on the twin-
bottleneck hashing (TBH) model and improves upon it. Specifically we improve
two main aspects of the TBH approach. First, we change the way binary codes
are generated. This way we directly influence the ability of the model to learn
representations. Second, we design a more powerful generative bottleneck. This
improves the model as a whole, and thus also the retrieval scores. Our overall
objective function consists of three components: a regularisation term on the
binary bottleneck LBBN , a constrained optimisation setup between the recon-
struction loss and the regularisation on the continuous bottleneck LCBN and
lastly a discriminator term on the output of the graph convolutional network
LD analogous to TBH’s approach. This results in the following objective:

LOBJ = LBBN + LCBN + LD , (6.1)

with LBBN and LCBN explained in more detail in the following sections.

6.3.1 Improving the binary bottleneck

We focus first on the generation of the binary hash codes. Instead of generating
hash codes with a stochastic neuron [Dai 17] like in TBH, we use a variational
autoencoder scheme. In recent years, variational-autoencoder–based methods
have shown improvements over the state of the art in image generation, classi-
fication and particularly representation learning. This motivates us to explore
their potential for improved image hashing too. Learning a better represen-
tation in the bottleneck will enable us to capture more information from the
input images to the hash codes and thus achieve better retrieval accuracies.

We thus design the binary bottleneck, which generates hash codes, as a vari-
ational autoencoder with stochastic sampling. We intend to optimise the hash
codes to have statistically independent bits. This relates to a common topic in
variational autoencoders where the latent distribution in the bottleneck is op-
timised to be disentangled. Chen et al. [Chen 18] stated that Kullback-Leibler
(KL) divergence term in the ELBO objective for variational autoencoders can
be decomposed in three terms: Index-Code mutual information, total correla-
tion and dimension-wise KL divergence. They claimed that penalising the total
correlation term by an extra factor would be responsible for a disentangled la-
tent distribution. This results in latent variables that map to more explainable
features like colour, shape etc., but it sacrifices some quality of the models’
reconstructions.

We apply these principles to our hash code generation to measure if disen-
tangled representations would benefit our models’ performance. We formulate
the loss on the binary bottleneck LBBN as in a standard variational autoen-
coder with the decomposed KL term.

LBBN = KL[q(z, n)||q(z)p(n)] +

108 Deep image hashing with autoencoders

β ∗KL[q(z)||
∏
j

q(zj)] +
∑
j

KL[q(zj)||p(zj)] , (6.2)

where β is a new hyper-parameter to penalise the total correlation term, x
and z are the data and latent variable respectively, and n is a uniform random
variable on {1, 2, ..., N} which indexes the data points. Our encoder is defined
as q(z|n) = q(z|xn) and the data’s prior distribution p(n) = 1/N . From these
we can derive q(z, n) = q(z|n)p(n) = q(z|n) 1

N and the aggregated posterior

q(z) =
N∑

n=1
q(z|n)p(n). Following [Chen 18], we express KL[q(z, n)||q(z)p(n)]

as the index-code mutual information. This is the mutual information between
the data variable n and the latent variable z on the empirical data distribu-
tion q(z, n). The second term, β ∗KL[q(z)||

∏
j q(zj)], is referred to as the total

correlation. The penalty on this term forces the model to find statistically inde-
pendent factors in the data distribution. The last term,

∑
j KL[q(zj)||p(zj)], is

the dimension-wise KL divergence, which encourages individual latent dimen-
sions to represent their corresponding prior.

We expect that hashing with disentangled latent variables will force bits to
allocate to clear, explainable features, allowing our model to preserve semantic
similarity between samples. Note that these extra constraints on the bottleneck
could also worsen the models’ ability to fit to the input data. Experimentally
however, we see a slight improvement in the precision of the architecture as
will be shown in Section 6.4. In addition, we omit the discriminator on the
binary bottleneck, as our implementation now uses KL divergence to regularise
the binary bottleneck.

Figure 6.2: Schematic of the proposed variational autoencoder twin-bottleneck
hashing (VAE-TBH) method, showing the improvements made to the original TBH
method. In the binary bottleneck (top bottleneck) we change the generation of hash
codes to be based on variational autoencoder with disentangled variables and we
omit the regulariser (Section 6.3.1). We also change the continuous bottleneck (bot-
tom bottleneck) to use a variational autoencoder that is trained using a constrained
optimisation setup, in order to better control the trade-off between compression and
reconstruction quality of generated samples (Section 6.3.2).

6.4 Experimental results 109

6.3.2 Expanding the continuous bottleneck
Now we turn to the design of the continuous bottleneck. Our idea is to convert
the more standard autoencoder structure to a variational-autoencoder–type
structure. This expanded architecture should allow the model to better capture
input data, specifically boosting the shared encoder and thus achieve better re-
sults when generating hash codes. Rezende et al. [Rezende 18] propose a robust
algorithm for optimising variational autoencoders. We apply their method on
the continuous bottleneck and redefine accordingly the ELBO objective into a
constraint optimisation problem:

LCBN = Ep(x)[KL[q(z|x);π(z)]] + λTEp(x)q(z|x)[C(x, g(z))] , (6.3)

with C(x, g(z)) = ∥x− g(z)∥2 − κ , (6.4)

where we balance compression Ep(x)[KL[q(z|x);π(z)]] on the bottleneck with
reconstruction quality of our generated samples Ep(x)q(z|x)[C(x, g(z))]. For the
compression term, we use the KL divergence between the encoder’s generated
Gaussian distributions q(z|x) and a set of normalised Gaussian priors π(z). We
use L2-loss, ∥x − g(z)∥2, to represent our reconstruction loss. This allows for
an elegant trade-off where we can choose to invest a bit more in compression
as we do not care much about our generated samples. A new hyper-parameter
κ is set to achieve the desired reconstruction quality, which controls the value
of λT , as is described in the optimisation scheme proposed by Rezende et
al. [Rezende 18].

We expect as the model improves through the continuous bottleneck, that
the shared encoder and decoder will improve. This benefits the binary bottle-
neck directly and should result in better retrieval scores for our model. In the
following section, we will show that this indeed improves the performance of
the model.

6.4 Experimental results
We evaluate our method in comparison with the related state-of-the-art meth-
ods in the field of self-supervised hashing. We perform experiments on both
CIFAR-10 and MS-COCO dataset (examples of images from these datasets
shown in Figures 6.3 and 6.4). Additionally, we extract features from the
fc7 layer using AlexNet [Krizhevsky 09]. This is the same extraction method
as described in TBH. We train and evaluate our models in TensorFlow. For
the baseline method TBH, we experiment with the same setup and hyper-
parameters as stated in their paper. As for our method, we use the fol-
lowing hyper-parameters. TBH hyper-parameters are kept the same, with
λ = 1 and L = 512. We train in batches with batch size = 1024 using
learning rate = 1e − 4. For the GECO implementation we use κ = 2400,
and clip the λ parameter between 1e − 6 and 1e12 to avoid extreme values
during training.

Figure 6.5 shows precision-recall curves for our method, the TBH baseline
and each of the two improvements from sections 6.3.1 and 6.3.2 separately on

110 Deep image hashing with autoencoders

Figure 6.3: Example images from MS-COCO dataset

Figure 6.4: Example images from CIFAR-10 dataset

6.4 Experimental results 111

Figure 6.5: Comparison of precision-recall curves on the CIFAR-10 dataset for TBH,
our improvements from sections 6.3.1 and 6.3.2 separately and together. We use 16-
bit, 32-bit and 64-bit codes (top to bottom respectively) to evaluate these models.

112 Deep image hashing with autoencoders

Figure 6.6: Comparison of precision-recall curves on the MS-COCO dataset for TBH
and our method. We use 16-bit, 32-bit and 64-bit codes (top to bottom respectively)
to evaluate the models.

6.4 Experimental results 113

LSH [Adoni 06]

SpH [Weiss 09]

AGH [Liu 11]

SpherH [Heo 12]

KMH [He 13]

ITQ [Gong 13]

DGH [Liu 14]

DeepBit [Lin 16]

SGH [Dai 17]

PseudoLabel [Hu 17]

BGAN [Song 18]

BinGAN [Zieba 18]

GreedyHash [Su 18]

HashGAN [Cao 18]

DVB [Shen 19]

DistillHash [Yang 19]

TBH [Shen 20]

VAE-TBH (proposed)

0.0 0.2 0.4 0.6 0.8

16 bits 32 bits 64 bits

Figure 6.7: mAP of our method and state-of-the-art self-supervised hashing methods
on the CIFAR-10 dataset.

114 Deep image hashing with autoencoders

Figure 6.8: Retrieval examples for both TBH (bottom rows) [Shen 20] and our
method (top rows), the correct classes are labelled green.

6.5 Search of self-similar structures in electron microscopy images 115

CIFAR-10 dataset. We see that our method improves precision scores across
the board for 16, 32 and 64 bits codes. This confirms that the changes we
make to the bottlenecks of TBH do in fact improve the generated hash codes
and thus the retrieval scores. Looking at the components separately, we see
that expanding the continuous bottleneck contributes to the majority of our
improvement. Changing the binary bottleneck has a less significant effect.

Figure 6.6 shows precision-recall curves for our method and TBH baseline on
MS-COCO dataset. On this dataset, the curves for both methods look different
in comparison to those on the CIFAR-10 dataset. This suggests that there is a
group of data samples that cause confusion and retrieving later samples starts
to increase precision. Our method outperforms TBH on this dataset as well.

Table 6.7 shows a comparison between more state-of-the-art methods on
CIFAR-10 dataset. To evaluate methods, we use mean average precision (mAP)
at 1000. This measures the average relevance scores of a set of the top-1000 im-
ages in response to a query. Our method shows improved results over multiple
baselines.

To conclude the results, we show some example retrievals from both our
method and the TBH baseline in Figure 6.8. The query examples are randomly
selected from the test set and retrievals are returned from our train set. On
such a small set of queries, it is difficult to clearly see our improvements – there
are examples of images where our method performs slightly better than TBH,
and vice versa. For the most part, however, we observe that queries where
our method struggles are the same ones that are difficult for the TBH method,
which is to be expected since these are more difficult queries and since these
two methods share similarities.

6.5 Search of self-similar structures in electron
microscopy images

In this section, we illustrate the use of our proposed image dimensionality
reduction methods in the application of bio-medical imaging. Our use-case is
content retrieval in electron microscopy (EM) datasets. The idea of this use-
case is to help medical doctors or biologists search for similar structures in
large datasets. If they, for example, notice an anomaly in the tissue, it would
be beneficial to locate other such anomalies, searching across different datasets
they have access to.

We are using image dimensionality reduction methods to encode the patches
and thus accelerate the search process. We encode all the patches (for a given
stride) using our proposed image hashing method, and compare these patch
encodings with the encoding of the query patch, retrieving the ones that are
the most similar.

In Figure 6.9, we show the results of applying the developed hashing method
to content retrieval in different EM datasets. We present the results where
the best matches are retrieved for a given query patch. The retrieved patches
share similarities in the semantic sense with the query (all the retrieved patches
contain parts of the same type of cell organelle (mitochondria), which appears

116 Deep image hashing with autoencoders

Figure 6.9: Content-based patch retrieval. Query patch is shown on the left, and
retrieved patches are marked with red. Both the query patch and the retrieved patches
contain mitochondria.

6.6 Conclusion 117

in the query.
We believe that this method can be useful to locate potentially interest-

ing areas in large datasets (e.g., as input to further verification and precise
localisation of the objects of interest). This method can also be employed
to semi-automatically label large datasets based on a relatively few labelled
patches.

6.6 Conclusion
In this chapter, we proposed a novel method for self-supervised deep image
hashing based on twin-bottleneck hashing and variational autoencoders, that
we call VAE-TBH. We improved the performance of the state-of-the-art TBH
approach by designing the bottleneck structure inspired by some recent in-
sights in the field of variational autoencoders. We adapted the generation of
hash codes to promote learning disentangled representations and we expanded
the continuous bottleneck to a variational autoencoder to improve the models’
ability to fit to input data. The experimental evaluation on different datasets
and different hash-code sizes showed that our method improves upon the state
of the art in all cases. The research in this chapter has led to one conference
paper [Verwilst 21].

118 Deep image hashing with autoencoders

7
Conclusions and future

work

Well, here at last, dear friends, on the shores of the Sea comes the end of our
fellowship in Middle-earth. Go in peace! I will not say: do not weep; for not all

tears are an evil.
—Gandalf, from The Lord of the Rings: The Return of the King

7.1 Conclusions

It is estimated that around 45 thousand images are captured every second,
resulting in around 1.5 trillion images per year [RAR 22]. With the right
image processing, this data could be highly valuable and can be used to solve
complicated problems such as teaching machines to recognise and track objects,
or retrieving the most relevant data related to an image. For this reason, there
is a significant need to extract the most important information from images and
to represent those images in lower-dimensional space. This need has, in turn,
lead to an increase in the demand for effective image dimensionality reduction
methods. In this thesis, we have focused on two important types of image
dimensionality reduction: local image descriptors and image hashing.

Local image descriptors play a crucial role in many image processing tasks,
such as object tracking and recognition, panorama image stitching, and im-
age retrieval. They allow us to match different image patches based on their
similarity. In chapters 3-5, we research learning local image descriptors in a
self-supervised fashion, using autoencoders.

Image hashing is an fundamental tool for content-based image retrieval,
where the most similar images are retrieved for a given query image. In Chapter
6, we develop a state-of-the-art self-supervised deep image hashing method
using variational autoencoders.

Over the course of this thesis, we have made several contributions to the
fields of learning local image descriptors and of image hashing, which are sum-
marised in the following paragraphs. At the end of this section, we present a
critical reflection of the work performed in this thesis.

Deeper understanding of autoencoders for learning local image

120 Conclusions and future work

descriptors. While conducting the research in this thesis, it came to our
attention that there were several gaps in the literature regarding how to effec-
tively train and evaluate both classical and variational autoencoders for learn-
ing local image descriptors. To address these knowledge gaps, in Chapter 3
we performed a thorough comparative analysis of these two types of autoen-
coders alongside an in-depth analysis of the most relevant hyperparameters.
Our research in this area provided insights into how to select an appropriate
evaluation technique during supervised learning of local image descriptors and
led to the development of a fast and efficient evaluation technique that is corre-
lated with established benchmarks and fast enough to be used during training.
Furthermore, we studied the invertibility property of local image descriptors
and proposed a descriptor designed specifically for being invertible.

Local image descriptors designed for memory-efficient storing of
patch encodings. Some image processing tasks involve performing a large
number of patch comparisons within an image. To perform these compar-
isons, the descriptors of these patches must either be calculated on-the-fly or
cached in memory, with the former entailing a significant computation load
and the latter requiring a significant amount of memory. In Chapter 4, we
proposed an autoencoder architecture for learning descriptors designed for en-
abling memory-efficient storing of patch encodings. Our autoencoder architec-
ture created a special, intermediate representation of the image which served as
a compact means of storing the descriptors of the patches. Storing the patches
in this way is both computationally and memory efficient since the patches are
overlapping in the intermediate representation and can be extracted using a
single max-pooling operation. We evaluated this descriptor on the HPatches
benchmark and observed significant memory savings without any degradation
in performance. Furthermore, we conducted a qualitative evaluation by inte-
grating our descriptor into an inpainting algorithm and verified that it performs
as expected when applied to the virtual restoration of master paintings.

Framework for the transfer of knowledge from hand-crafted to
self-supervised-learning–based descriptors. In Chapter 5, we developed
a framework for transferring knowledge from hand-crafted local image descrip-
tors to learned descriptors. This framework was motivated by the following
observations. First and foremost, learned-descriptors often fail to consider the
broader image processing task and are not properly customised to the needs
of specific applications. Secondly, most learning-based approaches are super-
vised methods which require labelled datasets. These datasets, however, are
often costly and hard to come by. Finally, hand-crafted methods are more
interpretable, and therefore usually preferred in high-stakes applications. The
framework presented in this thesis, however, offers a solution to the shortcom-
ings of learning-based approaches by enabling the transfer of knowledge from
hand-crafted descriptors to learning-based descriptors. When using this frame-
work, there was no need for labelled datasets and the resulting descriptor was
both more explainable and tunable to image processing applications. We put
our proposed framework to the test by creating the learned BRIEF descriptor
by transferring knowledge from the BRIEF hand-crafted descriptor [Calon-
der 10]. To that end, we proposed an elegant implementation of BRIEF as a

7.1 Conclusions 121

convolutional neural network.
Deep image hashing based on twin-bottleneck hashing with varia-

tional autoencoders. Deep image hashing is a technique for mapping images
onto a lower-dimensional binary codes (hash codes) to enable content-based
image retrieval. In Chapter 6, we proposed a novel deep hashing method
called twin-bottleneck hashing with variational autoencoders – VAE-TBH. Our
method employed variational autoencoders in both bottlenecks of the original
twin-bottleneck hashing approach. In the binary bottleneck we encouraged the
learning of disentangled variables by changing the generation of hash codes
to be based on a variational autoencoder. In the continuous bottleneck we
employed a variational autoencoder trained using a constrained optimisation
setup, which enabled better control over the trade-off between compression and
reconstruction quality of generated samples. Both of the modified bottlenecks
resulted in improved hashing performance separately, and an even better re-
sult when applied together. We rigorously validated our method in comparison
with state-of-the-art self-supervised deep hashing methods on different datasets
(CIFAR and MS-COCO) and on different hash sizes (16-bit, 32-bit and 64-bit)
– our method showed the best performance across all datasets and hash sizes.

Application to efficient search of self-similar structures in electron
microscopy images. Our developed image dimensionality reduction methods
can be utilised to search for regions of images that contain biological structures
similar to the structure on the query image patch. We demonstrated this
application in Chapter 6 by using image dimensionality reduction to encode
the patches and accelerate the search process. The first steps that have been
taken for this application show promising results.

Critical reflection on the work. In this thesis, we have proposed
several novel methods for image dimensionality reduction and contributed to
the knowledge about the autoencoder-based techniques in this field. Here we
present a critical reflection on this work. Firstly, interesting avenues have been
opened for valorisation (specifically in the domains of virtual art restoration
and in biomedicine), but they have not yet been explored sufficiently. The val-
orisation in the biomedical domain (search for self-similar biological structures
in EM images) is a topic of the ongoing work within the scope of the Flanders
AI Research Initiative, where further experiments are ongoing at this point
within our research group. Secondly, it needs to be admitted that some of the
results presented in this work lack statistical significance testing. We inherited
this limitation from the HPatches benchmark, which, despite evaluating de-
scriptors on around 900k patches, does not provide standard deviation for its
results. Furthermore, related literature in the field of deep learning also adopts
this way of presenting the results, most likely due to the long training times of
neural networks. In hindsight, if we were to perform this work again, we would
include statistical significance testing for our experiments. Lastly, there are
many research directions that we wanted to explore but did not have the time
or resources to do it. In the next section, we outline some of the possibilities
for the future work.

122 Conclusions and future work

7.2 Future work
Insights into training and evaluation of autoencoders in general. In
Chapter 3 we provided valuable insights about the training and evaluation
autoencoders for learning local image descriptors. It would be very interesting
to provide such insights for autoencoders used for other applications, and find
out whether the same conclusions hold in general. Specifically, the research
questions of interest would be: What hyperparameters are the most important
for training autoencoders (and variational autoencoders) in general? How can
we efficiently evaluate AEs and VAEs? Both questions could be answered
by using triplet distance on labelled datasets (e.g. ImageNet) as an ‘oracle
benchmark’ (similarly to how we used HPatches benchmark in this thesis), and
then comparing different hyperparameter settings and different approximate
evaluation metrics to the score returned by the oracle.

Comparison between other types of autoencoders. While we com-
pare classical and variational autoencoders for the task of learning local im-
age descriptors, it would be interesting to see how they compare to other
types of autoencoders, especially some recent ones such as adversarial AEs
[Makhzani 15], Wasserstein AEs [Tolstikhin 17] or adversarial latent AEs [Pid-
horskyi 20]. To the best of our knowledge, such a comparison does not exist,
and we intend on incorporating it into our future work.

Using our proposed knowledge-transfer framework on SIFT de-
scriptor (or other famous local image descriptors). In Chapter 5 we
proposed a framework for transferring the knowledge from hand-crafted to
self-supervised-learning–based descriptors. We have utilised this framework
to create learned BRIEF descriptor based on the BRIEF hand-crafted de-
scriptor [Calonder 10]. While BRIEF is arguably the most important binary
hand-crafted local image descriptor, other (non-binary) descriptors such as
SIFT [Lowe 99], HOG [Dalal 05], SURF [Bay 08] or DAISY [Tola 09] have
been used more extensively in the literature (and in practice), and it would
be interesting to implement the learned versions of these using our proposed
framework.

Further improvements on our proposed VAE-TBH deep image
hashing method. In Chapter 6, we proposed a novel deep image hashing
method based on twin-bottleneck hashing with two important improvements in
both bottlenecks. We observed a significant boost in performance by expanding
the continuous bottleneck to employ a variational autoencoder trained using
a constrained optimisation setup. However, any architecture that can effec-
tively help train this shared encoder could achieve improvements in the same
way. Specifically, it would be interesting to see the performance of other hybrid
networks, where the shared encoder would be trained by a general adversar-
ial network (GAN) or another deep encoder architecture. The second aspect
that could lead to further potential performance boosts is the dataset’s feature
extraction method. We have used the pretrained AlexNet [Krizhevsky 09] to
extract features from a dataset. In recent years, many more advanced pre-
trained networks have become available (such as ResNet [He 16] and Efficient-
Net [Tan 19]) and could potentially boost the performance of our method.

Bibliography

[Aanæs 12] Henrik Aanæs, Anders Lindbjerg Dahl & Kim Steen-
strup Pedersen. Interesting interest points. Interna-
tional Journal of Computer Vision, vol. 97, no. 1,
pages 18–35, 2012.

[Abdel-Hamid 14] Ossama Abdel-Hamid, Abdel-rahman Mohamed,
Hui Jiang, Li Deng, Gerald Penn & Dong Yu. Con-
volutional Neural Networks for Speech Recognition.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 22, no. 10, pages 1533–
1545, 2014.

[Alahi 12] Alexandre Alahi, Raphael Ortiz & Pierre Van-
dergheynst. FREAK: Fast Retina Keypoint. In 2012
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 510–517. IEEE, 2012.

[Alain 14] Guillaume Alain & Yoshua Bengio. What regularized
auto-encoders learn from the data-generating distri-
bution. The Journal of Machine Learning Research,
vol. 15, no. 1, pages 3563–3593, 2014.

[Andoni 06] Alexandr Andoni & Piotr Indyk. Near-optimal hash-
ing algorithms for approximate nearest neighbor in
high dimensions. In 2006 47th annual IEEE sympo-
sium on foundations of computer science (FOCS’06),
pages 459–468. IEEE, 2006.

[Arandjelović 12] Relja Arandjelović & Andrew Zisserman. Three
things everyone should know to improve object re-
trieval. In 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2911–
2918. IEEE, 2012.

[Arganda-Carreras 15] Ignacio Arganda-Carreras, Srinivas C Turaga,
Daniel R Berger, Dan Cireşan, Alessandro Giusti,
Luca M Gambardella, Jürgen Schmidhuber, Dmitry
Laptev, Sarvesh Dwivedi, Joachim M Buhmannet al.
Crowdsourcing the creation of image segmentation
algorithms for connectomics. Frontiers in neu-
roanatomy, page 142, 2015.

124 BIBLIOGRAPHY

[Balntas 16] Vassileios Balntas, Edgar Riba, Daniel Ponsa &
Krystian Mikolajczyk. Learning local feature descrip-
tors with triplets and shallow convolutional neural
networks. In Proceedings of the British Machine Vi-
sion Conference (BMVC), 2016.

[Balntas 17] Vassileios Balntas, Karel Lenc, Andrea Vedaldi &
Krystian Mikolajczyk. HPatches: A benchmark and
evaluation of handcrafted and learned local descrip-
tors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 5173–5182, 2017.

[Bawa 05] Mayank Bawa, Tyson Condie & Prasanna Ganesan.
LSH forest: self-tuning indexes for similarity search.
In Proceedings of the 14th international conference
on World Wide Web, pages 651–660, 2005.

[Bay 08] Herbert Bay, Andreas Ess, Tinne Tuytelaars & Luc
Van Gool. Speeded-up robust features (SURF). Com-
puter Vision and Image Understanding, vol. 110,
no. 3, pages 346–359, 2008.

[Bayard 19] David S Bayard, Dylan T Conway, Roland Brockers,
Jeff H Delaune, Larry H Matthies, Håvard F Grip,
Gene B Merewether, Travis L Brown & Alejandro M
San Martin. Vision-Based Navigation for the NASA
Mars Helicopter. In AIAA Scitech 2019 Forum, page
1411, 2019.

[Belkin 03] Mikhail Belkin & Partha Niyogi. Laplacian eigen-
maps for dimensionality reduction and data repre-
sentation. Neural Computation, vol. 15, no. 6, pages
1373–1396, 2003.

[Bengio 13] Yoshua Bengio, Li Yao, Guillaume Alain & Pascal
Vincent. Generalized Denoising Auto-Encoders as
Generative Models. In NIPS, 2013.

[Biswas 21] Koushik Biswas, Sandeep Kumar, Shilpak Banerjee
& Ashish Kumar Pandey. SAU: Smooth activation
function using convolution with approximate identi-
ties. arXiv preprint arXiv:2109.13210, 2021.

[Brand 03] Matthew Brand. Charting a manifold. In Proceed-
ings of the Advances in Neural Information Process-
ing Systems (NIPS). Cambridge, MA, MIT Press,
2003.

[Brown 07] Matthew Brown & David G Lowe. Automatic
panoramic image stitching using invariant features.

BIBLIOGRAPHY 125

International Journal of Computer Vision, vol. 74,
no. 1, pages 59–73, 2007.

[Calonder 10] Michael Calonder, Vincent Lepetit, Christoph
Strecha & Pascal Fua. BRIEF: Binary robust in-
dependent elementary features. In European Confer-
ence on Computer Vision (ECCV), pages 778–792.
Springer, 2010.

[Cao 16] Yue Cao, Mingsheng Long, Jianmin Wang & Han
Zhu. Correlation autoencoder hashing for super-
vised cross-modal search. In Proceedings of the 2016
ACM on International Conference on Multimedia Re-
trieval, pages 197–204, 2016.

[Cao 18] Yue Cao, Bin Liu, Mingsheng Long & Jianmin Wang.
HashGAN: Deep Learning to Hash with Pair Condi-
tional Wasserstein GAN. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1287–1296, 2018.

[Carreira-Perpinán 15] Miguel A Carreira-Perpinán & Ramin Raziperchiko-
laei. Hashing with binary autoencoders. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 557–566, 2015.

[Cayton 05] Lawrence Cayton. Algorithms for manifold learning.
Univ. of California at San Diego Tech. Rep, vol. 12,
no. 1-17, page 1, 2005.

[Charikar 02] Moses S Charikar. Similarity estimation techniques
from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of
computing, pages 380–388, 2002.

[Chen 15] Lin Chen, Franz Rottensteiner & Christian Heipke.
Feature descriptor by convolution and pooling autoen-
coders. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sci-
ences, vol. 40, no. 3W2, pages 31–38, 2015.

[Chen 18] Ricky TQ Chen, Xuechen Li, Roger Grosse &
David Duvenaud. Isolating Sources of Disentangle-
ment in Variational Autoencoders. arXiv preprint
arXiv:1802.04942, 2018.

[Cordes 13] Kai Cordes, Bodo Rosenhahn & Jörn Ostermann.
High-resolution feature evaluation benchmark. In In-
ternational Conference on Computer Analysis of Im-
ages and Patterns, pages 327–334. Springer, 2013.

126 BIBLIOGRAPHY

[Criminisi 04] Antonio Criminisi, Patrick Pérez & Kentaro Toyama.
Region filling and object removal by exemplar-based
image inpainting. IEEE Transactions on Image Pro-
cessing, vol. 13, no. 9, pages 1200–1212, 2004.

[Dadaneh 20] Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang
Yin, Mingyuan Zhou & Xiaoning Qian. Pair-
wise supervised hashing with Bernoulli variational
auto-encoder and self-control gradient estimator. In
Conference on Uncertainty in Artificial Intelligence,
pages 540–549. PMLR, 2020.

[Dai 17] Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He &
Le Song. Stochastic generative hashing. In Inter-
national Conference on Machine Learning (ICML),
pages 913–922. PMLR, 2017.

[Dalal 05] Navneet Dalal & Bill Triggs. Histograms of oriented
gradients for human detection. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
886–893. IEEE, 2005.

[d’Angelo 12] Emmanuel d’Angelo, Alexandre Alahi & Pierre Van-
dergheynst. Beyond bits: Reconstructing images
from local binary descriptors. In Proceedings of the
21st International Conference on Pattern Recogni-
tion (ICPR2012), pages 935–938. IEEE, 2012.

[Dasgupta 11] Anirban Dasgupta, Ravi Kumar & Tamás Sarlós.
Fast locality-sensitive hashing. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1073–
1081, 2011.

[Daubechies 04] Ingrid Daubechies, Michel Defrise & Christine
De Mol. An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Commu-
nications on Pure and Applied Mathematics: A Jour-
nal Issued by the Courant Institute of Mathematical
Sciences, vol. 57, no. 11, pages 1413–1457, 2004.

[Deng 09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li & Fei-Fei Li. ImageNet: A large-scale hierarchi-
cal image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 248–255, 2009.

[Deng 13] Li Deng, Ossama Abdel-Hamid & Dong Yu. A
deep convolutional neural network using heteroge-
neous pooling for trading acoustic invariance with

BIBLIOGRAPHY 127

phonetic confusion. In 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
pages 6669–6673. IEEE, 2013.

[Dhaene 22] Zeno Dhaene, Nina Žižakić, Shaoguang Huang, Xian
Li & Aleksandra Pižurica. HSIToolbox: a web-based
application for the classification of hyperspectral im-
ages. SoftwareX (in preparation), 2022.

[Dizaji 18] Kamran Ghasedi Dizaji, Feng Zheng, Najmeh
Sadoughi, Yanhua Yang, Cheng Deng & Heng
Huang. Unsupervised deep generative adversarial
hashing network. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 3664–3673, 2018.

[Donoho 03] David L Donoho & Carrie Grimes. Hessian eigen-
maps: Locally linear embedding techniques for high-
dimensional data. Proceedings of the National
Academy of Sciences, vol. 100, no. 10, pages 5591–
5596, 2003.

[En 17] Sovann En, Bruno Crémilleux & Frédéric Jurie. Un-
supervised deep hashing with stacked convolutional
autoencoders. In 2017 IEEE International Confer-
ence on Image Processing (ICIP), pages 3420–3424.
IEEE, 2017.

[Erin Liong 15] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre
Moulin & Jie Zhou. Deep Hashing for Compact Bi-
nary Codes Learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2475–2483, June 2015.

[Fefferman 16] Charles Fefferman, Sanjoy Mitter & Hariharan
Narayanan. Testing the manifold hypothesis. Journal
of the American Mathematical Society, vol. 29, no. 4,
pages 983–1049, 2016.

[Fischer 14a] Philipp Fischer, Alexey Dosovitskiy & Thomas Brox.
Descriptor matching with convolutional neural net-
works: a comparison to SIFT. arXiv preprint
arXiv:1405.5769, 2014.

[Fischer 14b] Philipp Fischer, Alexey Dosovitskiy & Thomas Brox.
Descriptor matching with convolutional neural net-
works: a comparison to SIFT. arXiv preprint
arXiv:1405.5769, 2014.

[Frey 10] Brendan Frey. Frey Faces dataset, 2010.

128 BIBLIOGRAPHY

[Ghorai 16] Mrinmoy Ghorai, Sekhar Mandal & Bhabatosh
Chanda. Patch sparsity based image inpainting using
local patch statistics and steering kernel descriptor.
In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 781–786. IEEE, 2016.

[Gong 13] Y. Gong, S. Lazebnik, A. Gordo & F. Perronnin.
Iterative Quantization: A Procrustean Approach to
Learning Binary Codes for Large-Scale Image Re-
trieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 12, pages 2916–
2929, 2013.

[Goodfellow 16a] Ian Goodfellow, Yoshua Bengio & Aaron Courville.
Deep learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[Goodfellow 16b] Ian Goodfellow, Yoshua Bengio & Aaron Courville.
Deep learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[Goulekas 01] Karen Goulekas. Visual Effects in a Digital World: A
Comprehensive Glossary of Over 7000 Visual Effects
Terms. Elsevier, 2001.

[Gregor 10] Karol Gregor & Yann LeCun. Learning fast approx-
imations of sparse coding. In Proceedings of the
27th International Conference on Machine Learning,
pages 399–406, 2010.

[Han 15] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul
Sukthankar & Alexander C Berg. Matchnet: Uni-
fying feature and metric learning for patch-based
matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 3279–3286, 2015.

[Hansen 20] Casper Hansen, Christian Hansen, Jakob Grue Si-
monsen, Stephen Alstrup & Christina Lioma. Un-
supervised Semantic Hashing with Pairwise Recon-
struction. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 2009–2012,
2020.

[He 16] Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 129

[He 18] Kun He, Yan Lu & Stan Sclaroff. Local descriptors
optimized for average precision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 596–605, 2018.

[Hendrycks 16] Dan Hendrycks & Kevin Gimpel. Gaussian
Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[Higgins 17] Irina Higgins, Loïc Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed & Alexander Lerchner. β-VAE: Learn-
ing Basic Visual Concepts with a Constrained Vari-
ational Framework. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017.

[Hinton 94] Geoffrey E Hinton & Richard S Zemel. Autoencoders,
minimum description length and Helmholtz free en-
ergy. In Advances in Neural Information Processing
Systems, pages 3–10, 1994.

[Hinton 95] Geoffrey E Hinton, Peter Dayan, Brendan J Frey
& Radford M Neal. The" wake-sleep" algorithm
for unsupervised neural networks. Science, vol. 268,
no. 5214, pages 1158–1161, 1995.

[Hinton 06] Geoffrey E Hinton & Ruslan R Salakhutdinov. Re-
ducing the dimensionality of data with neural net-
works. Science, vol. 313, no. 5786, pages 504–507,
2006.

[Hosu 20] Vlad Hosu, Hanhe Lin, Tamas Sziranyi & Dietmar
Saupe. KonIQ-10k: An ecologically valid database
for deep learning of blind image quality assessment.
IEEE Transactions on Image Processing, vol. 29,
pages 4041–4056, 2020.

[Hu 17] Qinghao Hu, Jiaxiang Wu, Jian Cheng, Lifang Wu &
Hanqing Lu. Pseudo Label Based Unsupervised Deep
Discriminative Hashing for Image Retrieval. In Pro-
ceedings of the 25th ACM international conference
on Multimedia, pages 1584–1590, 2017.

[Indyk 98] Piotr Indyk & Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimension-
ality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613,
1998.

130 BIBLIOGRAPHY

[Jacobs 85] Paul S Jacobs. A knowledge-based approach to lan-
guage production. Rapport technique, California Uni-
versity Berkeley Dept. of Electrical Engineering and
Computer Sciences, 1985.

[Janocha 17] Katarzyna Janocha & Wojciech Marian Czarnecki.
On loss functions for deep neural networks in classi-
fication. arXiv preprint arXiv:1702.05659, 2017.

[Ji 12] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang
& Qi Tian. Super-bit locality-sensitive hashing. In
Advances in Neural Information Processing Systems,
pages 108–116. Citeseer, 2012.

[Jin 05] Hongliang Jin, Qingshan Liu, Xiaoou Tang & Han-
qing Lu. Learning local descriptors for face detection.
In 2005 IEEE International Conference on Multime-
dia and Expo, pages 928–931. IEEE, 2005.

[Joshi 20] Khushbu Joshi & Manish I Patel. Recent advances
in local feature detector and descriptor: a literature
survey. International Journal of Multimedia Infor-
mation Retrieval, vol. 9, no. 4, pages 231–247, 2020.

[Kaggle 10] Kaggle. Titanic - Machine Learning from Dis-
aster. https://rr.noordstar.me/kaggle-challenge-
titanic-01632e81, 2010.

[Kaplan 19] Andreas Kaplan & Michael Haenlein. Siri, Siri, in
my hand: Who’s the fairest in the land? On the
interpretations, illustrations, and implications of ar-
tificial intelligence. Business Horizons, vol. 62, no. 1,
pages 15–25, 2019.

[Ke 04] Yan Ke & Rahul Sukthankar. PCA-SIFT: A more
distinctive representation for local image descriptors.
In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition (CVPR), volume 2, pages 506–513. IEEE,
2004.

[KIK-IRPA 10] KIK-IRPA. Closer to Van Eyck.
http://closertovaneyck.kikirpa.be/, 2010.

[Kingma 13] Diederik P Kingma & Max Welling. Auto-Encoding
Variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

[Kingma 14] Diederik P Kingma & Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

BIBLIOGRAPHY 131

[Kingma 19] Diederik P Kingma & Max Welling. An intro-
duction to variational autoencoders. arXiv preprint
arXiv:1906.02691, 2019.

[Komodakis 07] Nikos Komodakis & Georgios Tziritas. Image com-
pletion using efficient belief propagation via priority
scheduling and dynamic pruning. IEEE Transactions
on Image Processing, vol. 16, no. 11, pages 2649–
2661, 2007.

[Kramer 91] Mark A Kramer. Nonlinear principal compo-
nent analysis using autoassociative neural networks.
AIChE journal, vol. 37, no. 2, pages 233–243, 1991.

[Krishna 17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin
Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A
Shammaet al. Visual genome: Connecting language
and vision using crowdsourced dense image anno-
tations. International Journal of Computer Vision,
vol. 123, no. 1, pages 32–73, 2017.

[Krizhevsky 09] Alex Krizhevsky & Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[Kulis 11] Brian Kulis & Kristen Grauman. Kernelized locality-
sensitive hashing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 6,
pages 1092–1104, 2011.

[Le Meur 11] Olivier Le Meur, Josselin Gautier & Christine Guille-
mot. Examplar-based inpainting based on local geom-
etry. In 2011 18th IEEE International Conference
on Image Processing (ICIP), pages 3401–3404. IEEE,
2011.

[LeCun 10] Yann LeCun, Corinna Cortes & Chris Burges.
MNIST handwritten digit database, 2010.

[Lenat 89] Douglas B Lenat & Ramanathan V Guha. Building
large knowledge-based systems; representation and
inference in the Cyc project. Addison-Wesley Long-
man Publishing Co., Inc., 1989.

[Leutenegger 11] Stefan Leutenegger, Margarita Chli & Roland Y
Siegwart. BRISK: Binary Robust Invariant Scalable
Keypoints. In 2011 International Conference on Com-
puter Vision (ICCV), pages 2548–2555. IEEE, 2011.

132 BIBLIOGRAPHY

[Lin 13] Yue Lin, Rong Jin, Deng Cai, Shuicheng Yan & Xue-
long Li. Compressed hashing. In Proceedings of the
IEEE conference on Computer Vision and Pattern
Recognition (CVPR), pages 446–451, 2013.

[Liu 11] Wei Liu, Jun Wang, Sanjiv Kumar & Shih-Fu Chang.
Hashing with graphs. In International Conference on
Machine Learning (ICML), 2011.

[Liu 16] Haomiao Liu, Ruiping Wang, Shiguang Shan & Xilin
Chen. Deep supervised hashing for fast image re-
trieval. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2064–2072, 2016.

[Lovelace 42] Ada Lovelace. Notes upon L. F. Menabrea’s “Sketch
of the Analytical Engine invented by Charles Bab-
bage”. 1842.

[Lowe 99] David G Lowe. Object recognition from local scale-
invariant features. In Proceedings of the Seventh
IEEE International Conference on Computer Vision
(ICCV), page 1150. IEEE, 1999.

[Luo 20] Xiao Luo, Chong Chen, Huasong Zhong, Hao Zhang,
Minghua Deng, Jianqiang Huang & Xiansheng Hua.
A survey on deep hashing methods. arXiv preprint
arXiv:2003.03369, 2020.

[Mahendran 15] Aravindh Mahendran & Andrea Vedaldi. Under-
standing deep image representations by inverting
them. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 5188–
5196, 2015.

[Makhzani 15] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow & Brendan Frey. Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644, 2015.

[McCann 17] Michael T McCann, Kyong Hwan Jin & Michael
Unser. Convolutional neural networks for inverse
problems in imaging: A review. IEEE Signal Pro-
cessing Magazine, vol. 34, no. 6, pages 85–95, 2017.

[McCorduck 04] Pamela McCorduck. Machines who think (2nd ed.).
A. K. Peters, Ltd., 2004.

[Meeus 19] Laurens Meeus, Shaoguang Huang, Bart Devolder,
Hélène Dubois & Aleksandra Pižurica. Deep learning
for paint loss detection with a multiscale, translation

BIBLIOGRAPHY 133

invariant network. In Proceedings of the 11th Inter-
national Symposium on Image and Signal Processing
and Analysis (ISPA 2019), page 5, 2019.

[Meeus 20] Laurens Meeus, Shaoguang Huang, Nina Žižakić, Xi-
anghui Xie, Bart Devolder, Hélène Dubois, Maxi-
miliaan Martens & Aleksandra Pižurica. Assisting
classical paintings restoration: efficient paint loss de-
tection and descriptor-based inpainting using shared
pretraining. In Optics, Photonics and Digital Tech-
nologies for Imaging Applications VI, volume 11353,
page 113530H. International Society for Optics and
Photonics, 2020.

[Meilă 07] Marina Meilă. Comparing clusterings – an informa-
tion based distance. Journal of Multivariate Analysis,
vol. 98, no. 5, pages 873–895, 2007.

[Mikolajczyk 05] Krystian Mikolajczyk & Cordelia Schmid. A perfor-
mance evaluation of local descriptors. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 10, pages 1615–1630, 2005.

[Mishkin 15] Dmytro Mishkin, Jiri Matas, Michal Perdoch &
Karel Lenc. WxBS: Wide baseline stereo generaliza-
tions. arXiv preprint arXiv:1504.06603, 2015.

[Misra 19] Diganta Misra. Mish: A self regularized non-
monotonic neural activation function. arXiv preprint
arXiv:1908.08681, vol. 4, no. 2, pages 10–48550, 2019.

[Monga 21] Vishal Monga, Yuelong Li & Yonina C Eldar. Algo-
rithm unrolling: Interpretable, efficient deep learning
for signal and image processing. IEEE Signal Pro-
cessing Magazine, vol. 38, no. 2, pages 18–44, 2021.

[Nai 18] Ke Nai, Zhiyong Li, Guiji Li & Shanquan Wang. Ro-
bust object tracking via local sparse appearance model.
IEEE Transactions on Image Processing, vol. 27,
no. 10, pages 4958–4970, 2018.

[Narayanan 10] Hariharan Narayanan & Sanjoy Mitter. Sample com-
plexity of testing the manifold hypothesis. Advances
in neural information processing systems, vol. 23,
2010.

[Newson 17] Alasdair Newson, Andrés Almansa, Yann Gousseau
& Patrick Pérez. Non-local patch-based image in-
painting. Image Processing On Line, vol. 7, pages
373–385, 2017.

134 BIBLIOGRAPHY

[Ng 11] Andrew Ng. Sparse autoencoder. CS294A Lecture
notes, vol. 72, no. 2011, pages 1–19, 2011.

[Ono 18] Yuki Ono, Eduard Trulls, Pascal Fua & Kwang Moo
Yi. LF-Net: learning local features from images. In
Advances in Neural Information Processing Systems,
pages 6234–6244, 2018.

[Ovid 04] Ovid & Charles Martin. Metamorphoses. W. W.
Norton, 2004.

[Pan 12] Jia Pan & Dinesh Manocha. Bi-level locality sensi-
tive hashing for k-nearest neighbor computation. In
2012 IEEE 28th International Conference on Data
Engineering, pages 378–389, 2012.

[Panigrahy 05] Rina Panigrahy. Entropy based nearest neigh-
bor search in high dimensions. arXiv preprint
cs/0510019, 2005.

[Papernot 16] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson,
Ian Goodfellow & Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private
training data. arXiv preprint arXiv:1610.05755, 2016.

[Patel 16] Manish I Patel, Vishvjit K Thakar & Shishir K Shah.
Image registration of satellite images with varying il-
lumination level using HOG descriptor based SURF.
Procedia Computer Science, vol. 93, pages 382–388,
2016.

[Pernici 13] Federico Pernici & Alberto Del Bimbo. Object track-
ing by oversampling local features. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 12, pages 2538–2551, 2013.

[Pidhorskyi 20] Stanislav Pidhorskyi, Donald A Adjeroh & Gian-
franco Doretto. Adversarial latent autoencoders.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 14104–14113, 2020.

[Pihlgren 20] Gustav Grund Pihlgren, Fredrik Sandin & Marcus
Liwicki. Improving image autoencoder embeddings
with perceptual loss. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–7.
IEEE, 2020.

[Pižurica 15] Aleksandra Pižurica, Ljiljana Platiša, Tijana Ružić,
Bruno Cornelis, Ann Dooms, Maximiliaan Martens,

BIBLIOGRAPHY 135

Hélène Dubois, Bart Devolder, Marc De Mey & In-
grid Daubechies. Digital Image Processing of The
Ghent Altarpiece: Supporting the painting’s study
and conservation treatment. IEEE Signal Processing
Magazine, vol. 32, no. 4, pages 112–122, 2015.

[Poddar 19] Shashi Poddar, Rahul Kottath & Vinod Karar. Mo-
tion Estimation Made Easy: Evolution and Trends in
Visual Odometry. In Recent Advances in Computer
Vision, pages 305–331. Springer, 2019.

[Qiu 17] Zhaofan Qiu, Yingwei Pan, Ting Yao & Tao Mei.
Deep semantic hashing with generative adversarial
networks. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 225–234, 2017.

[RAR 22] Rise Above Research RAR. 2022 World-
wide Image Capture Forecast: 2021 - 2026.
https://riseaboveresearch.com/rar-reports/2022-
worldwide-image-capture-forecast-2021-2026/, 2022.

[Rezende 18] Danilo Jimenez Rezende & Fabio Viola. Taming
VAEs. arXiv preprint arXiv:1810.00597, 2018.

[Rosten 06] Edward Rosten & Tom Drummond. Machine learn-
ing for high-speed corner detection. In European Con-
ference on Computer Vision (ECCV), pages 430–443.
Springer, 2006.

[Rublee 11] Ethan Rublee, Vincent Rabaud, Kurt Konolige &
Gary Bradski. ORB: An efficient alternative to SIFT
or SURF. In 2011 International Conference on Com-
puter Vision (ICCV), pages 2564–2571. IEEE, 2011.

[Rumelhart 85] David E Rumelhart, Geoffrey E Hinton & Ronald J
Williams. Learning internal representations by error
propagation. Rapport technique, California Univ.,
San Diego, La Jolla Inst. for Cognitive Science, 1985.

[Ružić 15] Tijana Ružić & Aleksandra Pižurica. Context-aware
patch-based image inpainting using Markov random
field modeling. IEEE Transactions on Image Pro-
cessing, vol. 24, no. 1, pages 444–456, 2015.

[Sainath 15] Tara N Sainath, Brian Kingsbury, George Saon, Ha-
gen Soltau, Abdel-rahman Mohamed, George Dahl
& Bhuvana Ramabhadran. Deep convolutional neu-
ral networks for large-scale speech tasks. Neural Net-
works, vol. 64, pages 39–48, 2015.

136 BIBLIOGRAPHY

[Schmidt 21] Robin M Schmidt, Frank Schneider & Philipp Hen-
nig. Descending through a Crowded Valley – Bench-
marking Deep Learning Optimizers. In International
Conference on Machine Learning (ICML), pages
9367–9376. PMLR, 2021.

[Schonberger 17] Johannes L Schonberger, Hans Hardmeier, Torsten
Sattler & Marc Pollefeys. Comparative evaluation of
hand-crafted and learned local features. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1482–1491,
2017.

[Sheikh 06] Hamid R Sheikh & Alan C Bovik. Image informa-
tion and visual quality. IEEE Transactions on Image
Processing, vol. 15, no. 2, pages 430–444, 2006.

[Shen 15] Fumin Shen, Chunhua Shen, Wei Liu & Heng
Tao Shen. Supervised discrete hashing. In Proceed-
ings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pages 37–45, 2015.

[Shen 20] Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu,
Li Liu, Fan Zhu, Fumin Shen & Ling Shao. Auto-
Encoding Twin-Bottleneck Hashing. Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2815–2824,
2020.

[Shi 16] Xiaoshuang Shi, Fuyong Xing, Jinzheng Cai, Zizhao
Zhang, Yuanpu Xie & Lin Yang. Kernel-based super-
vised discrete hashing for image retrieval. In Euro-
pean Conference on Computer Vision (ECCV), pages
419–433. Springer, 2016.

[Simo-Serra 15] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Ia-
sonas Kokkinos, Pascal Fua & Francesc Moreno-
Noguer. Discriminative learning of deep convolu-
tional feature point descriptors. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), pages 118–126, 2015.

[Simonyan 14] Karen Simonyan & Andrew Zisserman. Very
Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv preprint arXiv:1409.1556, 2014.

[Sizyakin 20] Roman Sizyakin, Bruno Cornelis, Laurens Meeus,
Hélène Dubois, Maximiliaan Martens, Viacheslav
Voronin & Aleksandra Pižurica. Crack detection in
paintings using convolutional neural networks. IEEE
Access, vol. 8, pages 74535–74552, 2020.

BIBLIOGRAPHY 137

[Solomonoff 56] Ray Solomonoff. Ray’s notes on his Thinking
Machine ideas. http://raysolomonoff.com/
dartmouth/boxbdart/dart56ray812825who.pdf,
1956. Accessed: 2022-03-12.

[Song 18] Jingkuan Song, Tao He, Lianli Gao, Xing Xu, Alan
Hanjalic & Heng Tao Shen. Binary generative adver-
sarial networks for image retrieval. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

[Sparkes 96] Brian A. Sparkes. The Red and the Black: Studies
in Greek Pottery. Routledge, 1996.

[Strecha 11] Christoph Strecha, Alex Bronstein, Michael Bron-
stein & Pascal Fua. LDAHash: Improved matching
with smaller descriptors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 34, no. 1,
pages 66–78, 2011.

[Tan 19] Mingxing Tan & Quoc Le. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.
In International Conference on Machine Learning
(ICML), pages 6105–6114. PMLR, 2019.

[Tandy 97] David W. Tandy. Works and days: A translation
and commentary for the social sciences. University
of California Press, 1997.

[Tian 19] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub
Heijnen & Vassileios Balntas. SOSNet: Second order
similarity regularization for local descriptor learn-
ing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 11016–11025, 2019.

[Tobias-Springenberg 14] Jost Tobias-Springenberg, Alexey Dosovitskiy,
Thomas Brox & Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806, 2014.

[Tola 09] Engin Tola, Vincent Lepetit & Pascal Fua. DAISY:
An efficient dense descriptor applied to wide-baseline
stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 5, pages 815–830,
2009.

[Tolstikhin 17] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly &
Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

http://raysolomonoff.com/dartmouth/boxbdart/dart56ray812825who.pdf
http://raysolomonoff.com/dartmouth/boxbdart/dart56ray812825who.pdf

138 BIBLIOGRAPHY

[Tošić 11] Ivana Tošić & Pascal Frossard. Dictionary learning:
What is the right representation for my signal? IEEE
Signal Processing Magazine, vol. 28, no. 2, pages 27–
38, 2011.

[Turing 50] Alan M Turing. Computing Machinery and Intelli-
gence. Mind, vol. LIX, no. 236, pages 433–460, 10
1950.

[Tuytelaars 08] Tinne Tuytelaars & Krystian Mikolajczyk. Local In-
variant Feature Detectors: A Survey. Now Publishers
Inc, 2008.

[Verwilst 21] Maxim Verwilst, Nina Žižakić, Lingchen Gu & Alek-
sandra Pižurica. Deep image hashing based on twin-
bottleneck hashing with variational autoencoders. In
2021 IEEE 23rd International Workshop on Multi-
media Signal Processing (MMSP). IEEE, 2021.

[Vondrick 13] Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz
& Antonio Torralba. Hoggles: Visualizing object de-
tection features. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1–8,
2013.

[Voronin 14] Viacheslav V Voronin, Vladimir I Marchuk, Niko-
lay V Gapon, Roman A Sizyakin, Alexander I Sher-
stobitov & Karen O Egiazarian. Exemplar-based in-
painting using local binary patterns. In Image Pro-
cessing: Algorithms and Systems XII, volume 9019,
page 901907. International Society for Optics and
Photonics, 2014.

[Wald 00] Lucien Wald. Quality of high resolution synthesised
images: Is there a simple criterion? In Third con-
ference ”Fusion of Earth data: merging point mea-
surements, raster maps and remotely sensed images”,
pages 99–103. SEE/URISCA, January 2000.

[Wang 02] Zhou Wang & Alan C Bovik. A universal image qual-
ity index. IEEE Signal Processing Letters, vol. 9,
no. 3, pages 81–84, 2002.

[Wang 03] Zhou Wang, Eero P Simoncelli & Alan C Bovik. Mul-
tiscale structural similarity for image quality assess-
ment. In The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003, volume 2,
pages 1398–1402. IEEE, 2003.

[Wang 04] Zhou Wang, Alan C Bovik, Hamid R Sheikh &
Eero P Simoncelli. Image quality assessment: from

BIBLIOGRAPHY 139

error visibility to structural similarity. IEEE trans-
actions on image processing, vol. 13, no. 4, pages
600–612, 2004.

[Wang 11] Sheng Wang. A Review of Gradient-Based and Edge-
Based Feature Extraction Methods for Object Detec-
tion. In 2011 IEEE 11th International Conference on
Computer and Information Technology, pages 277–
282. IEEE, 2011.

[Wang 16a] Xiaofang Wang, Yi Shi & Kris M Kitani. Deep super-
vised hashing with triplet labels. In Asian conference
on computer vision, pages 70–84. Springer, 2016.

[Wang 16b] Xiaojuan Wang, Ting Zhang, Guo-Jun Qi, Jinhui
Tang & Jingdong Wang. Supervised quantization for
similarity search. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2018–2026, 2016.

[Wang 17] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao
Shenet al. A survey on learning to hash. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, vol. 40, no. 4, pages 769–790, 2017.

[Wang 18] Guan’an Wang, Qinghao Hu, Jian Cheng & Zeng-
guang Hou. Semi-supervised generative adversarial
hashing for image retrieval. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 469–485, 2018.

[Wang 20] Qianqian Wang, Xiaowei Zhou, Bharath Hariharan
& Noah Snavely. Learning feature descriptors using
camera pose supervision. In European Conference on
Computer Vision (ECCV), pages 757–774. Springer,
2020.

[Weinberger 06] Kilian Q Weinberger & Lawrence K Saul. Unsu-
pervised learning of image manifolds by semidefinite
programming. International Journal of Computer Vi-
sion, vol. 70, no. 1, pages 77–90, 2006.

[Weinzaepfel 11] Philippe Weinzaepfel, Hervé Jégou & Patrick Pérez.
Reconstructing an image from its local descriptors.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2011), pages
337–344. IEEE, 2011.

[Weiss 09] Yair Weiss, Antonio Torralba & Rob Fergus. Spectral
Hashing. In Advances in Neural Information Process-
ing Systems 21, pages 1753–1760. Curran Associates,
Inc., 2009.

140 BIBLIOGRAPHY

[Wikipedia 22] Wikipedia. Autoencoder – Wikipedia.
https://en.wikipedia.org/wiki/Autoencoder, 2022.
Accessed: 2022-09-09.

[Winder 07] Simon AJ Winder & Matthew Brown. Learning lo-
cal image descriptors. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1–8. IEEE, 2007.

[Xia 14] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu &
Shuicheng Yan. Supervised hashing for image re-
trieval via image representation learning. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 28, 2014.

[Xiao 17] Han Xiao, Kashif Rasul & Roland Vollgraf. Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms, 2017.

[Yang 17] Huei-Fang Yang, Kevin Lin & Chu-Song Chen. Su-
pervised learning of semantics-preserving hash via
deep convolutional neural networks. IEEE transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 2, pages 437–451, 2017.

[Yilmaz 06] Alper Yilmaz, Omar Javed & Mubarak Shah. Ob-
ject Tracking: A Survey. ACM computing surveys
(CSUR), vol. 38, no. 4, pages 13–es, 2006.

[Yim 10] Changhoon Yim & Alan Conrad Bovik. Quality as-
sessment of deblocked images. IEEE Transactions on
Image Processing, vol. 20, no. 1, pages 88–98, 2010.

[Zagoruyko 15] Sergey Zagoruyko & Nikos Komodakis. Learning to
compare image patches via convolutional neural net-
works. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4353–4361, 2015.

[Zeiler 12] Matthew D Zeiler. ADADELTA: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701,
2012.

[Zhang 19] Na Zhang, Hua Ji, Li Liu & Guanhua Wang.
Exemplar-based image inpainting using angle-aware
patch matching. EURASIP Journal on Image and
Video Processing, vol. 2019, no. 1, page 70, 2019.

[Zhou 98] Jie Zhou, Daniel L Civco & JA Silander. A wavelet
transform method to merge Landsat TM and SPOT
panchromatic data. International Journal of Remote
Sensing, vol. 19, no. 4, pages 743–757, 1998.

BIBLIOGRAPHY 141

[Zieba 18] Maciej Zieba, Piotr Semberecki, Tarek El-Gaaly &
Tomasz Trzcinski. BinGAN: Learning Compact Bi-
nary Descriptors with a Regularized GAN. Advances
in Neural Information Processing Systems, vol. 31,
2018.

[Žižakić 19a] Nina Žižakić, Izumi Ito, Laurens Meeus &
Aleksandra Pižurica. Autoencoder-learned lo-
cal image descriptor for image inpainting. In
BNAIC/BENELEARN 2019, volume 2491, 2019.

[Žižakić 19b] Nina Žižakić, Izumi Ito & Aleksandra Pižurica.
Learning Local Image Descriptors with Autoencoders.
In International Conference on Image Processing and
Communications, pages 214–221. Springer, 2019.

[Žižakić 20a] Nina Žižakić & Aleksandra Pižurica. Learned BRIEF
– transferring the knowledge from hand-crafted to
learning-based descriptors. In 2020 IEEE 22nd Inter-
national Workshop on Multimedia Signal Processing
(MMSP). IEEE, 2020.

[Žižakić 20b] Nina Žižakić & Aleksandra Pižurica. Invertible lo-
cal image descriptors learned with variational autoen-
coders. In IEICE Information and Communication
Technology Forum (ICTF) 2020, Proceedings. IEICE
Europe Section, 2020.

[Žižakić 21a] Nina Žižakić & Aleksandra Pižurica. Efficient Local
Image Descriptors Learned with Autoencoders. IEEE
Access, vol. 10, pages 221–235, 2021.

[Žižakić 21b] Nina Žižakić & Aleksandra Pižurica. β-variational
autoencoders for learning invertible local image de-
scriptors. Image Processing & Communications,
vol. 24, no. 1, pages 71–78, 2021.

[Žižakić 22] Nina Žižakić & Aleksandra Pižurica. How to Effi-
ciently Evaluate Autoencoders for Learning Local Im-
age Descriptors. In review, European Signal Process-
ing Conference (EUSIPCO), 2022.

